

SOLAR DECATHLON 2015

CLEMSON UNIVERSITY

CLEMSON, SOUTH CAROLINA

INDIGO PINE

AS-BUILT DOCUMENT SUBMITTAL

08.17.15

PROJECT DESCRIPTION

PROJECT NAME: INDIGO PINE PROJECT LOCATION: IRVINE, CALIFORNIA OCCUPANCY TYPE: BUSINESS B (TEMPORARY) CONSTRUCTION: TYPE V-B MAX BUILDING HEIGHT: 18'-0"

BUILDING DESCRIPTION: SINGLE FAMILY DWELLING FOR EXHIBIT CLEMSON UNIVERSITY SOLAR DECATHLON TEAM SCHOOL OF ARCHITECTURE LEE HALL CLEMSON, SC 29632

PROJECT MANAGERS: CLAIR DIAS AND TYLER SILVERS

CICI	V TF	$\Lambda \Lambda \Lambda$

TEAM NAME:	TEAM CLEMSON
ADDRESS:	LEE HALL CLEMSON, SC 29632
CONTACT:	INDIGOPINE2015@GMAIL.COM

CONSULTANTS

	STRUCTURAL	TY MONKS NISHKIAN MONKS
	MECHANICAL	VINCENT BLOUIN CLEMSON
	ELECTRICAL	VINCENT BLOUIN CLEMSON
	PLUMBING	VINCENT BLOUIN CLEMSON
	·	

CLIENT

U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2015 WWW.SOLARDECATHLON.GOV

ARK	DATE	DESCRIPTION

LOT NUMBER:	106
DRAWN BY:	ARCH STUDIO
CHECKED BY:	DAN HARDING
ISSUE DATE:	03/26/2015
COPYRIGHT:	NONE: PROJECT IS

SHEET TITLE

COVER PAGE

G-000

OUR MISSION

CLEMSON UNIVERSITY'S SOLAR DECATHLON TEAM UNITES A MULTIDISCIPLINARY GROUP OF STUDENTS AND FACULTY FROM THE FIELDS OF DESIGN, ENGINEERING, AND SOCIAL SCIENCES. DUE TO THIS VARIETY OF EXPERTISE, ONE COMPREHENSIVE PRODUCT IS MADE POSSIBLE. THE RESULT IS INDIGO PINE, A PROTOTYPE FOR A 1000 SQ. FT., THREE BEDROOM, NET ZERO SOLAR HOME WITH A LOW ENVIRONMENTAL IMPACT. ENGINEERED FOR COST EFFECIENCY IN TODAY'S MARKET AND COMFORT IN SOUTH CAROLINA'S WARM CLIMATE, INDIGO PINE IS AN IDEAL HOME FOR THE SOUTHERN FAMILY. ITS INNOVATIVE BUILDING METHOD IS SUPPLEMENTED BY ITS USE OF LOCAL BUILDING PRODUCTS. AS A TEAM, CLEMSON ADDRESSES SUSTAINIBILITY AS AN OVERALL PROCESS RATHER THAN AN END PRODUCT. THE SUSTAINABILITY OF THE CONSTRUCTION PROCESS IS EQUALLY AS IMPORTANT AS THE PERFORMACE OF THE FINISHED HOME.

SMALL HOME THAT LIVES BIG

INDIGO PINE IS A 3-BEDROOM HOME TO ACCOMMODATE A FAMILY OF FOUR WITHIN A 1000 SQ. FT. ENVELOPE. THE EXTERIOR OF THE HOUSE INCLUDES ALL OF THE TRADITIONAL ELEMENTS OF A SOUTHERN HOME, BUT REWRITES THE VERNACULAR TO DELIVER A HOME GEARED FOR MODERN LIVING AND SOLAR PERFORMANCE. IN KEEPING WITH TRADITIONAL SOUTHERN DESIGN, INDIGO PINE FEATURES A LARGE PORCH, ALLOWING THE LIFE OF THE HOME TO SPILL OUTDOORS. THE HOME FEEL LARGER THAN ITS FINISHED INTERIOR. INDIGO PINE OFFERS A HIGH STANDARD OF SUSTAINABLE SOUTHERN LIVING THAT IS AFFORDABLE TO OUR TARGET MARKET; A FAMILY OF FOUR WITH AN ANNUAL INCOME AROUND \$45,000.

LOCAL MATERIALS

INDIGO PINE'S PRIMARY MATERIAL IS PLYWOOD, ALLOWING OWNERS TO USE LOCALLY SOURCED AND READILY AVAILABLE MATERIALS FOR THEIR HOME. PLYWOOD CAN BE FOUND IN ABUNDANCE ACROSS THE UNITED STATES AND THROUGHOUT MOST OF THE WORLD WITH COMPARABLE STRUCTURAL QUALITIES. MOST OF THE PROJECT'S MATERIALS CAN BE BOUGHT OR ORDERED FROM HOME IMPROVEMENT STORES, INCLUDING ALL DOORS, WINDOWS AND SHEET GOODS. IN ADDITION TO THE ACCESSIBILITY OF WOOD, THIS MATERIAL IS ALSO A RAPIDLY RENEWABLE, NATURAL RESOURCE THAT HAS THE LOWEST EMBODIED ENERGY OF ANY STRUCTURAL MATERIAL. IN FACT, SOLAR POWER IS AN INNATE QUALITY OF WOOD DUE TO THE PROCESS OF PHOTOSYNTHESIS. IT IS MOST ECOLOGICALLY ADVANTAGEOUS WHEN INDIGENOUS TO AN AREA WHERE IT IS SUSTAINABLY HARVESTED.

GLOBAL APPLICATION

WHILE CLEMSON UNIVERSITY DESIGNED INDIGO PINE TO FIT WITHIN ITS SOUTHERN VERNACULAR, CLEMSON, SC AND IRVINE, CA SHARE A CLIMATE ZONE THAT COVERS 40% OF THE GLOBAL POPULATION. THIS ALLOWS INDIGO PINE TO SPREAD ITS ROOTS THROUGHOUT THE WORLD.

INNOVATION WITHIN EXISTING SYSTEMS

OUR TEAM HAS DEVELOPED A SYSTEM OF PLYWOOD CONSTRUCTION THAT IS CUT ENTIRELY BY A CNC ROUTER. EACH PIECE CAN THEN BE FLAT PACKED AND SHIPPED COST-EFFICIENTLY. ONCE ON SITE, EACH INDIVIDUAL PLYWOOD PIECE WILL INTERLOCK WITH ONE ANOTHER VIA WOOD JOINTS TO FORM COMPLETE STRUCTURAL COMPONENTS. FINALLY THESE COMPONENTS ARE REINFORCED BY STAINLESS STEEL ZIP-TIES. THIS PROCESS ELIMINATES THE NEED FOR LARGE, UNSAFE TOOLS AND MACHINERY, CREATING A SAFER WORK ENVIRONMENT AND REDUCING ON-SITE WASTE. THIS UNIQUE PROCESS WILL ALLOW TEAM CLEMSON TO BUILD THE INDIGO PINE HOME ENTIRELY ON-SITE IN IRVINE, CALIFORNIA.

USER FRIENDLY TECHNOLOGY

INDIGO PINE WILL FEATURE AN INTERNAL COMFORT MONITORING SYSTEM, REGULATING VARIOUS FEATURES OF THE HOME INCLUDING TEMPERATURE, HUMIDITY, AND LIGHTING LEVELS. THE SYSTEM INFORMS THE RESIDENTS OF THE HOME ON THE BEST STRATEGY TO PROVIDE COMFORTABLE CONDITIONS WHILE MAINTAINING ENERGY EFFICIENCY.

DESIGN	TEAM
 -	TE

TEAM NAME:	TEAM CLEMSON
ADDRESS:	LEE HALL CLEMSON, SC 29632
CONTACT:	INDIGOPINE2015@GMAIL.COM INDIGOPINE.COM

CONSULTANTS

	STRUCTURAL	TY MONKS NISHKIAN MONK
	MECHANICAL	VINCENT BLOUIN CLEMSO
	ELECTRICAL	VINCENT BLOUIN CLEMSO
	PLUMBING	VINCENT BLOUIN CLEMSO
	·	

CLIENT

U.S. DEPARTMENT OF ENERGY

SOLAR DECATHLON 2015

WWW.SOLARDECATHLON.GOV

MARK DATE DESCRIPTION

LOT NUMBER:	106
DRAWN BY:	ARCH STUDIO
CHECKED BY:	DAN HARDING
ISSUE DATE:	03/26/2015
COPYRIGHT:	NONE: PROJECT IS PUBLIC DOMAIN

SHEET TITLE

DESIGN INTENT STATEMENT

G-001

GREENVILLE TECH

BUILDING CODE SUMMARY					
PROJECT INFORMATION					
NAME OF PROJECT:	INDIGO PINE				
ADDRESS:	LOT 106				
PROPOSED USE:	BUSINESS B (TEMPORARY)	AS PROTOTYPE FOR SINGLE	-FAMILY RESIDENTIAL		
OWNER OR AUTH AGENT:	TEAM CLEMSON, C/O PROJ	ECT MANAGERS CLAIR DIAS	AND TYLER SILVERS		
CONTACT INFO:	LEE HALL, CLEMSON UNIVE	RSITY, CLEMSON, SC 29632;	INDIGOPINE2015@GMAIL.COI	M	
OWNED BY:	CLEMSON UNIVERSITY				
CODE ENFORCEMENT JURISDICTION:	CITY OF IRVINE, CALIFORNI	A			
PROJECT DESIGN TEAM	INFORMATION				
LEAD DESIGN TEAM:	TEAM CLEMSON				
DESIGNER	FIRM	CONTACT	LICENSE #	PHONE #	
ARCHITECTURAL:	CLEMSON UNIVERSITY	DAN HARDING			
STRUCTURAL:	NISHKIAN MONKS	TY MONKS			
MECHANICAL:	GREENVILLE TECH	GENE WILSON			
PLUMBING:	GREENVILLE TECH	GENE WILSON			
FIRE-PROTECTION/STANDPIPE:	GREENVILLE TECH	GENE WILSON			

CODE COMPLIANCE	
INTERNATIONAL BUILDING CODE:	2012 EDITION
INTERNATIONAL MECHANICAL CODE:	2012 EDITION
INTERNATIONAL PLUMBING CODE:	2012 EDITION
NATIONAL ELECTRICAL CODE:	2014 EDITION
IECC:	2009 EDITION
ICC/ANSI - 117.1:	2009 EDITION
ADA STANDARDS FOR ACCESSIBLE DESIGN	2010 EDITION
NFPA 101: LIFE SAFETY CODE	2012 EDITION
DEPARTMENT OF ENERGY (DOE) BUILDING CODE - SOLAR	2015 EDITION

GENE WILSON

BASIC BUILDING DATA	
CONSTRUCTION TYPE:	V-B
SPRINKLERS:	YES; NFPA 13D
STANDPIPES:	YES; CLASS IR, WET
FIRE DISTRICT:	YES
FLOOD HAZARD AREA:	NO

18 FEET MAX, PER US DEPARTMENT OF ENERGY BUILDING CODE

GROSS BUILDING AREA:	
FLOOR	

BUILDING HEIGHT:

DECATHLON 2015

ELECTRICAL:

OTHER:

FLOOR	NEW (SQ FT)	TOTAL (SQ FT)
FIRST FLOOR	972	972

ALLOWABLE AREA

PRIMARY OCCUPANCY:	BUSINESS B (TEMPORARY)

SECONDARY OCCUPANCY:

STORY NO.	DESCRIPTION & USE	(a) BUILDING AREA PER STORY (ACTUAL)	(b) TABLE 503 AREA	(c) AREA FOR OPEN SPACE INCREASE ¹	(d) AREA FOR SPRINKLER INCREASE ²	(e) ALLOWABLE AREA OR UNLIMITED ³	(f) MAXIMUM BUILDING AREA ⁴

N/A

Open space area increases from IBC 2012 section 506.2. Not applicable for this project.

²The sprinkler increase per section 506.3. Not applicable for this project.

1 BUSINESS B (TEMPORARY) 972 SF

a. Multistory building i_s= 200%

b. Single story building $i_s = 300\%$ ³Unlimited area applicable under conditions of Section 507. Not applicable for this project.

⁴Maximum building area = total number of stories in the building x e (506.4)

ALLOWABLE HEIGHT

	ALLOWABLE (TABLE 503) INCREASE FOR SPRINKLERS		SHOWN ON PLANS
TYPE OF CONSTRUCTION	TYPE: V-B		TYPE: V-B
BUILDING HEIGHT (FT)	40 FT	FEET= H + 20'= <u>60'</u>	18 FT MAX
BUILDING HEIGHT (STORIES)	2	STORIES + 1= <u>3</u>	1

9,000 SF

DESIGN OCCUPANT LOAD (TABLE 1004.1)

FUNCTION OF SPACE	FLOOR AREA IN SQ FT PER OCCUPANT	AREA PER PLANS	TOTAL OCCUPANTS PER FUNCTION
ASSEMBLY (STANDING SPACE)	5 NET	209 SF	42 OCC
NON-OCCUPIED/CIRCULATION	0 GROSS	767 SF	0 OCC
TOTAL		976 SF	42 OCC

FIRE PROTECTION REQUIREMENTS

FIRE PROTECTION REQU	FIRE PROTECTION REQUIREMENTS						
EMERGENCY LIGHTING:	NO						
EXIT SIGNS:	NO						
FIRE ALARM:	YES						
SMOKE DETECTION SYSTEMS:	YES						
PANIC HARDWARE	NO						

LIFE SAFETY PLAN REQUIREMENTS

	<u> </u>
LIFE SAFETY PLAN SHEET #:	G103
LII L OAI LII I LAN OHLLI #.	0103

LIFE SAFETY PLAN

INFORMATION:	
INCLUDED	N/A FOR PROJECT

INCLUDED	IN/A FOR PROJECT	
		FIRE AND/OR SMOKE RATED WALL LOCATIONS (CHAPTER 7)
		ASSUMED AND REAL PROPERTY LINES LOCATIONS
		EXTERIOR WALL OPENING AREA WITH RESPECT TO DISTANCE TO ASSUMED PROPERTY LINES (705.8)
		EXISTING STRUCTURES WITHIN 30' OF PROPOSED BUILDING
		OCCUPANCY TYPES FOR AREA AS IT RELATES TO OCCUPANT LOAD CALCULATIONS (TABLE 1004.1.1)
		OCCUPANT LOADS FOR EACH AREA
		EXIT ACCESS TRAVEL DISTANCES (1016)
		COMMON PATH OF TRAVEL DISTANCES (1014.3 & 1028.8)
		DEAD END LENGTHS (1018.4)
		CLEAR EXIT WIDTH FOR EACH EXIT DOOR
		MAXIMUM OCCUPANT LOAD CAPACITY EACH EXIT DOOR CAN ACCOMMODATE BASED ON EGRESS WIDTH
		(1005.1) ACTUAL OCCUPANT LOAD FOR EACH EXIT DOOR
		SEPARATE SCHEMATIC PLAN INDICATING WHERE FIRE RATED FLOOR/CEILING AND/OR ROOF STRUCTURE IS PROVIDED FOR PURPOSES OF OCCUPANCY SEPARATION
		LOCATION OF DOORS WITH PANIC HARDWARE (1008.1.10)
		LOCATION OF DOORS WITH DELAYED EGRESS LOCKS AND AMOUNT OF DELAY (1008.1.9.7)
		LOCATION OF DOORS WITH ELECTROMAGNETIC EGRESS LOCKS (1008.1.9.8)
		LOCATION OF DOORS EQUIPPED WITH HOLD-OPEN DEVICES
		LOCATION OF EMERGENCY ESCAPE WINDOWS (1029)
		THE SQUARE FOOTAGE OF EACH FIRE AREA (902)
		THE SQUARE FOOTAGE OF EACH SMOKE COMPARTMENT (407.4)
		NOTE ANY CODE EXCEPTIONS OR TABLE NOTES THAT MAY HAVE BEEN UTILIZED REGARDING THE ITEMS

EXIT REQUIREMENTS

NUMBER AND ARRANGEMENT OF EXITS

FLOOR, ROOM OR SPACE		MINIMUM NUMBI	MINIMUM NUMBER OF EXITS ²		TRAVEL DISTANCE		ARRANGEMENTS MEANS OF EGRESS (SECTION 1015.2) ^{1,3}	
	REQ'D	SHOWN ON PLANS	ALLOWABLE TRAVEL DISTANCE (TABLE 1016.2)	ACTUAL TRAVEL DISTANCE SHOWN ON PLANS	REQUIRED DISTANCE BETWEEN EXIT DOORS	ACTUAL DISTANCE SHOWN ON PLANS		
FIRST FLOOR		1	2	300'-0"	53'-1"	0'-0"	N/A	

<NOTES>

¹Corridor dead ends (section 1018.4) Single exits (table 1015.1)

³Common path of travel (section 1014.3)

EXIT WIDTH

9,000 SF

USE GROUP OR SPACE DESIGNATION	OCCUPANT LOAD BASED ON 1004.1	EGRESS WIDTH PER OCCUPANT (SECTION 1005)	·		ACTUAL EXIT WI PLANS	DTH SHOWN ON
			STAIRS	OTHER ELEMENTS	STAIRS	OTHER ELEMENTS
FIRST FLOOR	42 OCC	0.2"/OCC	N/A	8.4"	N/A	32"

PLUMBING FIXTURE REQUIREMENTS (TABLE 2902.1)

NOTE: PLUMBING FIXTURE REQUIREMENTS COMPLY WITH SECTION 9-2 OF THE US DEPARTMENT OF ENERGY BUILDING CODE.

GENERAL NOTES

- ALL WINDOWS COMPLIANT WITH IRC R310
- ALL DOORS COMPLIANT WITH IRC R311.2 REFER TO SD BUILDING CODE 2015 PROVIDED BY
- DEPARTMENT OF ENERGY FOR SPECIFIC, NON NATIONAL STANDARD CODE REQUIREMENTS. ALL DESIGN AND CONSTRUCTION TO COMPLY WITH THE MOST RESTRICTIVE CODE GOVERNING PROJECT

DESIGN TEAM

TEAM NAME:	TEAM CLEMS
ADDRESS:	LEE H CLEMSON, 29
CONTACT:	INDIGOPINE2015@GMAIL.C INDIGOPINE.C

CONSULTANTS

	STRUCTURAL	TY MONKS NISHKIAN MON
	MECHANICAL	VINCENT BLOUIN CLEMSO
	ELECTRICAL	VINCENT BLOUIN CLEMSO
	PLUMBING	VINCENT BLOUIN CLEMSO
	•	

CLIENT

U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2015

WWW.SOLARDECATHLON.GOV

SOLAR	DECATHLO

MARK DATE DESCRIPTION

LOT NUMBER: 106 DRAWN BY: ARCH STUDIO CHECKED BY: DAN HARDING ISSUE DATE: 02/12/2015

NONE: PROJECT IS PUBLIC DOMAIN COPYRIGHT:

SHEET TITLE

LIFE SAFETY COMPLIANCE NOTES

G-102

NOMENCLATURE SYSTEM

1, 2, 3, 4 - IDENTIFIER

SEQUENTIAL MEMBERS SHALL HAVE THEIR SEQUENCE NUMBER IN THEIR NAME ABBREVIATION.

SEQUENTIAL MEMBERS SHALL BE SEQUENCED FROM A PRE-DEFINED POSITION. IN THIS BUILD, THE SEQUENCE STARTS FROM THE SOUTH.

INTERIOR (X) MEMBERS ARE REPEATABLE AND ARE DESIGNED TO EXPAND THE STRUCTURE AS NEEDED.

SWITCH (X) MEMBERS ENABLE THE MIRRORING OF REPEATABLE MEMBERS.

DESIGN TEAM

TEAM NAME:	TEAM CLEMSON
ADDRESS:	LEE HAL CLEMSON, SO 2963.
CONTACT:	INDIGOPINE2015@GMAIL.COM INDIGOPINE.COM

CONSULTANTS

	STRUCTURAL	TY MONKS NISHKIAN MONKS
	MECHANICAL	GENE WILSON GREENVILLE TECH
	ELECTRICAL	GENE WILSON GREENVILLE TECH
	PLUMBING	GENE WILSON GREENVILLE TECH
1 I		

CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2015

WWW.SOLARDECATHLON.GOV

MARK DATE DESCRIPTION

LOT NUMBER: 106	
DRAWN BY: ARCH STUDIO	
CHECKED BY: DAN HARDING	
ISSUE DATE: 02/12/2015	
COPYRIGHT: NONE: PROJECT PUBLIC DOMAIN	IS

SHEET TITLE

STRUCTURAL NOTES
AND SYMBOLS

S-001

COMPONENT	QTY	AREA (SQFT)	WEIGHT (LBS)
A-01	4	72	179.4
A-02	4	63	156.4
A-03	2	34	85.1
B1-EE00	15	163	408.2
B1-EE0P	4	43	106.9
B1-EI00	15	164	410.3
B1-EI0P	4	43	106.3
B2-IE00	15	175	438.7
B2-IE0P B2-II00	15	46 176	115.1 440.9
B2-II00 B2-II0P	4	46	115.6
B3-IE00	15	190	475.2
B3-IE0P	4	51	127.0
B3-II00	15	193	483.3
B3-II0P	4	50	124.8
B4-EE00	15	147	367.9
B4-EE0P	4	39	96.8
B4-EI00	15	150	376.0
B4-EI0P	4	40	99.0
B-01	4	40	100.7
B-02	4	63	157.2
B-03	4	65	163.0
BF-E0H0	19	36	91.1
BF-E0H1	57	79	198.6
BF-I0L0	38	48	120.0
BF-IIL0	19	35	87.7
BF-IILS	19	17	43.6
BGB	18	28	69.3
BGM	9	44	110.9
C-EE01	4	28	69.4
C-EE02	4	28	69.4
C-EI01	4	27	67.4
C-EI02	4	26	66.1
CA-DB	3	10	24.5
CA-DS	6	31	78.3
CA WB	3	7	18.1
CA-WB CA-WBT	10	33	81.5
CA-WS1	20 6	56 22	139.6 55.5
CA-WS2	14	78	195.5
CF1-0EH0	2	6	15.5
CF2-0EH0	2	14	35.8
CF3-0EH0	2	23	56.9
CF4-0EH0	2	34	84.3
CF-0EL0	1	13	32.3
CF-0EL0-1	1	13	32.8
CF-0ELM	2	17	42.3
CF-0ELS	4	31	78.1
CP-S1-1	39	308	769.0
CP-S1-2	5	24	58.8
CP-S1-A1	5	39	97.4
CP-S1-A2	3	24	58.8
CP-S1-A3	1	5	11.7
CP-S1-A4	1	8	19.5
CP-S2-1	29	125	312.2
CP-S2-2	2	5	12.9
CP-S2-3	2	5	12.9
CP-S2-A1	1	4	10.6
CP-S2-A2	2	9	21.3
CP-S3-1	28	178	445.1
CP-S3-2	2	8	18.9
CP-S3-3	2	8	18.9
CP-S3-A1	2	13	31.4
CP-S3-A2	2	13	31.4
E-01	1	2	4.1
E-02	1	4	8.9
E-03	1	4	8.8
E-04	1	4	10.6
E-05	1	18	45.4
E-06	1	13	32.9
E-07	1	13	32.9
E-08	1	14	34.4
E-09	1	13	33.0

STRUCTURAL COMPONENTS				STRUCTURAL COMPONENTS			
COMPONENT	QTY	AREA (SQFT)	WEIGHT (LBS)	COMPONENT	QTY	AREA (SQFT)	WEIGI (LBS
E-11	1	18	45.4	IJ-I000_F	1	5	11.6
E-12	1	13	32.1	IJ-1000_G	1	5	11.7
E-13	1	12	30.7	IJ-1000_H	1	5	11.7
E-14	1	12	29.1	IJ-1000_I	1	5	11.7
E-15 E-16	1	10	20.5 25.5	IJ-1000_J IJ-1000_K	1	5	11.7
E-17	1	9	23.6	IJ-1000_L	1	5	11.4
E-18	1	8	21.2	IJ-IE00	4	22	55.4
EJ-E000	14	11	28.1	IP-LE01	1	15	38.3
EJ-E000-1 EJ-E000-2	5 4	3	10.0 8.0	IP-LE02 IP-LE03	1	15 4	36.6
EJ-E00C	4	3	7.2	IP-LE03	1	15	38.2
EJ-E00P	10	9	22.7	IP-LE05	1	10	25.9
EJ-E00P-1	7	6	15.9	IP-LE06	1	15	36.6
EJ-E00P-2 F1-0EHW	7	7 14	18.2	IP-LE07 IP-LE08	1	15 15	36.6
F1-SEHW1	5	7	33.9 17.7	IP-LE08	3	62	38.3 155.2
F1-SEHW1-1	2	3	6.4	IP-LN01	1	11	28.6
F1-SEHW2	10	22	55.4	IP-LN02	1	17	41.6
F2-0EH2	10	25	61.6	IP-LN03	1	13	31.4
F2-SEHW1 F2-SEHW2	3	8	9.7	IP-LN04 IP-LN05	1	17 17	41.6 41.6
F-0EH0	7	12	30.8	IP-LN06	1	16	38.8
F-0EHT	1	9	21.7	IP-LS0S	2	41	103.5
F-0EHU	1	8	19.6	IP-LS0S_W	5	43	106.9
F-0EHV F-0EL0	28	16 47	40.3 117.6	IP-LS01 IP-LS02	1	16 16	38.8
F-0ELW	19	118	294.3	IP-LS02	2	21	51.7
F-0ELW-1	2	6	15.0	IP-LW01	1	15	38.3
F-0IL0	13	35	88.3	IP-LW02	1	6	16.0
F-0ILW	3	17	42.1	IP-LW03	1	6	16.0
F-0ILW2 F-0ILW-1	3	4	3.7	IP-LW04 IP-LW05	1	15 6	38.2 16.0
F-1	7	1	2.1	IP-LW06	1	15	38.3
F-E0LW-1	3	2	4.5	IP-U1	2	10	25.3
F-EIHP	7	19	48.7	IP-U2	20	127	317.2
F-EIHW1P	1	5	12.9	IP-U3	2	10	25.6
F-SIHW1P F-SIHW1P-1	14	71	178.2 8.9	IP-U4 IP-U5	2	7	25.4 16.7
F-SIHW1P-2	1	4	10.6	IP-U6	2	7	16.7
F-SIHW2P	14	23	57.3	IP-U7	2	10	25.7
F-SIL01	1	2	4.0	LJ-M-1	2	13	33.1
F-SIL01-0 F-SIL01-1	7 62	31	27.0 77.3	LJ-M-2 LJ-M-3	2	12	31.2
FP-E000	4	42	104.6	LJ-M-4	2	13	32.3
FP-I000	4	28	69.9	LJ-M-5	2	13	33.6
FP-I00S	7	53	133.5	LJ-M-6	1	3	7.5
FP-I00S-1 G-E000	10	7 14	18.3 33.8	LJ-M-7 LJ-M-8	1	7	15.7 16.6
G-E002	35	9	23.1	LJ-M-9	1	7	17.4
G-1000	70	73	182.0	LJ-M-10	1	6	16.2
G-I001	8	4	10.8	LJ-M-11	1	3	7.5
G-S	81	10	26.2	LJ-N-1 LJ-N-2	2	11	27.7
H-00L0 H-00LW	26 20	40 50	101.2 124.5	LJ-N-2 LJ-N-3	2	10	26.0 24.9
H-00LW-1	3	8	20.3	LJ-N-4	2	10	25.7
H-000T	2	11	27.2	LJ-N-5	2	11	27.1
H-10H0	12	57	143.5	LJ-N-6	1	3	6.4
H- 00LWS H- 00LWS-1	10	15 21	36.9 52.0	LJ-N-7 LJ-N-8	1	5	13.2
H-E0H0	4	12	31.2	LJ-N-9	1	5	13.7
H-S0H0	2	11	27.7	LJ-N-10	1	5	13.1
H-S0HS	2	1	3.0	LJ-N-11	1	2	6.1
IJ- E000 IJ- E00P	31	175 190	437.9 474.8	LJ-NM-1 LJ-NM-2	2	12	30.1 28.6
IJ- E00P IJ- E000P	1	5	13.5	LJ-NM-3	2	11	28.3
IJ- E00P-2	1	6	14.1	LJ-NM-4	2	12	28.8
IJ-EE00	4	18	45.8	LJ-NM-5	2	12	30.2
IJ-1000	54	259	647.3	LJ-NM-6	1	3	6.8
IJ-I000_A IJ-I000_B	1	5	11.7	LJ-NM-7 LJ-NM-8	1	6	14.4 15.0
IJ-I000_B	1	5	11.7	LJ-NM-9	1	6	15.6
IJ-I000_D	1	5	11.7	LJ-NM-10	1	6	14.4
IJ-1000_E	1	5	11.7	LJ-NM-11	1	3	6.8

COMPONENT	QTY	AREA (SQFT)	WEIGHT (LBS)
		,	
J-S-01	2	17	43.0
_J-S-02	2	16	40.3
.J-S-03	2	16	40.8
J-S-04	2	17 18	41.7
_J-S-05	1	4	
.J-S-06 .J-S-07	1	-	9.8
.J-S-07 .J-S-08	1	9	21.7
.J-S-06 .J-S-09	1	9	22.2
.J-S-09 .J-S-10	1	8	21.1
.J-S-10 .J-S-11	1	4	10.1
J-SM-1	2	14	35.4
.J-SM-2	2	13	33.2
.J-SM-3	2	14	33.9
.J-SM-4	2	14	35.4
.J-SM-5	2	15	37.5
J-SIVI-5 J-SM-6	1	3	8.2
J-SIVI-0 J-SM-7	1	7	16.6
.J-SIVI-7 .J-SM-8	1	7	17.7
.J-SIVI-0 .J-SM-9	1	8	18.8
J-SM-10	1	7	18.0
J-SM-11	1	3	8.4
N-01	1	3	7.6
N-01 N-02	1	3	7.6
N-02 N-03-1	1	1	1.9
N-03-2	1	1	3.6
N-04	1	3	7.8
N-05	1	2	3.9
N-06	1	15	36.5
N-07	1	15	37.2
1-08	1	11	28.4
V-09	1	18	46.0
V-10	1	18	45.9
N-11	1	15	37.2
N-12	1	15	37.2
V-13	1	18	45.9
V-14	1	18	45.2
N-15	1	13	33.1
N-16	1	13	33.7
V-17	1	13	33.7
N-18	1	13	33.7
J-19	1	13	33.7
J-20	1	13	33.7
√ 23 √-21	1	13	33.7
l-22	1	13	33.7
I-23	1	13	33.1
I-E000	26	40	98.9
1-1000	52	105	263.7
R1-A	1	21	53.0
R1-B	3	64	159.8
R1-C	1	11	26.4
22-A	1	13	32.4
2-B	3	78	196.1
R2-C	1	26	65.1
R3-A	1	26	65.1
3-B	3	78	196.1
R3-C	1	13	32.4
R4-A	1	13	32.4
4-A 4-B	3	78	196.1
.4-Б .4-С	1	26	65.1
R5-A	1	26	65.1
3-A 3-B	3	78	196.1
ко-в R5-С	1	13	32.4
86-A	1	13	
			32.4
R6-B	3	78	196.1
R6-C	1	26	65.1
R7-A	1	26	65.1
R7-B	3	78	196.1
R7-C	1	13	32.4
RJ1-EI00	2	10	25.0
RJ1-EM00	2	9	23.2
RJ2-II00	2	9	22.6
RJ2-IM00	2	7	17.6
D IO IIOO	2	6	15.0

STRUCTURAL COMPONENTS					
COMPONENT	QTY	AREA (SQFT)	WEIGH (LBS)		
D IO IMOO	0	10	04.0		
RJ3-IM00 RJ4-EI00	2	10	24.2		
RJ4-EI00 RJ4-EM00	2	9	22.2		
RJ-E01	1	6	15.9		
RJ-E02	1	6	13.9		
RJ-E03	1	6	15.5		
RJ-E04	1	9	21.3		
RJ-N01	1	6	13.9		
RJ-N02	1	6	14.6		
RJ-N03	1	6	14.3		
RJ-N04	1	6	14.5		
RJ-N05	1	5	13.6		
RJ-S01	1	8	21.2		
RJ-S02	1	9	22.1		
RJ-S03	1	9	22.5		
RJ-S04	1	9	22.8		
RJ-S05	1	9	21.7		
RJ-W01	1	6	15.9		
RJ-W02	1	6	14.2		
RJ-W03	1	6	16.2		
RJ-W04	1	9	22.0		
S-01	1	3	6.3		
S-02	1	5	12.6		
S-03	1	5	12.6		
S-04	1	5	12.9		
S-05	1	5	13.0		
S-06	1	18	45.2		
S-07	1	18	45.9		
S-08	1	18	46.0		
S-09	1	8	19.7		
S-10	1	8	19.6		
S-11	1	8	19.7		
S-12	1	8	19.7		
S-13	1	8	19.6		
S-14	1	18	45.2		
S-15	1	8	20.4		
S-16	1	17	41.5		
S-17	1	17	41.5		
S-18	1	17	41.5		
S-19		16	41.2		
S-E000 S-E00W	51 26	229 138	571.7		
S-E00W1	7	5	345.5 13.5		
S-E00W1	3	6	14.2		
S-E001	8	35	86.6		
SB1-0E00	4	10	25.8		
SB2-0000	4	14	34.2		
SB3-0000	4	14	35.1		
SB4-0000	4	14	36.1		
SB5-0000	4	15	37.0		
SB6-0000	4	15	37.9		
SB7-0000	4	16	38.9		
SB8-0000	4	17	42.4		
SB9-0000	4	17	43.3		
SB10-0000	4	18	44.3		
SB11-0E00	4	18	45.2		
SB12-0I00	4	15	37.8		
SF1-A	1	14	34.5		
SF1-B	1	21	52.6		
SF1-C	1	21	52.5		
SF1-D	1	21	51.6		
SF1-E	1	21	52.6		
SF1-F	1	21	52.1		
SF2-A	1	21	52.1		
SF2-B	1	21	52.6		
SF2-C	1	21	52.6		
SF2-D	1	21	52.2		
SF2-E	1	21	52.5		
SF2-F	1	14	34.5		
SF3-A	1	14	34.9		
SF3-B	1	21	52.3		
0.00					
SF3-C	1	21	52.1		
	1	21	52.1		

COMPONENT	QTY	AREA (SQFT)	WEIGHT (LBS)
SF3-F	1	21	51.5
SF4-A	1	21	52.5
SF4-B	1	21	52.5
SF4-C	1	21	52.5
SF4-D	1	21	52.4
SF4-E	1	21	52.6
SF4-F	1	14	33.9
SF5-A	1	14	35.0
SF5-B	1	21	52.6
SF5-C	1	21	52.6
SF5-D	1	21	52.6
SF5-E	1	21	52.5
SF5-F	1	21	51.5
SF6-A	1	21	52.0
SF6-B	1	21	52.6
SF6-C	1	21	52.6
SF6-D	1	21	52.6
SF6-E	1	21	52.6
SF6-F	1	14	34.5
SF7-A	1	14	34.5
SF7-B	1	21	52.6
SF7-C	1	21	52.6
SF7-D	1	21	52.6
SF7-E	1	21	52.5
SF7-E SF7-F	1	21	52.5
TE-0EH0	16	28	70.2
TE-0EHM	6	7	17.5
TE-0EL0	8	16	39.5
TE-0ELM	4	5	13.2
TH-000T	6	14	36.2
TW-000T	8	6	14.9
VS-000T-1	2	5	13.3
VS-E00C	2	3	8.0
VS-E00E	4	3	8.3
VS-E00F	2	2	4.1
VS-I000	14	33	81.5
W-01	1	2	5.2
W-02	1	4	11.2
W-03	1	3	8.4
W-04	1	3	8.3
W-05	1	18	45.4
W-06	1	5	12.2
W-07	1	5	13.5
W-08	1	14	34.4
W-09	1	18	46.0
W-10	1	5	12.8
W-10 W-11	1	18	45.4
W-12	1	8	21.2
W-13	1	9	23.6
W-14	1	10	25.5
W-14 W-15	1	8	20.5
W-16	1	12	29.1
W-17	1	12	30.7
W-18	1	13	32.1
V V - I O	I	IJ	JZ. I

STRUCTURAL COMPONENTS

E 170/	LEMSON UNIVERSITY 4
--------	---------------------

DESIGN TEAM

TEAM NAME:	TEAM CLEMSON
ADDRESS:	LEE HALL CLEMSON, SC 29632
CONTACT:	INDIGOPINE2015@GMAIL.COM

CONSULTANTS

STRUCTURAL	I Y WONKS NISHKIAN WONKS
MECHANICAL	GENE WILSON GREENVILLE TECH
ELECTRICAL	GENE WILSON GREENVILLE TECH
PLUMBING	GENE WILSON GREENVILLE TECH

CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2015

WWW.SOLARDECATHLON.GOV

MARK	DATE	DESCRIPTION

LOT NUMBER:	106
DRAWN BY:	ARCH STUDIO
CHECKED BY:	DAN HARDING
ISSUE DATE:	02/12/2015
COPYRIGHT:	NONE: PROJECT IS PUBLIC DOMAIN

SHEET TITLE

STRUCTURAL MEMBER SCHEDULE

S-002

(C1) FLOOR FRAMING INTERIOR DETAIL

(A1) FLOOR FRAMING EDGE DETAIL

(C4) FLOOR FRAMING MIDDLE DETAIL

FLOOR FRAMING CORNER DETAIL

GENERAL NOTES

- 1. ALL STRUCTURAL MEMBERS ARE TO BE FASTENED AT PREFABRICATED NOTCHES WITH STAINLESS STEEL ZIP TIES, ZIP TIE GUN TIGHTENED AND CUT (TYP.)
- 2. ALL DIMENSIONS ARE FOR REFERENCE ONLY, ALL STRUCTURAL MEMBER LOCATIONS WILL BE DETERMINED BY STRUCTURAL SYSTEM INTERLOCKING
- REFER TO PROJECT MANUAL FOR STRUCTURAL DIAGRAMS, CALCULATIONS, AND TESTING RESULTS
- REFER TO COMPONENT LAYOUT LOCATED ON SHEETS S-003 S-005 FOR NAMED PART CONFIGURATIONS
- 5. ALL ISOMETRIC VIEWS ARE FOR REFERENCE ONLY AND SHOULD NOT BE USED FOR DIMENSIONING

TEAM NAME:	TEAM CLEMSO
ADDRESS:	LEE HA CLEMSON, \$ 296
CONTACT:	INDIGOPINE2015@GMAIL.CC

CONSULTANTS

STRUCTURAL	TY MONKS NISHKIAN MONKS
MECHANICAL	GENE WILSON GREENVILLE TECH
ELECTRICAL	GENE WILSON GREENVILLE TECH
PLUMBING	GENE WILSON GREENVILLE TECH

CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2015

MARK DATE DESCRIPTION

LOT NUMBER:	106
DRAWN BY:	ARCH STUDIO
CHECKED BY:	DAN HARDING
ISSUE DATE:	02/12/2015
COPYRIGHT:	NONE: PROJECT IS PUBLIC DOMAIN

SHEET TITLE

FLOOR FRAMING DETAILS

S-202

	DESIGN TEAM
TEAM NAME:	TEAM CLEMSO
ADDRESS:	LEE HAI CLEMSON, S 2963
CONTACT:	INDIGOPINE2015@GMAIL.CO INDIGOPINE.CO

CONSULTANTS TY MONKS | NISHKIAN MONKS STRUCTURAL VINCENT BLOUIN | CLEMSON MECHANICAL VINCENT BLOUIN | CLEMSON ELECTRICAL PLUMBING VINCENT BLOUIN | CLEMSON

CLIENT	
U.S. DEPARTMENT OF ENERGY	
SOLAR DECATHLON 2015	
WWW.SOLARDECATHLON.GOV	

	MENT OF ENERGY DECATHLON

MARK	DATE	DESCRIPTION				
LOT NUM	BER:	106				
DRAWN B	SY:	ARCH STUDIO				
CHECKE	BY: [DAN HARDING				
ISSUE DA	TE: (02/12/2015				

SHEET TITLE

COPYRIGHT:

NONE: PROJECT IS PUBLIC DOMAIN

WALL SECTIONS

A-311

	WINDOW SCHEDULE													
		ROUGH (PENING							DETAIL			GLAZING	HEAD
MARK	COUNT	WIDTH	HEIGHT	TYPE	MANUFACTURER	MODEL	MATERIAL	FINISH	HEAD	JAMB	SILL	THICKNESS	TYPE	HEIGHT
Α	3	3'-0"	4'-0"	Double Hung	Pella Windows & Doors	250 Series, 35.5 X 47.5	Vinyl	Prefinished	A3 / A-401	A3 / A-401	A3 / A-401	5/8"	Insulated Triple Pane Low-E	7'-0"
В	7	3'-0"	6'-0"	Double Hung	Pella Windows & Doors	250 Series, 35.5 X 71.5	Vinyl	Prefinished	A3 / A-401	A3 / A-401	A3 / A-401	5/8"	Insulated Triple Pane Low-E	7'-0"

PANEL TYPES FRAME TYPES WINDOW TYPES 1 1/2" DR WIDTH ____1 1/2" TOP OF SUBFLOOR TYPE "A" TYPE "A" SOLID CORE, FIBERGLASS **FIBERGLASS** DOUBLE HUNG **DOUBLE HUNG CLAD WOOD DOOR CLAD WOOD** VINYL WINDOW VINYL WINDOW

HEAD DETAIL DOOR, WINDOW, & FRAME TYPES 1/8" CNC CUT POLYMETAL SIDING PANEL, SCREW HUBER STRETCH TAPE AT ALL NAIL FINS (TYP.) ATTACHED 1/8" CNC CUT POLYMETAL DOOR 7/16" HUBER ZIP SYSTEM TRIM BRACKET, SCREW PANEL (TYP.), TAPED. ATTACHED · **UPPER JAMB DETAIL HEAD DETAIL** 3/4" CNC CUT PLYWOOD 1/8" CNC CUT POLYMETAL - STRUCTURAL HEAD (TYP.), DOOR SHADE, POP RIVETED SEE STRUCT. 3/4" CNC CUT PLYWOOD TO TRIM BRACKET WINDOW TRIM (TYP.) 3/4" CNC CUT PLYWOOD DOOR 3/4" CNC CUT PLYWOOD FRAME WIDTH STRUCTURAL JAMB (TYP.), SEE STRUCT. SHADE DEPTH VARIES , **HUBER STRETCH TAPE** 7/16" HUBER ZIP SYSTEM 1/8" CNC CUT POLYMETAL AT ALL NAIL FINS (TYP.) PANEL (TYP.), TAPED. SIDING PANEL, SCREW VINYL DOUBLE-ATTACHED 7/16" HUBER ZIP SYSTEM **HUBER STRETCH TAPE HUNG WINDOW** AT ALL NAIL FINS (TYP.) PANEL (TYP.), TAPED. 1/8" CNC CUT POLYMETAL WINDOW TRIM BRACKET, 3/4" CNC CUT PLYWOOD SCREW ATTACHED - STRUCTURAL SILL (TYP.), SEE STRUCT. 1/8" CNC CUT POLYMETAL WINDOW SHADE, POP **FIBERGLASS** RIVETED TO TRIM BRACKET DOOR WITH WOOD FRAME 1/8" CNC CUT POLYMETAL SIDING PANEL, SCREW ATTACHED 1/8" CNC CUT POLYMETAL WINDOW TRIM BRACKET, SCREW ATTACHED 3/4" CNC CUT PLYWOOD WINDOW 1/8" CNC CUT POLYMETAL SHADE WIDTH WINDOW SHADE, POP VINYL DOUBLE-RIVETED TO TRIM BRACKET **CHECK RAIL** - 3/8" VINYL FLOORING (TYP). 3/4" CNC CUT PLYWOOD PORCH BEYOND, SEE A-302 WINDOW TRIM (TYP.) **DETAIL** 3/4" CNC CUT PLYWOOD DOOR 3/4" CNC CUT PLYWOOD 1/8" CNC CUT POLYMETAL DOOR TRIM AND THRESHOLD (TYP.) TRIM BRACKET, SCREW STRUCTURAL JAMB (TYP.) SEE STRUCT. ATTACHED — FRAME WIDTH 3/4" CNC CUT PLYWOOD 3/4" CNC CUT PLYWOOD WINDOW STRUCTURAL HEAD (TYP.), HUBER STRETCH TAPE 1/8" CNC CUT POLYMETAL AT ALL NAIL FINS (TYP.) SIDING PANEL, SCREW 7/16" HUBER ZIP SYSTEM 1 3/4" ₁1 1/4"1 1/4" 7/16" HUBER ZIP SYSTEM ATTACHED VINYL DOUBLE-PANEL (TYP.), TAPED. PANEL (TYP.), TAPED. **HUNG WINDOW** SILL DETAIL **HUBER STRETCH TAPE** AT ALL NAIL FINS (TYP.) 3/4" CNC CUT PLYWOOD DOOR TRIM (TYP.) **FIBERGLASS** FRAME WIDTH 3/4" CNC CUT PLYWOOD - STRUCTURAL SILL (TYP.), DOOR WITH 1/8" CNC CUT POLYMETAL 1/8" CNC CUT POLYMETAL WOOD FRAME SIDING PANEL, SCREW WINDOW SHADE, POP ATTACHED RIVETED TO TRIM BRACKET SEE STRUCT. 7/16" HUBER ZIP SYSTEM PANEL (TYP.), TAPED. 1/8" CNC CUT POLYMETAL WINDOW TRIM BRACKET, WINDOW TRIM BRACKET, SCREW ATTACHED **HUBER STRETCH TAPE** 1 1/8 2 7/8"

3/4" CNC CUT PLYWOOD STRUCTURAL JAMB (TYP.), HUBER STRETCH TAPE AT ALL NAIL FINS (TYP.) 7/16" HUBER ZIP SYSTEM PANEL (TYP.), TAPED. 1/8" CNC CUT POLYMETAL SIDING PANEL, SCREW SHADE WIDTH 1/8" CNC CUT POLYMETAL DOOR TRIM BRACKET, SCREW ATTACHED JAMB DETAIL DOOR SHADE, POP RIVETED TO TRIM BRACKET

DOOR HEAD, JAMB, AND SILL DETAILS

WINDOW HEAD, JAMB, AND SILL DETAILS

SHADE WIDTH

LOWER JAMB DETAIL

1/8" CNC CUT POLYMETAL

RIVETED TO TRIM BRACKET

WINDOW SHADE, POP

1/8" CNC CUT POLYMETAL

SIDING PANEL, SCREW

ATTACHED

SILL DETAIL

GENERAL NOTES

AT ALL NAIL FINS (TYP.)

HEAD, JAMB, AND SILL DETAILS SHOWN FOR REFERENCE ONLY. COORDINATE WITH MANUFACTURER'S REQUIREMENTS AND STRUCTURAL

D	ESIGN TEAM
TEAM NAME:	TEAM CLEMSON
ADDRESS:	LEE HALL CLEMSON, SC 29632
CONTACT:	INDIGOPINE2015@GMAIL.COM INDIGOPINE.COM

		CONSULTANTS
	STRUCTURAL	TY MONKS NISHKIAN MONKS
	MECHANICAL	VINCENT BLOUIN CLEMSON
	ELECTRICAL	VINCENT BLOUIN CLEMSON
	PLUMBING	VINCENT BLOUIN CLEMSON
		·

CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2015 WWW.SOLARDECATHLON.GOV U.S. DEPARTMENT OF ENERGY

SOLAR DECATHLON

MARK	DATE	DESCRIPTION

LOT NUMBER:	106
DRAWN BY:	ARCH STUDIO
CHECKED BY:	DAN HARDING
ISSUE DATE:	02/12/2015
COPYRIGHT:	NONE: PROJECT IS PUBLIC DOMAIN

DOOR AND WINDOW TYPES AND DETAILS

SHEET TITLE

A-401

							MECHAN	NICAL EQ	UIPMENT	SCHEDUI	_E							
STANDARD DUCTWORK				TRANSITIONS							CUSTOM TEES*							
											271	->				OVERA	LL (IN)	271
TYPE	WIDTH (IN)	HEIGHT (IN)	LENGTH (IN)	QTY (EA)	TYPE	STYLE	START (IN)	END (IN)	LENGTH (IN)	ANGLE (DEG)	QTY	TYPE	SECTION A (IN)	SECTION B (IN)	SECTION C (IN)	LENGTH (BC)	WIDTH (A)	QTY
RETURN	28	14	50	1	RETURN	RECTANGULAR TRANSITION	28X14	28X8	15		1	SUPPLY	12X18	10X18	4X18**	24	16	1
RETURN	28	8	8-31/64	1	RETURN	SHARP THROAT ELBOW		28X8		90	1	SUPPLY	18X4	10X4	10X4	30	16	1
RETURN	28	8	8-23/64	1	RETURN	SHORT THROAT ELBOW		28X8		90	2	SUPPLY	18X10	14X10	5X10**	30	20	1
RETURN	28	8	2-47/64	1	SUPPLY	RECTANGULAR TRANSITION	32X6	18X12	12		1	SUPPLY	8X10	8X10	14X10**	20	21-1/2	1
RETURN	28	8	2-3/4	1	SUPPLY	SHORT THROAT ELBOW		18X12		90	1	SUPPLY	8X10	8X10	5X10**	17	14	1
RETURN	28	8	9-63/64	1	SUPPLY	SHORT THROAT ELBOW		10X4		90	2							
SUPPLY	32	6	9	1	SUPPLY	SHORT THROAT ELBOW		10X4		18.62	2							
SUPPLY	18	12	11-7/32	1	SUPPLY	SHORT THROAT ELBOW		5X10		90	1							
SUPPLY	18	12	7-1/64	1	SUPPLY	SHORT THROAT ELBOW		14X10		21.30	2							
SUPPLY	18	4	169	1	SUPPLY	SHORT THROAT ELBOW		5X10		90	1							
SUPPLY	10	4	5-1/16	1	SUPPLY	RECTANGULAR TRANSITION	5X10	20X3	15		2							
SUPPLY	10	4	14-63/64	1	SUPPLY	SHORT THROAT ELBOW		20X3	•	90	2							
SUPPLY	10	4	6-1/2	1	SUPPLY	RECTANGULAR TRANSITION	8X10	20X4	15		1							
SUPPLY	10	4	24-3/8	1	SUPPLY	SHORT THROAT ELBOW		20X4	•	90	1							
SUPPLY	10	4	155-1/2	1														
SUPPLY	10	4	6-63/64	1														
SUPPLY	5	10	9-3/32	1														
SUPPLY	5	10	11-5/32	1														
SUPPLY	14	10	5-3/64	1														
SUPPLY	14	10	20-37/64	1														
SUPPLY	14	10	13-1/2	1														
SUPPLY	8	10	49	1														
SUPPLY	5	10	108-63/64	1														
SUPPLY	5	10	42-31/64	1														
SUPPLY	20	3	76-3/4	2														
SUPPLY	20	3	5-47/64	2														
SUPPLY	5	10	34-1/4	1														
SUPPLY	8	10	34-1/4	1														
SUPPLY	20	4	75-3/4	1								NOTE:	**SEE DIAGRAM 2 / M6	I 01 FOR CLARIFICATION.	<u> </u>			<u> </u>
SUPPLY	20	4	60-15/64	1								NOTE:	**VERIFY POSITION O	F CHANNEL PRIOR TO FA	ABRICATION.			

B1 MECHANICAL SCHEDULE
3" = 1'-0"

MECHANICAL CUSTOM TEE DIAGRAM

3/8" = 1'-0"

CLEMSON WARSITY AND CONTRACTOR WARTOS INDICATOR OF THE PROPERTY AND CONTRACTOR OF THE PROPERT

	DESIGN TEAM
NAME:	TEAM

TEAM NAME: TEAM CLEMSON

ADDRESS: LEE HALL
CLEMSON, SC
29632

CONTACT: INDIGOPINE2015@GMAIL.COM
INDIGOPINE.COM

CONSULTANTS

STRUCTURAL	TY MONKS NISHKIAN MON
MECHANICAL	VINCENT BLOUIN CLEMSO
ELECTRICAL	VINCENT BLOUIN CLEMSO
PLUMBING	VINCENT BLOUIN CLEMSO
· ·	

CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2015

WWW.SOLARDECATHLON.GOV

в		
_		

LOT NUMBER:	106
DRAWN BY:	ARCH STUDIO
CHECKED BY:	DAN HARDING
ISSUE DATE:	02/12/2015
COPYRIGHT:	NONE: PROJECT IS PUBLIC DOMAIN

MARK DATE DESCRIPTION

SHEET TITLE

DUCT WORK SCHEDULE

M-002

_	1	2	3	4	5	6	/	
E-					220.52(A	Lighting Load Feeder Demand Factors First 3000 or less at 100% From 3001 to 120,000 at 35% Remainder over 120,000 at 25%	## USE. 972 ft^2	CLEMSON UNINERSITY 4 OF CLEMSON UNINERSITY 4
						Electric Clothes Dryers Dryer #1, Greater of Nameplate KW rating or 5kw= Dryer #2, Greater of Nameplate KW rating or 5kw= Electric RangesDwelling Units Electric Range Nameplate KW= Wall Mounted Oven Nameplate KW= Electric Cooktop Nameplate KW=	5.00	DESIGN TEAM TEAM NAME: TEAM CLEMSO ADDRESS: LEE HA CLEMSON, S 296 CONTACT: INDIGOPINE2015@GMAIL.CO INDIGOPINE.CO
D-					Qty	Fixed Electric Space Heat #2 Fixed Electric Space Heat #3 - w A/C#2 W A/C#3 Total N Appliance loadDwelling Units	- MCA@208-240V - MCA@208-240V Ion-coincident Load= 3,600 va	CONSULTANTS STRUCTURAL TY MONKS NISHKIAN MONI MECHANICAL VINCENT BLOUIN CLEMSO ELECTRICAL VINCENT BLOUIN CLEMSO PLUMBING VINCENT BLOUIN CLEMSO
C-					220.50 Qty 430.24 TOTAL 0	Motor Loads @ 120 Volts Description Amps Qty Descr 0	Total Motor Load= 2,940 va 450 va 3,390 va 39,193 va 39,193 va 163 Amps culator.aspx	C CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2015 WWW.SOLARDECATHLON.GOV
								U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON
В-								MARK DATE DESCRIPTION
								LOT NUMBER: 106 DRAWN BY: ARCH STUDIO CHECKED BY: DAN HARDING ISSUE DATE: 02/12/2015 COPYRIGHT: NONE: PROJECT IS PUBLIC DOMAIN SHEET TITLE
8/17/2015 5:01:45 PM P	1	2	3	4	5	6	7	ELECTRICAL SCHEDULI

DESIGN TEAM				
TEAM NAME:	TEAM CLEMSON			
ADDRESS:	LEE HALL CLEMSON, SC 29632			
CONTACT:	INDIGOPINE2015@GMAIL.COM INDIGOPINE.COM			

