

SOWING SEEDS ACADEMY

Miami University • Elementary School • Team Red Hot Chili Bs

TEAM PROFILE

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

KATIE MITCHELL 4th year BA Architecture Certified Passive House

AUSTIN J CARF 4th year BA Architecture & Environmental Science

JAMES MUSTILLO 3rd year BA Architecture

ALEC FISETTE
3rd year, BA Architecture

GRAZIELLA PILKINGTON 3rd year BA Architecture

NATE CONLEY 4th year BS Engineering

DI LI 4th year, BA Architecture

EMMA PEVOAR 1st year M.Architecture LEED AP BD+C.

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

DESIGN GOALS

SITE INFORMATION

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations 4 4 1

Market Potentia

Environmental Quality

Innovation

Closing Remarks

Oxford, OH

Site Plan

CLIMATE ZONE 5A

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

Water Runoff

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

THE COMMUNITY

Goals For School Users

Interaction with natural ecosystems

Respect for the environment

Learning to read building systems and adjusting settings

Incorporating system use and environmental lessons into the curriculum

Utilizing outdoor learning spaces

Showing students how to understand feedback technology

NAIODIAN

Understanding maintenance schedules and what needs to be outsourced

Reading feedback dashboards and adjusting systems accordingly

Becoming properly trained or qualified

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

ENERGY OVERVIEW

PHOTO VOLTAIC SYSTEM

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

Derating Factors

Derate Factor	Loss
Soiling	2.00%
Shading	2.00%
Snow	2.00%
Mismatch	2.00%
Wiring	2.00%
Connections	0.50%
Light Induced Degradation	0.00%
Nameplate	1.00%
Availability	2.00%
Total Derate Factor	12.74%

Energy Consumption vs. Production

Average Production

Month	Solar Radiation *Average	AC Energy (kWh)	Cost Savings
January	2.75	7,631	1,030.19
February	3.30	7,942	1,072.17
March	4.49	11,591	1,564.79
April	5.24	12,677	1,711.40
May	6.09	14,631	1,975.19
June	6.49	14,740	1,989.90
July	6.35	14,826	2,001.51
August	6.25	14,506	1,958.31
September	5.28	12,116	1,635.66
October	4.11	10,007	1,350.95
November	2.97	7,489	1,011.02
December	2.26	6,060	818.10
Annual	4.63	134,216	18,119.16

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

GREEN ROOF

Green Roof Tray System

_ _ _

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

ENVELOPE

Envelope Section

Control Layers

Thermal

Gutex Multitherm Wood Fiberboard Insulation

– – – Water, Air, Vapor

Pro Clima DA Wrap Tescon Vana Tape

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

NATURAL LIGHTING

Zola Thermoclad

Selected window:
Zola Thermo Clad
Overall U-Value: 0.14
Center-of-glass U-Value: 0.09
SHGC: 0.5
VT: 71%
2 Low-e Coatings
Triple Pane, Argon
60 years expected service life

Annual Sun Angle

Energy Performance

PRELIMINARY SEFAIRA MODELING

Sefaira Heating and Cooling Loads

Sefaira Natural Light Analysis

kBTU/sf/yr

Sefaira Energy Profile

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovatior

Closing Remarks

PASSIVE HOUSE CRITERIA

WUFI Passive Model

ENERGY USAGE COMPARISON

Energy Performance

Traditional School Energy Usage

Sowing Seeds Energy Usage

Total Energy Usage: 452,977 kBTU/yr

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

MECHANICAL SYSTEM INTEGRATION

Integration Plan

Engineering

VARIABLE REFRIGERANT FLOW SYSTEM

Mitsubishi VRF

Branch Controller

High Wall Unit

Mitsubishi City MultiVRFWater Source Units

Nominal Cooling Capacity (BTU/h):.....(2) 192,000 BTU/h; (1) 288,000 BTU/hr Nominal Heating Capacity (BTU/h):.....(2) 215,000 BTU/hr; (1) 320,000 BTU/hr

Flow Rate Nominal / Actual (gpm):.....(2) 31.7; (1) 63.4

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

DEDICATED OUTDOOR AIR SYSTEM

Gym Packaged Single Zone Unit

Kitchen PSZ

Mitubishi DOAS Unit

Exhaust Air Volume......5,000 CFM

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

WATER SYSTEM

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

RAIN WATER REUSE

LIGHTING PLAN

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovatior

Closing Remarks

(DS)	DAYLIGHT SENSOR
(3)	OCCUPANCY SENSOR
\$	CONTROL SWITCH
\boxtimes	LED ARCHITECTURAL BASKET TROFFER
	LED LINEAR LOW-BAY LUMINAIRE

Energy Performance

Engineering

Financial Feasibility

Resilience

 $\mathsf{Architecture}$

Operations

Market Potentia

Environmental Quality

Innovatior

Closing Remarks

STRUCTURE

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

FINANCIAL ANALYSIS

Construction Costs

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

FINANCIAL ANALYSIS

Marshall Elementary vs. Sowing Seeds

SCHEMATIC DESIGN ESTIMATE	MAUD MARSHALL ELEMENTARY SCHOOL BASE LINE COSTS		ADD/ SUBTRACT ADJUSTMENTS TO BASE LINE COSTS			SOWING SEEDS ACADEMY TEAM PROJECT COST			
	%	COST GSF	COST TOTAL	%	COST GSF	COST TOTAL	%	COST GSF	COST TOTAL
Division 01.0 General Conditions	2.22%	\$5.55	\$327,170.00	-1.06%	-\$2.65	\$156,100.00	1.00%	\$2.90	171,070
Division 02.0- Demolition	3.43%	\$8.55	\$504,406.00	-0.42%	-\$1.05	\$61,862	2.58%	\$7.50	\$442,544
Division 03.0- Foundation	2.17%	\$5.42	\$319,550	-1.39%	-\$3.46	\$204,050	0.67%	\$1.96	\$115,500
Division 04.0 - Substructure	1.80%	\$4.48	\$264,525	2.48%	\$6.19	\$365,475	3.67%	\$10.68	\$630,000
Division 05.0 - Superstructure	5.24%	\$13.06	\$770,680	13.45%	\$33.55	\$1,979,320	16.03%	\$46.61	\$2,750,000
Division 06.0 - Exterior Closure	12.18%	\$30.37	\$1,791,618	-6.31%	-\$15.73	\$927,794	5.03%	\$14.64	\$863,824
Division 07.0 - Roof	2.39%	\$5.96	\$351,514	-0.24%	-\$0.59	\$34.974	1.84%	\$5.37	\$316,540
Division 08.0 - Interior Construction Partitions	4.41%	\$11.01	\$649,495	0.01%	\$0.02	\$925	3.79%	\$11.02	\$650,420
Divsion 09.0 -Interior Construction Finishes	3.16%	\$7.88	\$464,749	-0.59%	-\$1.48	\$87.097	2.20%	\$6.40	\$377.652
Division 10.0 - Interior Construction Specialties	3.99%	\$9.95	\$586,802	-0.84%	-\$2.09	\$123,367	2.70%	\$7.85	\$463,435
Division 11.0 - Equipment	3.51%	\$8.74	\$515,849	0.38%	\$0.94	\$55,751	3.33%	\$9.69	\$571,600
Division 14.0 - Conveying Systems	0.58%	\$1.44	\$85,000	-0.03%	-\$0.08	\$5,000	0.47%	\$1.36	\$80,000
Division 21.0 - Fire Suppression	0.88%	\$2.19	\$129,105	0.27%	\$0.66	\$39,045	0.98%	\$2.85	\$168,150
Division 22.0 - Plumbing	3.14%	\$7.83	\$462,181	0.05%	\$0.12	\$7,064	2.73%	\$7.95	\$469,245
Division 23.0 - HVAC	10.73%	\$26.75	\$1.578.056	8.23%	\$20.51	\$1,210,291	16.25%	\$47.26	\$2,788,347
Division 26.0 - Electrical	7.13%	\$17.78	\$1,048,770	3.29%	\$8.21	\$484,400	8.93%	\$25.99	\$1,533,170
Division 27.0 - Technology	3.88%	\$9.68	\$571,049	1.17%	\$2.92	\$172,351	4.33%	\$12.60	\$743,400
Division 31.0 - Earthwork	8.38%	\$20.89	\$1,232,614	-0.92%	-\$2.30	\$135,862	6.39%	\$18.59	\$1,096,752
Division 32.0 - Site Utilities	2.81%	\$7.00	\$412,733	0.35%	\$0.88	\$51,912	2.71%	\$7.88	\$464,645
Division 33.0 - Site Improvements	6.83%	\$17.03	\$1.004.668	-2.76%	-\$6.88	\$405,649	3.49%	\$10.15	\$599.019
Gymnasium Renovation AllowanceHVAC	2.07%	\$5.16	\$304.328			\$0	1.77%	\$5.16	\$304,328
SUBTOTAL	90.91%	\$226.69	\$13,374,861			\$2,224,779	90.91%	\$264.40	\$15,599,640
Design Contingency (7%)	7.00%	\$15.87	936,240				7.00%	\$18.51	1,091,975
Escalation Contingency (2%)	2.00%	\$4.53	267,497				2.00%	\$5.29	311,993
Payment and Performance Bonds (1%)	1.00%	\$2.27	133,749				1.00%	\$2.64	155,996
TOTAL HARD COST	100.00%	\$249.36	14,712,347			2,447,256.6	100.00%	\$290.84	17,159,604
Construction Management and Contract Administration	15%	\$34.00	\$2,006,229				15.00%	\$39.66	\$2,339,946
TOTAL CONSTRUCTION COST		\$283.37	\$16,718,577			2,780,973.5		\$330.50	\$19,499,550

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

SAFETY

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

nnovation

Closing Remarks

STORM SAFETY

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

MATERIALS

Exterior Rendering of Academic Wing

Green Wall

Latham Limestone

Standing Seam Metal Roof

Recycled Aluminium Panels

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

MATERIALS SOURCING

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovatior

Closing Remarks

Floor Plans

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovatior

Closing Remarks

Entrance Rendering

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovatior

Closing Remarks

Interior Design

Interior Street & Extended Learning Area

ELA Plan

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

USER INTERFACE

GOALS OF OPERATIONAL SYSTEMS

Mechanical Center Exterior

Mechanical Center Interior

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

ENERGY REDUCTION STRATEGIES

Colmac Heat Pump Hot Water Heater

Appliance Selections

Tunable White LED Troffer

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

EXISTING GYM RENOVATION

Benefits

- Reduce carbon
- Reuse existing material and program space
- Upgrade to PHIUS+ standards
- Avoid costs associated with destruction and reconstruction

Existing Gym

Sowing Seeds Gym Incorporation

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovatior

Closing Remarks

COMMUNITY USE

Oxford Community Arts Center - Introduction to Watercolors class

Math and English tutoring open to all students in the library

Miami Apiculture Society -Bee Keeping Demonstration in the outdoor classroom

Oxford Consumity Band

Oxford Community Band regular practice in the music room

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

UNIVERSAL DESIGN

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

FEASIBILITY

Sourcing Radius

Building Information Modeling

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovatior

Closing Remarks

INDOOR ENVIRONMENT

Interior Street

Morning Light

Afternoon Light

Circadian Cycle

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

NOISE REDUCTION

Music Room Acoustics

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

AIR QUALITY

Interior Green

Air Circulation

	cfm/person	peak per- son/room	cfm/zone	supply duct size (.08)
classroom	14.23	26	2,959.84	18" x 25"
gym	20	400	8,000	30" x 35"
admin	20	25	500	10" x 11"
kitchen	15	20	300	9" x 9"
cafeteria	20	450	9,000	35" x 30"

Interior Comfort
Factor Considerations:

- -Variable Air Volume Box Dampers
- -Demand Controlled Ventilation
- -Bioclimatic Ionization

Energy Performance

Engineering

Financial Feasibility

Resilience

 $\mathsf{Architecture}$

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

CAFETERIA

ECONOMIZER DAYS

For days with an outside air temperature between 25-75°, the modulating damper senses the temperature and opens the ceiling return duct. When temperatures are close to being outside this range, the sensor can also operate at half its capacity, while the lower return vent also is open.

FOOD CONSIDERATIONS

- -Fresh fruit and vegetables available
- -Proper portions and optional menu items
- -Left-overs given to Take-Home-Dinner program
- -Allergy accommodations

DOUBLE SKIN VENTILATION

During days when the outside air temperature is below 25 or above 75°, the lower return vent is open and air flows up through the double skin wall and is ducted back to the PSZ to be reused. This means the PSZ can lessen its supply intake to 50%, saving energy. The air inside the double skin also serves as to strengthen the R-value of the glazing system and acts as a barrier to abnormally high or low temperatures, aiding in envelope control.

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

OUTDOOR ENVIRONMENT

Prairie

Nature Hut

Walking Path

WELL BUILDING STANDARD

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potentia

Environmental Quality

Innovation

Closing Remarks

Air

Sound

Nourishment

Materials

Water

Thermal Comfort

Movement

 ${\sf Mind}$

Community

THANK YOU

Energy Performance

Engineering

Financial Feasibility

Resilience

Architecture

Operations

Market Potential

Environmental Quality

Innovation

Closing Remarks

