

Combined logic of ecology and technology Binary intelligence and 10 competitions

Student Leads

Zachary Gould Engineering

Justin Gravatt Business

Jackson Reed Architecture

Alex Arshadi Landscape

Arjun Choudhry C.S.

Faculty Advisors

Georg Reichard Faculty Technical Lead

Deidre Regan Faculty Design Lead

Student Team Lead: Zachary Gould

80% Undergrad | 20% Graduate

Alexander Arshadi Amanda Hayton Brooke Pagliarini Owen Baylosis Sam Snyder Tess Reeves

Special thanks to Delie Wilkens

Arjun Choudhry Ikechukwu Dimobi

Design

Jackson Reed Jennalee Rowden Alex Boardwine

Charlie Crotteau

Nicholas Van de Meulebroecke

Connor Leidner lan Edwards Michael Darby

Thomas Gelb

Victor Zimbardi Vidusha Sridhar

Nate Bennett

Mustafa Shafique

Business

Justin Gravatt Alec Fong Tolulope Adesoji

Engineering

John Hinson Kewal Agarwalla Young Kwang Ju Michelle Baker Sagar Karki Racim Badsi Tori Deibler

Partnerships

Academic

Industry

Concept

TreeHAUS is inspired by the way trees collect and distribute resources in the forest:

ENERGY

FOOD

WATER

Roots

Engineering systems:

- Blockchain Energy Exchange
- AD / Biogas Back-up Power
- Condensate Irrigation

Branches

Agroforestry landscape:

- Food Production
- Ecosystem Services
- Seasonal Energy Savings

Trunk

Architectural design:

- Dowel Laminated Timber (DLT) ceilings
- All wood exterior wall
- Stomatal window screens

Canopy

Resource capture:

- Solar PV Conversion
- Rainwater Collection
- Food Waste

Restorative Landscape

Scalable Modularity

Regenerative Design

Accessibility

Regenerative Design

- Stronger surrounding ecosystem
- Stronger surrounding population
- Stronger surrounding municipality

Restorative Landscape

- Native genetics
- Remediation of disturbed land
- Edible agroforestry landscape

Mindful Intelligence

- Blockchain energy distribution
- Behavioral learning over time
- Seamless biometric integration

- Reduction of project cost
- Shorten construction timelines
- Minimize waste and site disturbance

Accessibility

- Multi-tiered affordability
- Promotion of (bio) diversity
- Connection to local transit and trails

BACKGROUND

Real Estate Affordability Crisis

Percent of Stipend Spent on Housing

70% of VT Grad Students are Housing Insecure

Unit Layouts

4BR

3BR

2BR

1BR

- Shared living arrangements
- Accommodating diversity
- Flex spaces

Biophilic Design

Green Spaces

- Exterior courtyards
- Interior green walls
- Strategic viewsheds

Light & Ventilation

- Cross-ventilation
- Equitable daylight access

Lighting Analysis

Daylighting

- Living spaces at south end
- Bedrooms at north end
- Services and systems at core

Modularity

Building consists of 16' modules

- Stud framing with DLT ceilings
- Shared walls provide acoustic/fire separation
- Installed by crane, with joints sealed on-site

Modular Installation

Stomatal screens

Inspired by the way plant stomata open & close

- Insulated panels improve window R-value at night
- Slats operate independently to control daylight

Interior Design

Natural Materials

- Dowel-Laminated Timber
- No glues/VOCs
- Green wall promotes biophilia

Gypsum Board

White Oak

ite DLT

DLT Acoustics

Richlite

Wood Wool

Elements of Resilience

Earth

Water

Agroforestry

Tree Guilds

Landscape Design

Tree Guilds

Water System Integrations

---> Roof Runoff (French Drain)

---> Cistern Overflow (French Drain)

UV Purification Skid

Site Succession

Original Forest

Original Forest

Dairy Barn

Original Forest

Dairy Barn

Present Day

37

Original Forest

Dairy Barn

Present Day

10-Year Plan

38

Original Forest

Dairy Barn

Present Day

10-Year Plan

30 Year Plan

Original Forest

Dairy Barn

Present Day

10-Year Plan

30 Year Plan

Post TreeHAUS

ARCHITECTURE RESILIENCE FINANCIAL FEASIBILITY 39

i-Tree

- USDA Software
- Forestry Benefits Analysis

GROWTH

i-Tree Results

50-Year Cumulative Breakdown

Air Quality **\$3,992**

CO2 Capture **\$13,558**

Summer Shade \$34,235

\$4,103

Total Benefits Worth: \$294,059

42

Investor Profile and Opportunity Zones

Dr. John E. Dooley CEO, VT Foundation

Rental Model Financials

3 Bedroom Rental Analysis (Per Bedroom)

Overview of Construction Costs

Cost Breakdown with Options

Interviews – Informing the Design

Importantance of Local Amenities

Must Have Features

Operations and Maintenance

Low Maintenance Materials

- Pest-resistant
- Weather-resistant

FINANCIAL FEASIBILITY

Academic partnerships

- Student Upkeep
- **Agroforestry Education**
- **Research Opportunities**

Free Fuel From Nature

ENERGY
400 MWh/yr

WATER

180K gal/yr

FOOD

558 tons/yr

52

Mechanical Design

Mitsubishi HyperHeat ASHPs

Zoning with Keen smart vents and Nest averaging thermostat

MERV 8 filtration on all central units

Electrical Design

- GreenRock Salt Water Batteries
- Fermata Two-way EV Charging
- 33 West-facing PV Panels

Backup Energy

Plumbing Design

EPA WaterSense adherence

Modular interface in pipes

Orbital Showers and condensing instant HWH

All Wood Exterior Wall

- Production Timber and Post Process Waste
- Gutex Multitherm with integrated weather barrier
- Formaldehyde free and FSC certified

- 7. Shou Sugi Ban Cladding (3/4")
- 6. Pine Furring Strips (3/4")
- 5. GUTEX MultiTherm WRB (3")
- 4. GUTEX MultiTherm (3")
- 3. Blue Ridge Fiberboard (1/2")
- 2. GUTEX ThermoSafe (3 1/2")
- 1. Richlite Finish (1/2")

Hygrothermal Check

- Ubakus simulations show low RH
- WUFI confirms breathability year over year
- No risk for condensation in the cavity

< 80% RH

Hygrothermal Check

MARKET POTENTIAL ENGINEERING ENERGY PERFORMANCE

Control Layers

58

True Cost Accounting

- Embodied Carbon comparison
- Raw material extraction, fabrication, and transport

59

COMFORT & ENV. QUALITY

Energy Modelling

- Southland Log Home Baseline
- HERS -1 with 50kW PV Array
- RemRate iterations

HVAC Investigations

- Geothermal roots too expensive!
- 200 year ROI compared to ASHP
- HyperHeat models at -13F

Tree Shading Analysis

- REM / Rate shading analysis very limited
- i-Tree revealed 4000 kWh average annual savings
- Increases year over year

Adjacent Shading

Winter: None

■

Summer: Most
■

Mycorrho-Grid Simulation

- Weather Station adjacent to our site: TMY-724113
- DOEs Open Energy Information (OpenEI): Base, High, and Low
- Adapted to our unit types
- PVWatts for PV production

ENGINEERING

Smart contract logic

ENERGY PERFORMANCE

Acoustics — Site Noise

Site proximity to freeway and local airport

- Recorded baseline octaves
- Envelope will reduce overall site noise by ~40dB

ENERGY PERFORMANCE

Only 1/16th of noise will be perceptible

Site consultation with Acentech

Acoustics - Between Units

Targets: Actual ratings:

Shared walls: STC 50 STC 63Exterior walls: N/A STC 57

• Floors & Ceilings: IIC 50 STC 58, IIC 50

Acoustics - Within Units

Acoustic channels are routed into DLT panel:

- Attenuated to 1000hz for human voice
- Filled with wood-wool fiber
- Fiber also sequesters VOCs

Phyto-remediative Green Wall

_agroSci™

Green wall is integrated into HVAC

- Air is pulled through the soil
- Meets ASHRAE 62.2 standards
- Also supplemented by ERV

www.treeha.us

Prediction Engine

User Consumption

Behavioral Learning

Forecasting

Blockchain Applications

Transparent Energy Transactions

Immutable Maintenance Log

Geofencing Security control

Our blockchain platform is powered by EOSIO

It is the privilege of the Department of Computer Science, Virginia Tech

to recognize

Arjun Choudhry, Zachary Gould, Ikechukwu Dimobi -

Eco10gic Team

recipients of the

Blockchain Challenge, Phase I

Top Graduate Team: \$1,000

awarded by the Department of Computer Science, Virginia Tech for excellence in computing on this 1st day of March 2019, at Blacksburg, Virginia.

Kirk W. Cameron

Professor, Associate Department Head for Research and Engagement

EOSIO VT Challenge Winners

ENERGY

FOOD

WATER

WATER

ENERGY

ENERGY: Mycorrho-GRID

WATER

FOOD: Anaerobic Digestion

WATER

WATER: Condensate Raingardens

INNOVATION

WATER

Back to the Earth: Succession

Although TreeHAUS is Built to Last we have designed for a truly regenerative future.

- Design for deconstruction
- Design for recyclability
- Design for biodegradability

Thank You!

And a special thanks to our crowd-funding sponsors:

Gold:

Juan Del Alamo, Charlie Regan, Lisa and Bruce Gould, in Memory of John T. Regan, Samuel Piper, Jeff and Isa Warner, Saeid and Stacy Arshadi, Gretchen Gruenhut, Chris Fong

Silver:

Rachel Peacock, Elaine and Steven Strongwater, John Nuckols of JRN Environmental Health Service, Lorann Stallones, Kimberley Homer, Brad Tilley, Taryn Gould, Sharon Jaffe Dan

Bronze:

Halley Futterman, Don Janus

INNOVATION CONCLUSION 86

Appendices

Loads

UNIT TYPE	HOT WATER LOAD	INITIAL TOTAL WATER LOAD	TOTAL WATER LOAD W SAVINGS	HEATING LOAD	COOLING LOAD	VENTILATION LOAD
1Bd (1Ba)	3.5 GPM	5 GPM	4.5 GPM	3.4 kBTU/hr	3.7 kBTU/hr	42.2 CFM
2Bd (1.5Ba)	5.5 GPM	8.5 GPM	7.5 GPM	5.3 kBTU/hr	6.0 kBTU/hr	70.5 CFM
3Bd (2.5Ba)	7.5 GPM	12 GPM	10.5 GPM	7.7 kBTU/hr	8 kBTU/hr	98.7 CFM
4Bd (2Ba)	7.5 GPM	12 GPM	11 GPM	12.8 kBTU/hr	13.8 kBTU/hr	117.5 CFM

	HEATING	FRIDGE	30% LIGHTS & APPLIANCES	H20 PURIFICATION PUMPS	TOTAL
DAILY PER CLUSTER	15 kWh	4 kWh	14 kWh	16 kWh	49kWh
DAILY PER DEVELOPMENT	45 kWh	12 kWh	42 kWh	48 kWh	147 kWh

Passive Sensors

Hybrid Back-end Architecture

CFM Calculations

	Area (sf)	A/C CFM Calc.	CFM Ashrae 62.2 (Air Flow)	Green Wall Area for 62.2 Compliance (sf)
Unit A	640	-	34.2	42.3
Bedroom	77.25	111.1	-	
Living Room	383.5	379.6	-	
Unit B	1152	-	57.06	70.5
Living Room	405	385	-	
Bedroom (Single)	96	126	-	
Bedroom (Double)	104	133	-	
Unit C	1664	-	79.92	98.7
Bedroom (Level 1)	138	162	-	
Living Room	536	494	-	
Bedroom (Level 2 single)	96	127	-	
Bedroom (Level 2 Double)	104	133		
Unit D	1920	-	95.1	117.5
Bedroom (1)	112	139	-	
Bedroom (2)	107	123	-	
Bedroom (3)	110	126	-	
Living Room plus hallways	524	497	-	
Bedroom (level 2)	150.5	172	-	

Mechanical Schedule

	SPLIT SYSTEM HEAT PUMP (INDOOR SECTION)									
TAG	TON/BTU		ICY DATA	V	Δ.	Hz	BASIS OF DESIGN	HEAT CAPACITY (BTU/hr)		
IAG	TON/BTO	SEE	SEE HSPF V Φ HZ				BASIS OF BESIGN	TIEAT CAPACITT (BTO/III)		
AHU1	.5/6000	24.6	12.8	20	1	6	MITSUBISHI MSZ-GL06NA	7,200		
AHU2	.675/8100	15	10	20	1	6	MITSUBISHI SEZ-KD09NA4R1.TH	10,900		
AHU3	.96/11500	16	10	20	1	6	MITSUBISHI SEZ-KD12NA4R1.TH	13,600		

Dual Fuel / Flex Fuel

Hot Water Heater Back-up heat considered ASHPs efficient and better for modularity Natural gas / Bio-gas interchangeability

Free Fuel From Nature

	SOLAR: ROOF RESOURCE		FOOD WASTE from TreeHAUS	FOOD WASTE from VT	ENERGY from FOOD	HEAT from FOOD
TOTAL	400 MWh/yr	180,000 Gal/yr	8 Tons/yr	550 Tons/yr	89,000 kWh/yr	89,000 kWh/yr
HARNESSED	60 MWh/yr	153,000 Gal/yr	8 Tons/yr	17 Tons/yr	28,480 kWh/yr	52,510 kWh/yr
EFFICIENCY	15%	85%	100%	3%	32%	59%

Net Carbon Sink

- DLT mass timber has the largest net negative impact
- Landscape impact over full lifetime doubles
- Gutex travels the furthest but still performs

Carbon

DLT

All Wood Wall Section

- 7. White Oak Cladding (3/4")
- 6. Pine Furring Strips (3/4")
- 5. GUTEX MultiTherm*, ** (3")
- 4. GUTEX MultiTherm** (3")
- 3. Blue Ridge Fiberboard*** (1/2")
- 2. GUTEX ThermoSafe** (3 1/2")
- 1. Richlite Finish**, **** (1/2")

- * Integrated Parafin-based weather barrier
- ** Post Production Waste (pulp, dust) -> Formaldehyde free binding
- *** with optional Intello Plus variable moisture barrier, OSB corners
- **** Recycled Paper product from VA, alternated with gypsum board

Mycorrho-Grid Simulation.

- Weather Station on our site! TMY-724113
- DOEs Open Energy Information (OpenEI) Base, High, and Low Profiles
 Building America House Simulation Protocols
 Residential Energy Consumption Survey (RECS)
- Adapted to our unit types
- Run through smart contract logic
- PVWatts CSV used for PV production

4Bd

Acoustics – Site Noise

Our site's relative proximity to a freeway and occasional air traffic brings acoustic challenges, which we consulted with Acentech to solve:

- We recorded baseline octaves with Acentech overnight
- Our envelope was analyzed, and predicted to reduce overall site noise by ~40dB
- This results in 1/16th as much noise perceived

Environmental Noise									
		63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Overall A wt
		69 dB	67 dB	63 dB	62 dB	68 dB	70 dB	62 dB	74 dB
	Awt	-26	-16	-9	-3	0	1	1	
Interior Noise Level Estimates									
		63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Overall A wt
Only Glazing		51 dB	43 dB	42 dB	30 dB	30 dB	33 dB	13 dB	39 dB
Only Doors		51 dB	43 dB	42 dB	30 dB	30 dB	33 dB	13 dB	39 dB
Only Exterior Wall		54 dB	39 dB	15 dB	02 dB	-03 dB	-20 dB	-36 dB	29 dB
All Façade Elements		53 dB	41 dB	37 dB	25 dB	26 dB	29 dB	08 dB	35 dB

