ShelteR³ respond recover resist

Team Crowder College – Drury University

Project Manual

August 17, 2015

U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2015

Faculty Contact: Nancy Chikaraishi - Professor of Architecture - Drury University nchikaraishi@drury.edu 417.343.6846

Student Contact: Alaa AlRadwan – Hammons School of Architecture – Drury University alradwan@drury.edu 417.379.6548

ShelteR³ respond recover resist

Table of Contents

Table of Contents	2
Summary of Changes	4
Revision 1: November 18, 2014 Revision 2: March 26, 2015	4
Revision 3: August 17, 2015	4
Rules Compliance Checklist	6
Strucural Calculations	8
Detailed Water Budget	95 _Toc403520027
Summary of Unlisted Electrical Components	
Summary of Reconfigurable Features	97
Interconnection Application Form	98
Load Calculation	100
Quantity Takeoff of Competition Prototype House	101

Division 00 – Procurement and Contracting Requirements	107
Division 01 - General Requirements	107
Division 02 – Existing Conditions	107
Division 03 – Concrete	107
Division 04 – Masonry	107
Division 05 – Metals	109
Division 06 – Wood, Plastics, and Composites	111
Division 07 – Thermal and Moisture Protection	115
Division 08 – Openings	120
Division 09 – Finishes	122
Division 10 – Specialties	124
Division 11 – Equipment	125
Division 12 – Furnishings	128
Division 13 – Special Construction	128
Division 14 – Conveying Equipment	128
Division 21 – Fire Suppression	131
Division 22 – Plumbing	132
Division 23 – Heating, Ventilating, and Air-Conditioning (HVAC)	135
Division 25 – Integrated Automation	135
Division 26 – Electrical	136
Division 27 – Communications	136
Division 28 – Electronic Safety and Security	136
Division 31 – Earthwork	136
Division 32 – Exterior Improvements	145
Division 33 – Utilities	145
Division 34 – Transportation	145
Division 35 – Waterway and Marine Construction	
Division 40 – Process Integration	145
Division 41 – Material Processing and Handling Equipment	145
Division 42 – Process Heating, Cooling, and Drying Equipment	145
Division 43 – Process Gas and Liquid Handling, Purification, and Storage Equipment	145
Division 44 – Pollution Control Equipment	145
Division 45 – Industry-Specific Manufacturing Equipment	145
Division 48 – Electrical Power Generation	147

Summary of Changes

Significant changes to the project manual that have occurred between submissions have been outlined below. The Construction Drawings should also be reviewed for relevant revisions.

Revision 1 to Design Development Documents: November 18, 2014

The Project Manual has been updated from the previous issue. Revisions include:

- **Rules Compliance Checklist**
- Interconnection Application Form
- Water Budget
- Structural revised Lateral Load Analysis

Revision 2 to Construction Documents: March 26, 2015

The following Construction Drawing sheets have been revised:

- A-102 Roof Plan and Details
- A-201 Elevations
- A-202 Elevations & Fence Details
- A-203 Cladding Schedule and Details
- A-301 Building Sections and Interior Elevations
- A-302 Wall Sections
- S-101 Foundation Plan and Details
- S-401 Steel Details
- S-402 Steel Details
- E-101 Distribution Plan
- E-102 PV Wiring Diagram
- E-602 Three Line Diagram
- F-603 Service Panel Schedule

The Project Manual has been updated from the previous issue. Revisions include:

- **Summary of Changes**
- Rules Compliance Checklist
- **Structural Analysis Calculations**
- **Division 26 Electrical**

Revision 3 to Construction Documents: August 17, 2015

The following Construction Drawing sheets have been revised:

• G-001 Cover Page

[Status] Published 8/17/2015 Page - 4

- G-002 Sheet Index
- G-201 Ground Contact
- H-101 Spill Containment Plan and Details
- L-101 Landscape Plan and Details
- L-102 Deck
- S-101 Foundation Plan and Details
- S-401 Steel Details
- S-402 Steel Details
- A-101 Floor Plan and Reflected Ceiling Plan
- A-102 Roof Plan and Details
- A-201 Elevations
- A-202 Elevations & Cladding Details
- A-203 Cladding Schedule and Details
- A-301 Building Sections and Interior Elevations
- A-302 Wall Sections
- A-401 Fence Units and Details
- A-402 Fence Panels and Brackets
- A-403 Kitchen Cabinets
- A-404 Bathroom Details
- A-405 Cabinet Details
- E-603 Service Panel Schedule

The Project Manual has been updated from the previous issue. Revisions include:

- Summary of Changes
- Rules Compliance Checklist
- Division 05 Metals
- Division 06 Wood, Plastics and Composites
- Division 07 Thermal and Moisture Protection
- Division 08 Openings
- Division 11 Equipment
- Division 12 Furnishings
- Division 21 Fire Suppression
- Division 22 Plumbing
- Division 23 Central Heating Equipment
- Division 26 Electrical
- Division 32 Exterior Improvement

Rules Compliance Checklist

RULE	RULE DESCRIPTION	LOCATION DESCRIPTION	LOCATION
Rule 4-2	Construction Equipment	Drawing(s) showing the assembly and disassembly sequences and the movement of heavy machinery on the competition site	O-101 O-901 O-902
Rule 4-2	Construction Equipment	Specifications for heavy machinery	N/A
Rule 4-3	Ground Penetration	Drawing(s) showing the locations and depths of all ground penetrations on the competition site	G-201
Rule 4-4	Impact within the Solar Envelope	Drawing(s) showing the location, contact area, and bearing pressure of every component resting directly within the solar envelope	G-201 See structural Calculations
Rule 4-5	Generators	Specifications for generators (including sound rating)	N/A
Rule 4-6	Spill Containment	Drawing(s) showing the locations of all equipment, containers, and pipes that will contain liquids at any point during the event	H-101
Rule 4-6	Spill Containment	Specifications for all equipment, containers, and pipes that will contain fluids at any point during the event	21 10 00
Rule 4-7	Lot Conditions	Calculations showing that the structural design remains compliant even if 18 in. (45.7 cm) of vertical elevation change exists	PM-Pages S- Series Drawings
Rule 4-7	Lot Conditions	Drawing(s) showing shimming methods and materials to be used if 18 in. (45.7 cm) of vertical elevation change exists on the lot	A-302
Rule 5-2	Solar Envelope Dimensions	Drawing(s) showing the location of all house and site components relative to the solar envelope	L-101 A-201 A-301
Rule 5-2	Solar Envelope Dimensions	List of solar envelope exemption requests accompanied by justifications and drawing references	N/A
Rule 6-1	Structural Design Approval	List of, or marking on, all drawing and project manual sheets that will be stamped by the qualified, licensed design professional in the stamped structural submission; the stamped submission shall consist entirely of sheets that also appear in the drawings and project manual	See Structural Calculatoins S- Series Drawings
Rule 6-2	Finished Square Footage	Drawing(s) showing all information needed by the rules officials to measure the finished square footage electronically	G-101

		Drawing(s) showing all movable components that may increase the finished square footage if operated	
Rule 6-2	Finished Square Footage	during contest week	N/A
Rule 6-3	Entrance and Exit Routes	Drawing(s) showing the accessible public tour route	G-101
		Drawing(s) showing the location of all vegetation and,	
D. J. 7.4	Diagonant	if applicable, the movement of vegetation designed as	1 101
Rule 7-1	Placement	part of an integrated mobile system Drawing(s) showing the layout and operation of	L-101
Rule 7-2	Watering Restrictions	greywater irrigation systems	N/A
Rule 8-1	PV Technology Limitations	Specifications for photovoltaic components	Division 48
		Drawing(s) showing the location(s) and quantity of all	
Rule 8-3	Batteries	primary and secondary batteries and stand-alone, PV-powered devices	N/A
Naic 0 3	butteries	Specifications for all primary and secondary batteries	11,71
Rule 8-3	Batteries	and stand-alone, PV-powered devices	N/A
		Drawing(s) describing the operation of the desiccant	
Rule 8-4	Desiccant Systems	system	N/A
Rule 8-4	Desiccant Systems	Specifications for desiccant system components	N/A
Rule 8-5	Village Grid	Completed interconnection application form	PM Page 99
		Drawing(s) showing the locations of the photovoltaics,	
	\ (III \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	inverter(s), terminal box, meter housing, service	- 400 - 500
Rule 8-5	Village Grid	equipment, and grounding means	E-102, E-602
		Specifications for the photovoltaics, inverter(s),	
D. I. O. E.	Villaga Cuid	terminal box, meter housing, service equipment, and	40.40.00
Rule 8-5	Village Grid	grounding means	48 10 00
Rule 8-5	Village Grid	One-line electrical diagram	E-601
Rule 8-5	Village Grid	Calculation of service/feeder net computed load per NEC 220	E-603
Traile 0 0	Things on a	Site plan showing the house, decks, ramps, tour	G-101
Rule 8-5	Village Grid	paths, and terminal box	L-101, E-101
		Elevation(s) showing the meter housing, main utility	
Rule 8-5	Village Grid	disconnect, and other service equipment	E-101
		Drawing(s) showing the location of all liquid	
Rule 9-1	Container Locations	containers relative to the finished square footage	L-101
		Drawing(s) demonstrating that the primary supply	
		water tank(s) is fully shaded from direct solar	
Rule 9-1	Container Locations	radiation between 9 a.m. and 5 p.m. PDT or between 8 a.m. and 4 p.m. solar time on October 1	L-101
Nuic 3-1	Container Locations	o a.m. and 4 p.m. solar time on october 1	F 101

Rule 9-2	Team-Provided Liquids	Quantity, specifications, and delivery date(s) of all team-provided liquids for irrigation, thermal mass, hydronic system pressure testing, and thermodynamic system operation	O-102 Division 21 Division 22
Rule 9-3	Greywater Reuse	Drawing(s) showing the layout and operation of greywater reuse systems	N/A
Rule 9-4	Rainwater Collection	Drawing(s) showing the layout and operation of rainwater collection systems	N/A
Rule 9-6	Thermal Mass	Drawing(s) showing the locations of liquid-based thermal mass systems	N/A
Rule 9-6	Thermal Mass	Specifications for components of liquid-based thermal mass systems	N/A
Rule 9-7	Greywater Heat Recovery	Drawing(s) showing the layout and operation of greywater heat recovery systems	N/A
Rule 9-8	Water Delivery	Drawing(s) showing the complete sequence of water delivery and distribution events	O-102
Rule 9-8	Water Delivery	Specifications for the containers to which water will be delivered	22 12 00
Rule 9-9	Water Removal	Drawing(s) showing the complete sequence of water consolidation and removal events	O-102
Rule 9-9	Water Removal	Specifications for the containers from which water will be removed	22 12 00
Rule 11-4	Public Exhibit	Interior and exterior plans showing entire accessible tour route	G-101

Published 8/17/2015

Structural Calculations

Structural Calculations Solar Decathlon 2015

Team Drury March 24, 2015

STRUCTURAL CALCULATIONS-INTRODUCTION

Team Drury has chosen to design a three module dwelling. The outer modules will be used for sleeping quarters and kitchen and bath facilities, and the center module will be the primary gathering room.

The loads for the design of the dwelling were taken from the International Residential Code (IRC-2012), the International Building Code (IBC-2012), and the American Society of Civil Engineers Standard ASCE 7-10. The California Residential Code (CRC-2013) was also consulted to rectify any differences between the CRC and the IBC and ASCE. In addition, due to the frequent nature of tornados in and around Springfield, Missouri, Team Drury felt that analysis for tornado forces would prove beneficial for the eventual owner of the dwelling. However, tornado load analysis is not formally addressed in the building code standards. Journal articles for tornado forces on buildings were consulted to formulate a general design guide for the tornado forces. Load analysis can be found in section 1 of the calculations.

Section 2 of the calculations addresses loading on individual members, the sheathing used on the floors and walls for diaphragms, and the connections of the modules to each other. Dead Load, floor and roof Live Loads, Snow Loads, and Rain Surcharge Loads are addressed in section 2. In addition, analysis of wind and earthquake load requirements on individual members was included. Information and codes used here include the American Institute of Steel Construction (AISC) Manual of Steel Construction 13th Addition, National Design Specifications for Wood Construction (NDS 2005), and the American Plywood Association (APA) documents.

Section 3 of the calculations looks at the stability of the dwelling under lateral loads, which include wind, earthquake, and tornado loads (tornado loads to be finalized). In general, tornado loading will control the lateral load stability requirements. However, due to the seismic activity at the California-based competition location, earthquake loading requires some discussion.

For seismic loading, the lateral force resisting system consists of light-framed shear walls with wood structural panels rated for shear resistance. The seismic loads from the walls will be split between the floor and roof diaphragms, with the seismic loads from the roof and floor collected in the roof and floor diaphragms respectively. The roof diaphragms will transfer the seismic loading from the roof, through the wall diagrams and into the floor diaphragms. Because the roofs, walls, and floors are sheathed with wood sheathing inside and out, the attachment for seismic load transfer will be adequate, with the double panel systems creating more than enough shear capacity. The seismic loading will be transferred to the proprietary seismic piers designed similarly to those manufactured by Central Piers. The piers are equally spaced under the modules, so little if any load transfer through collector elements or drag struts are needed. According to Central Piers' literature, the piers used will provide California, code-required support for gravity and lateral load stability when placed on approved, wood-sheathing bearing plates. EPDM rubber matting will be used between the wood sheathing and the asphalt pavement of the exhibition site for frictional resistance to lateral movement. This will be the case for the decks and ramps.

Please see the remaining calculations for more specifics on load analysis for the dwelling.

Published 8/17/2015 [Status] Page - 9

Structural Calculations Solar Decathlon 2015

Team Drury March 24, 2015

STRUCTURAL CALCULATIONS

Sec	ction	Page
1.	Load Analysis	1-1
-	General	1-2
	Building Code Compliance	1-2
	Dead Loads	1-3
	Live Loads	1-3
	Snow Loads	1-4
	Wind Loads	1-6
	Earthquake Loads	1-9
	Tornado Loads	1-22
	Tornado Loads	
^	Member Load Analysis	2-1
2.	General	2-2
	Roof/Ceiling Framing Analysis	2-3
	Root/Ceiling Framing Analysis	7-15
	Floor Framing Analysis	2-13
	Wall Framing Analysis	2.26
	Framing Analysis for Tornado Loads	2-20
_		3_1
3.	Lateral Load Analysis	3-1
	General	2 2
	Wind Load Analysis	2
	Earthquake Load Analysis	
	Tornado Wind Load Analysis	3-3
	Foundation Analysis	4-1
4.	Foundation Analysis	4_7
	General	1_2
	Lateral Load Analysis	4 4
	Seismic Pier Specifications	4-3

1-1

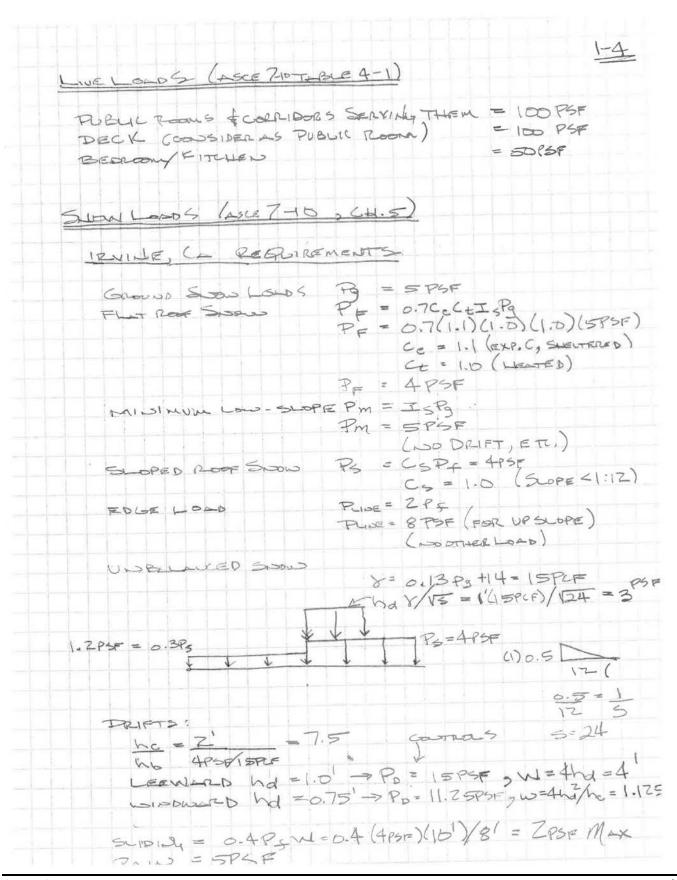
SECTION 1 LOAD ANALYSIS

U.S. D.O.E. Solar Decathlon 20115

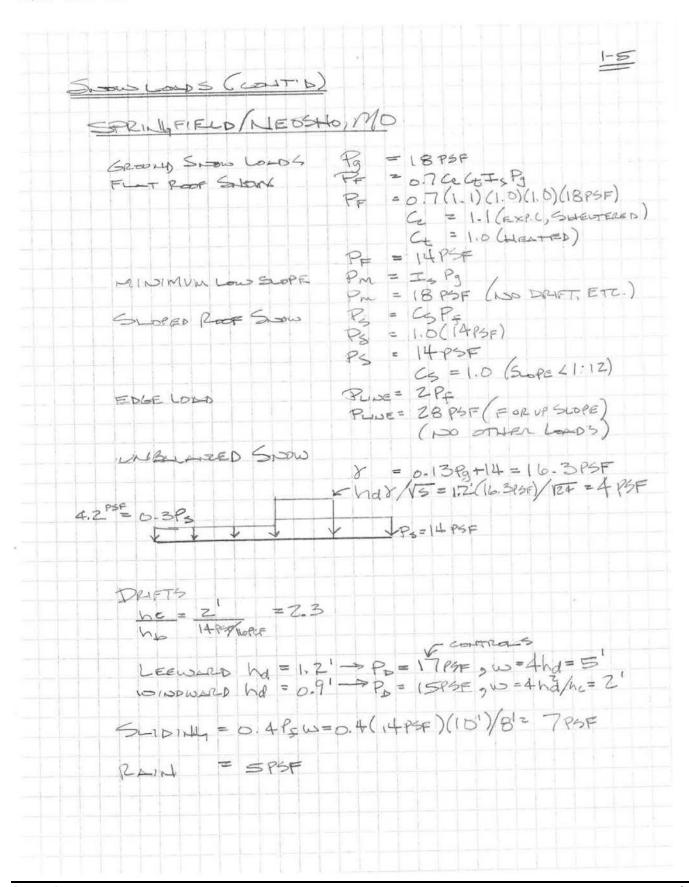
Structural Calculations Solar Decathlon 2015 Team Drury February 12, 2015 1-2

LOAD ANALYSIS INTRODUCTION

The calculations in this section define the load parameters for the analysis. The following information and codes were consulted for the load analysis parameters:


- International Residential Code (IRC) 2012
- International Building Code (IBC) 2012
- California Residential Code ((CRC) 2013
- American Society of Civil Engineers Standard ASCE 7-10
- Tornado Research Papers-See References at the End of Tornado Loads Section

[Status] Published 8/17/2015



PESCUI GRAMMY LONDS (ASCE 7 Bright C3-1) POR DL (IMPROVES) FLOOR DL (ADDRES) FLOOR DL (ADDRES) FLOOR DL (ADDRES) FLOOR DL (ADDRES) FLOOR DL (CENTER) COVER = 2 PSF TRANSPE = 2 PSF TREAM = 3 PSF TRANSPE = 2 PSF TOTAL ASSIME = 12 PSF STUDS = 5 PSF INSULATION = 2 PSF STUDS = 5 PSF TOTAL ASSIME = 12 PSF STUDS = 5 PSF INSULATION = 1 PSF TOTAL ASSIME = 12 PSF STUDS = 5 PSF INSULATION = 2 PSF STUDS = 5 PSF INSULATION = 1 PSF STUDS = 5 PSF INSULATION = 1 PSF STUDS = 5 PSF INSULATION = 7 PSF STUDS = 7 PSF INSULATION = 7 PSF STUDS = 7 PSF INSULATION = 7 PSF STUDS = 7 PSF INSULATION = 7 PSF INSULATION = 7 PSF STUDS = 5 PSF INSULATION = 7 PSF STUDS = 7 PSF STUDS = 7 PSF INSULATION = 7	V C 2 V C	11-005 Cosce	7-10-3-E C3-1)	
COURT = Z PSF DECK = Z PSF DECK = Z PSF DECK = Z PSF DECK = Z PSF FRANCH = LPSF INSULATION = 3 PSF CEILING = Z PSF MPE = Z PSF TOTAL ASSIME = 12 PSF STUDS = 5 PSF DECK = Z PSF MPE = Z PSF MPE = Z PSF MPE = Z PSF MPE = Z PSF TOTAL ASSIME = 12 PSF STUDS = 5 PSF DECK = Z PSF TOTAL ASSIME = 12 PSF DECK = Z			Flon DL Ca	ODULE
DECK = Z PSF DECK = Z PSF FRANCH = L PSF L CELLING = Z PSF CELLING = Z PSF L C				
FRANKLY = LPSF FRANKLY = LSPSF LSCULATION = 3 PSF LSCULATION = 3 PSF LSCULATION = 3 PSF LSCULATION = 2 PSF LSCULATION = 2 PSF LSCULATION = 2 PSF LSCULATION = 2 PSF LSCULATION = 4 PSF LSCULATION = 4 PSF LSCULATION = 4 PSF LSCULATION = 3 PSF LSCULATION = 3 PSF LSCULATION = 3 PSF LSCULATION = 2 PSF LSCULATION = 1 P				
INSULATION = 3 PSF CEILING = 2 PSF CEILING = 2 PSF MPE = 2 PSF MPE = 2 PSF MPE = 2 PSF TOTAL SSIME = 12 PSF COVER = 19 PSF INSULATION = 12 PSF MPE = 2 PSF MPE = 12 PSF MINIMAL SSIME = 12 PSF MINIMAL			From maly	= 4958
CEILING Z PSF MPE = 2 PSF CONER = 4 PSF DECK = 3 PSF DECK = 2 PSF FRANGING = 4 PSF FRANGING = 4 PSF FRANGING = 4 PSF FRANGING = 4 PSF MPS = 2 PSF MPS =			IN SULATION	= 3 PSF
MPE = 2 PSF 17 PSF LOPE DL (CENTER) FLOOR DL (CENTER) CONER = 2 PSF DECK = 3 PSF DECK = 3 PSF DECK = 2 PSF FRANKING = 4 PSF FRANKING = 3 PSF MPE = 2 PSF MPE = 2 PSF MPE = 2 PSF MPE = 19 PSF TOTAL ASSIME = 12 PSF STUDS = 5 PSF STUDS = 5 PSF STUDS = 7 PSF COVER = 1 PSF			CEILINIA	= Z PSF
TOP DL (CENTER) FLOR DL (CENTER) CANEA = Z PSF DECK = 3 PSF DECK = Z PSF DECK = Z PSF TOTAL ASSIME = 12 PSF CONEA = Z PSF DECK = Z PSF DECK = Z PSF DECK = Z PSF INSULATION = Z PSF DECK =			MPE	
CENER = Z PSF DECK = 3 PSF DECK = 3 PSF DECK = 2 PSF FRANCING = U PSF INSULATION = 3 PSF CEILING = Z PSF MPF = Z PSF MPF = Z PSF MPF = Z PSF (9 PSF TOTAL ASSIME = 12 PSF STUDS = 5 PSF SHEATHONG = Z PSF COVER = 1 PSF	W. 1 E			19 PSF
COVER = Z PSF TOTAL ASSIME = 1 PSF COVER = Z PSF COVER = 4 PSF DECIL = Z PSF FRANKING = U PSF INSULATION = 3 PSF CEILING = Z PSF MPF = Z PSF MPF = Z PSF MPF = Z PSF (9 PSF TOTAL ASSIME = 12 PSF STUDS = 5 PSF TOTAL ASSIME = 12 PSF COVER = 1 PSF				
DECK = 3 PSF DECK = 3 PSF FRANCISC = 2 PSF INSULATION = 10 PSF CEILING = 2 PSF MPF = 2 PSF MPF = 2 PSF MPF = 2 PSF 19 PSF WALL DL (TYPICAL EXT) SOME = 5 AGORE = 19 PSF STUDS = 5 PSF INSULATION = 7 PSF STUDS = 5 PSF COURT = 1 PSF	ROOF DL CEN	STER)	FLOK DL	CENTIFICATION OF THE PARTY OF T
DECK = 3 PSF DECK = 3 PSF FRANKLY = 6 PSF INSULATION = 3 PSF CEILING = 2 PSF MPF = 7 PSF MPF = 7 PSF MPF = 7 PSF MPF = 7 PSF MPF = 19 PSF TOTAL ASSUME = 12 PSF STUDS = 5 PSF LOVER = 7 PSF COURT = 1 PSF COURT = 7 PSF COURT = 1 PSF COURT = 1 PSF COURT = 1 PSF COURT = 7 PSF		2 2.2		= 4 PGF
FRANKLY = B PSF FRANKLY = UPSF INSULATION = 3 PSF CEILING = 2 PSF MPF = 2 PSF MPF = 2 PSF MPF = 2 PSF INDUATION = 3 PSF MPF = 2 PSF INDUATION = 3 PSF INDUATION = 3 PSF INDUATION = 3 PSF INDUATION = 1 PSF STUDS = 5 PSF STUDS = 5 PSF STUDS = 7 PSF STUDS = 7 PSF COURT = 1 PSF COURT = 1 PSF COURT = 1 PSF COURT = 1 PSF				
INSULATION = 3 PSF CEILING = 2 PSF MPE = 2 PSF MPE = 2 PSF MPE = 2 PSF 19 PSF WALL DL (DECK) SING AS ACOUR = 19 PSF EXT. COVER = 1 PSF STUDS = 5 PSF SHEATHING = 2 PSF SHEATHING = 2 PSF COURT = 1 PSF	TECK			
CEILING = 2 POF BOTTOM COURT = 2 PSF MPE = 23 PSF WPE = 19 PSF WALL DL (TYPICAL EXT)	T (Comment) handley			
MPE = Z PSF MPE = Z PSF 19 PSF WALL DL (TYPICAL EXT) EXT. COVER = 1 PSF STUDS = 5 PSF INSULATION = Z PSF COVER = 1 PSF	1 DSULATION	6 191		
TOTAL ASSIME = 12 PSF STUDS = 5 PSF LOVER = 7 PSF				
SINE IS ABOVE = 19 PSF WALL DL (TYPICAL EXT) WALL DL (TYPICAL EXT) WALL DL (GLASS DOOR EXT. COVER = 1 PSF STUDS = 5 PSF JUNE 1 PSF SULATION H = 7 PSF COVER = 1 PSF COVER = 1 PSF	MPE	The state of the s	1017.12	
SINE IS ARDE = 19 PSF WALL DL (TYPICAL EXT) WALL DL (GLASS DODE EXT. COVER = 1 PSF TOTAL ASSUME = 12 PSF STUDS = 5 PSF INSULATION = 1 PSF COVER = 1 PSF COVER = 1 PSF		23 13		
SINE AS ABOVE = 19 PSF EXT. COVER = 1 PSF TOTAL ASSUME = 12 PSF STUDS = 5 PSF INSULATION = 7 PSF SHEATING = 7 PSF COVER = 1 PSF COVER = 1 PSF	From DL (DELK)		
EXT. COVER= 1 PSF TOTAL ASSUME = 12 PSF STUDS = 5 PSF INSULATION = 7 PSF SHEATING = 7 PSF COVER = 1 PSF				
Ext. cover= 1 PSF Toral ASSIME = 12 PSF STUDS = 5 PSF INSULATION = 7 PSF COVER = 1 PSF COVER = 1 PSF	SOMEASA	301E = 19 PSF		
EXT. COVER = 1 PSF TOTAL ASSUME = 12 PSF STUDS = 5 PSF INSULATION = 7 PSF COVER = 1 PSF				
STUDS = 5 PSF STUDS = 5 PSF 1.250LATION = 1 PSF SHEATURE = 7 PSF COURT = 1 PSF	WALL PL	(TYPICAL EXT)	1001 DF	(GLASS DOOR
STUDS = 5 PSF STUDS = 5 PSF INSULATION = 1 PSF SHEATURE = 7 PSF COURT = 1 PSF	EXT COZER	= 1 PSF	TOTAL ASSIA	ME = 12 PSF
STUDS = 5 PSF INSULATION = 1 PSF COVER = 1 PSF				
SHEATHART = 7 PSF COURT = 1 PSF				
SHEATURE = 7 PSF COURT = 1 PSF				
cover = 1 PSF	Sugaruh	= Z 76F		
= 1 2-				
LINE A Deep		-		

	1-le
WIND LOADS	
IRVINE, CA (ASCE 7-10 C	- H. 26,27)
BASIL WALLD SPEED. WIND DIRECTIONALITY ELUTOR EXPOSURE CATEGOR TO PO FAUTOR GUST EFFELT FALTOR ENCLOSURE CLASS INTERNAL RESSURE C	= DOEN (DECKS)
MWFRS DI RECTIONA Pra	EDURE USED (ZH. 27, PARTZ)
RISK CATEGORY (TABLE UDINDO SPEED EXPORASONE TOPO GUST ENTLOSED	1.5-1) = 11 V = 110 MPH = C = 1.0 = 0.85
UND LOND WALLS (L/B=38/35 = 1.1 YBZ=3738 = 1.1 WIND WARD + LEEWA	D = 75.2 PSF
SIDEWALL WILDOWALD VEENALD	= 0.31(25.245F)=(0.645)F = 25.285F(0.62)= 15.685F = 25.285F(0.33)= 9.685F
WIND LOND ROOFS (
-> /Nº/ Nº/	Pp= 2.25 Pwall = 35.195= (K = 21.695= (L = 30.695= (S
NOTORSON REQ	D FOR RESIDENTIAL HERE

WIND LOADS (CONT'S)		1-3
(RVINE, CA (LONTID)		
COMPONENTS & CLADOI	Ny (PARTZ SMA	UFIED)
Pres = XKztPnet30	= 1.2 (1.0) Prot	-30
2 2 3 4 55 4 55 4 55 4 55 4 55 4 55 4 55	1 (500 SF+) 7 (100 SF) 3 (16 SF) 4 (20 SF) 5 (30 SF)	7.0P5F/-19.9P59 7.0P5F/-23.6P5 8.5P5F/-50P5F 18P5F/-20P5F 20P5F/-22P5F
	13/7 FOUTOR	
	1 (305Ft)	8.485F/-28PSF
	3 (165F) 4 (2005F) 5 (305F)	10,285/-6095F 21,685F/-2485F 2485F/-26.83F

	1-8
SPRINGFRELD/NEOSHO	, MO (25057-10 CH-24,27)
BASIC X = 115MPH Vd = 0.85 EXPOSURE = C TOPO Vet = 1.0 G = 6.85 ENCLOSED REF WIND LEADS (CLASS Z BLOG (L/B~1.0 EW) WINDWARD = 17.1 PSF LEE WARD = 10.5PSF SIDE WALLS = 149 PSF
>/0/m/ 20.	$ \begin{array}{c} P_{P} = 2.25 \text{Puncl} \\ \Rightarrow = 38.5 \text{PSF} (\text{W}) \\ = 23.5 \text{PSF} (\text{L}) \\ = 33.5 \text{PSF} (3) \end{array} $
	13 REQ'D FOR 1-2 FAM RESIDENTIAL
COMPONENTS & CLAS PRET = 71 VZt Pret 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 (305+) 7.7858/-21.8858 2 (1005F) 7.7856/-25.885 2 5 3 (165F) 9.3865/-558 4 (2005F) 1985/-2185F 5 (305F) 22858/-2985 1 (500+) 9.2858/-26.2
	2 (1005F) 9.285F/-31851 3 (106F) 11.285F/-100151 4 (2005F) 22.885F/-25P5 5 (305F) 26.485F/-35P5

1-9
EARTHQUAKE LOADS
TRYINE, CA (ASCE 7-10, US65 WEB TOOK)
From US45
505 = 1.07-6 501 = 0.5644
PER 12.14 1BC, USE SIMPLIFED DESIGN
$a = \sqrt{5} \Rightarrow a = 0 \pm \sqrt{5} = 38/5 = 7$
Base Stan
$V = F_{00} = 1.0(102) w = 0.157 W$
Sps = 1.02 R = 6.5
West 1785 (8')(31) + 1785 (11')(34') + Z385 (19')(25')
= Z1.1 K
(Jesse = 1985 = (81)(31) + 1985 = (11)(34) + 1985 = (19) (25)
V = 0.157 (63.4K) = 9.95 K
ELEMENTS OF STRUCTURE
EV = 0.2505D = 0.20D
FH = 0.4 Ka Sos Wp = 0.4(2.0) (1.02) wp - 0.82 Wp
EH = 0.4 ap 505 Wp (H27/2) SUBJECTED EH > 0.31 W (RP/IP) EH 41.7 W
$E_{+} = 0.4(1.0)(1.02)(1+Z(1.0)) = 0.50$ $= 0.$

Design Maps Summary Report

Page 1 of 2

Design Maps Summary Report

User-Specified Input

Report Title Irvine, California

Thu October 9, 2014 14:32:27 UTC

Building Code Reference Document 2012 International Building Code

(which utilizes USGS hazard data available in 2008)

Site Coordinates 33.68596°N, 117.82613°W

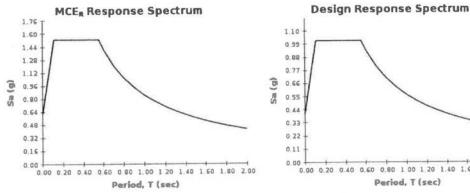
Site Soil Classification Site Class D - "Stiff Soil"

Risk Category I/II/III

USGS-Provided Output

 $S_s = 1.529 g$

1.529 g


1.020 g

 $S_1 = 0.564 g$

0.847 g

0.564 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

0.00 0.20 0.40 0.60 0.80 1 00 1 20 1.40 1.60 1.90 2 00 Period, T (sec)

http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit...

Design Maps Summary Report

Page 2 of 2

1-11

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 10/9/2014

Design Maps Detailed Report

Page 1 of 4

1-12

USGS Design Maps Detailed Report

2012 International Building Code (37.21546°N, 93.29631°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 1613.3.1 — Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_{s}) and 1.3 (to obtain S_{l}). Maps in the 2012 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

From Figure 1613.3.1(1) [1]

 $S_s = 0.193 g$

From Figure 1613.3.1(2) [2]

 $S_1 = 0.104 g$

Section 1613.3.2 — Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard - Table 20.3-1 SITE CLASS DEFINITIONS

Site Class	\overline{v}_{s}	\overline{N} or \overline{N}_{ch}	Su
A. Hard Rock	>5,000 ft/s	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	<600 ft/s	<15	<1,000 psf

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
- Moisture content w ≥ 40%, and
- Undrained shear strength $\bar{s}_{u} < 500 \; \mathrm{psf}$

F. Soils requiring site response analysis in accordance with Section 21.1

See Section 20.3.1

For SI: 1ft/s = $0.3048 \text{ m/s} \text{ 1lb/ft}^2 = 0.0479 \text{ kN/m}^2$

http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?template=minimal&latitude... 10/9/2014

[Status] Published 8/17/2015 U.S. D.O.E. Solar Decathlon 20115 Page - 22

Design Maps Detailed Report

Page 2 of 4

Section 1613.3.3 — Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.3.3(1)
VALUES OF SITE COEFFICIENT F_a

Site Class	Mapped Spectral Response Acceleration at Short Period					
	S _s ≤ 0.25	$S_s = 0.50$	$S_s = 0.75$	S _s = 1.00	S _s ≥ 1.25	
Α	0.8	0.8	0.8	0.8	0.8	
В	1.0	1.0	1.0	1.0	1.0	
С	1.2	1.2	1.1	1.0	1.0	
D	1.6	1.4	1.2	1.1	1.0	
E	2.5	1.7	1.2	0.9	0.9	
F	See Section 11.4.7 of ASCE 7					

Note: Use straight-line interpolation for intermediate values of $\ensuremath{\mathsf{S}}_{\ensuremath{\mathsf{s}}}$

For Site Class = D and $S_s = 0.193 \ g, F_a = 1.600$

TABLE 1613.3.3(2)
VALUES OF SITE COEFFICIENT F_v

Site Class	Мар	ped Spectral Re	esponse Acceler	ration at 1–s Pe	eriod
	S₁ ≤ 0.10	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_i \ge 0.50$
Α	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
Е	3.5	3.2	2.8	2.4	2.4
F		See Se	ction 11.4.7 of	ASCE 7	

Note: Use straight-line interpolation for intermediate values of S_{ι}

For Site Class = D and $S_1 = 0.104 g$, $F_v = 2.386$

http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?template=minimal&latitude... 10/9/2014

Design Maps Detailed Report

Page 3 of 4

Equation (16-37):

$$S_{MS} = F_a S_S = 1.600 \times 0.193 = 0.309 g$$

Equation (16-38):

$$S_{M1} = F_v S_1 = 2.386 \times 0.104 = 0.247 g$$

Section 1613.3.4 — Design spectral response acceleration parameters

$$S_{DS} = \frac{4}{3} S_{MS} = \frac{4}{3} \times 0.309 = 0.206 g$$

$$S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.247 = 0.165 g$$

 $http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?template=minimal\&latitude... \ \ 10/9/2014$

Design Maps Detailed Report

Page 4 of 4

1-15

Section 1613.3.5 — Determination of seismic design category

TABLE 1613.3.5(1) SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

	RISK CATEGORY			
VALUE OF Sps	I or II	ш	IV	
S _{ps} < 0.167g	Α	Α	Α	
0.167g ≤ S _{ps} < 0.33g	В	В	С	
0.33g ≤ S _{ps} < 0.50g	С	С	D	
0.50g ≤ S _{ps}	D	D	D	

For Risk Category = I and S_{os} = 0.206 g, Seismic Design Category = B

TABLE 1613.3.5(2)

SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

	RISK CATEGORY			
VALUE OF S _{D1}	I or II	III	IV	
S _{D1} < 0.067g	Α	A	А	
0.067g ≤ S _{p1} < 0.133g	В	В	С	
0.133g ≤ S _{D1} < 0.20g	С	С	D	
0.20g ≤ S _{D1}	D	D	D	

For Risk Category = I and $S_{e1} = 0.165$ g, Seismic Design Category = C

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is \boldsymbol{E} for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 1613.3.5(1) or 1613.3.5(2)" = C

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

- 1. Figure 1613.3.1(1): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(1).pdf
- 2. Figure 1613.3.1(2): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(2).pdf

http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?template=minimal&latitude... 10/9/2014

Design Maps Summary Report

Page 1 of 2

1-16

EUSGS Design Maps Summary Report

User-Specified Input

Report Title Springfield/Neosho, MO

Thu October 9, 2014 14:39:01 UTC

Building Code Reference Document 2012 International Building Code

(which utilizes USGS hazard data available in 2008)

Site Coordinates 37.21546°N, 93.29631°W

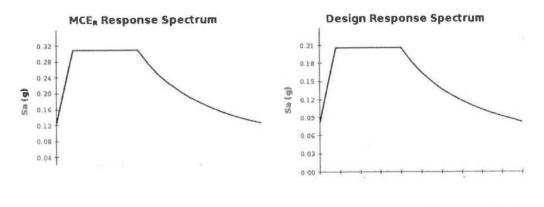
Site Soil Classification Site Class D - "Stiff Soil"

Risk Category I/II/III

USGS-Provided Output

0.193 g

0.309 g


0.206 g

0.104 g

0.247 g

0.165 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 10/9/2014

Design Maps Summary Report

Page 2 of 2

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

 $http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal\&latit... \\ 10/9/2014$

Design Maps Detailed Report

Page 1 of 4

Design Maps Detailed Report

2012 International Building Code (33.68596°N, 117.82613°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 1613.3.1 — Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain $S_{\text{\tiny S}}$) and 1.3 (to obtain S₁). Maps in the 2012 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

From Figure 1613.3.1(1) [1]

 $S_s = 1.529 g$

From Figure 1613.3.1(2) [2]

 $S_1 = 0.564 g$

Section 1613.3.2 — Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard - Table 20.3-1 SITE CLASS DEFINITIONS

Site Class		N or N _{ch}	S _u	
A. Hard Rock	>5,000 ft/s	N/A	N/A	
B. Rock	2,500 to 5,000 ft/s	N/A	N/A	
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf	
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf	
E. Soft clay soil	<600 ft/s	<15	<1,000 psf	

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
- Moisture content w ≥ 40%, and
- Undrained shear strength $s_u < 500 \text{ psf}$

F. Soils requiring site response analysis in accordance with Section 21.1

See Section 20.3.1

For SI: $1ft/s = 0.3048 \text{ m/s} 1 \text{lb/ft}^2 = 0.0479 \text{ kN/m}^2$

http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?template=minimal&latitude... 10/9/2014

Design Maps Detailed Report

Page 2 of 4

1-19

Section 1613.3.3 — Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.3.3(1) VALUES OF SITE COEFFICIENT F.

Site Class	Mapped Spectral Response Acceleration at Short Period					
	S _s ≤ 0.25	$S_s = 0.50$	$S_s = 0.75$	S _s = 1.00	S _s ≥ 1.25	
Α	0.8	0.8	0.8	0.8	0.8	
В	1.0	1.0	1.0	1.0	1.0	
С	1.2	1.2	1.1	1.0	1.0	
D	1.6	1.4	1.2	1.1	1.0	
E	2.5	1.7	1.2	0.9	0.9	
F	See Section 11.4.7 of ASCE 7					

Note: Use straight–line interpolation for intermediate values of $\ensuremath{\mathsf{S}}_{\ensuremath{\mathsf{s}}}$

For Site Class = D and S_s = 1.529 g, F_{\bullet} = 1.000

TABLE 1613.3.3(2) VALUES OF SITE COEFFICIENT F,

Site Class	Mapped Spectral Response Acceleration at 1-s Period					
	S₁ ≤ 0.10	$S_i = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	S₁ ≥ 0.50	
A	0.8	0.8	0.8	0.8	0.8	
В	1.0	1.0	1.0	1.0	1.0	
С	1.7	1.6	1.5	1.4	1.3	
D	2.4	2.0	1.8	1.6	1.5	
E	3.5	3.2	2.8	2.4	2.4	
F		See Se	ction 11.4.7 of	ASCE 7		

Note: Use straight–line interpolation for intermediate values of $\mathsf{S}_{\mathtt{i}}$

For Site Class = D and $S_1 = 0.564$ g, $F_v = 1.500$

http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?template=minimal&latitude... 10/9/2014

Design Maps Detailed Report

Page 3 of 4

1-200

Equation (16-37):

$$S_{MS} = F_a S_s = 1.000 \times 1.529 = 1.529 g$$

Equation (16-38):

$$S_{M1} = F_{\nu}S_1 = 1.500 \times 0.564 = 0.847 g$$

Section 1613.3.4 — Design spectral response acceleration parameters

$$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 1.529 = 1.020 g$$

$$S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.847 = 0.564 g$$

Design Maps Detailed Report

Page 4 of 4

1-2-1

Section 1613.3.5 — Determination of seismic design category

TABLE 1613.3.5(1)
SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

		RISK CATEGORY	
VALUE OF Sos	I or II	III	IV
S _{os} < 0.167g	А	Α	А
0.167g ≤ S _{ps} < 0.33g	В	В	С
0.33g ≤ S _{os} < 0.50g	С	С	D
0.50g ≤ S _{os}	D	D	D

For Risk Category = I and S_{os} = 1.020 g, Seismic Design Category = D

TABLE 1613.3.5(2)

SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF Sps	I or II	III	IV
S ₀₁ < 0.067g	Α	Α	A
0.067g ≤ S ₀₁ < 0.133g	В	В	С
0.133g ≤ S ₀₁ < 0.20g	С	С	D
0.20g ≤ S _{D1}	D	D	D

For Risk Category = I and S_{01} = 0.564 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 1613.3.5(1) or 1613.3.5(2)" = D

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

- Figure 1613.3.1(1): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(1).pdf
- Figure 1613.3.1(2): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(2).pdf

http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?template=minimal&latitude... 10/9/2014

Structural Calculations Solar Decathlon Team Drury February 12, 2015

LATERAL LOAD ANALYSIS-TORNADO

Introduction

Tornado load analysis is not part of code-required design analysis. However, due to the frequent nature of tornados in and around Springfield, Missouri, Team Drury felt that analysis for tornado forces would prove beneficial for the eventual owner of the dwelling. However, with no code-requirements for tornado analysis, where do we begin with such an analysis?

The study of tornados is not a recent phenomenon. Evidence is available that indicates efforts to understand tornados have been undertaken for hundreds of years. More recent efforts include observational attempts to define tornado characteristics, laboratory and semi-empirical attempts at quantifying tornado forces on structures, and tornado simulation and interaction with buildings with computational fluid dynamic (CFD). Fortunately scientific understanding of tornados has accelerated during the latter half of the 20th century and into the 21st century. The study of tornado forces in the past twenty years has led to publications that outline force coefficients for tornado forces similar to those used in straight wind code provisions such as those found in ASCE7.

Early Attempts to Define Tornado Characteristics

One of the earliest records of a tornado in the United Sates was recorded in 1812 during the War of 1812. British Troops had surrounded Washington D.C. in 1814 with the intent to burn it to the ground. The White House was torched and the planned destruction of the capitol was underway; however, a tornado reportedly tracked through the capitol on August 25, 1814. The force of the storm and the subsequent rainfall killed or wounded more British Soldiers than all the firearms of the American troops. The rainfall extinquished the fires set by the British. As a result, a tornado was credited for saving the United States Capitol (Dole 2007). Most records of tornados, though, are not as encouraging. A report of a tornado from 1851 in Middlesex County Massachusetts spoke of trees decapitated, roofs of houses taken and not found, and crops buried in the ground (Brooks et al, 1852).

Observational Attempts to Define Tornado Characteristics

Later attempts were made to scientifically document tornado wind speeds and forces associated with tornado winds. Using movies of high quality and methods of photogrammetry and perspective, Hoecker (1960) as able to measure the tangential wind speed in the Dallas, Texas tornado of April 02, 1957. The tangiential wind speed was estimated as 170 mph. The upward, vertical wind speed was estimated as 150 mph. Fujita (1971) took these observations and along with his own developed a widely used classification for tornado force intensity know as the Fujita Scale. The intensity of tornados was based on damage assessment, classifying tornado wind intensity into six major classifications to speed up the damage assessment. The Fujita Scale has been used successfully to quickly quantify damage assessment. Following after Fujita, Mehta, et. al. (1976) used building damage information and material resistance to wind speed and back-calculated the wind speeds in the tornado outbreak of April 3-4, 1974. The analysis relied on then current code design and analysis principles to determine the approximate wind speed in the tornado outbreak. The tornado outbreak was initially assigned a probable maximum

Structural Calculations Solar Decathlon Team Drury February 12, 2015

wind speed of 250-275 mph. However, the engineering analysis concluded that:

- Wind speeds in the tornado outbreak were generally less than the upper bound values of 250-275 mph that were previously estimated.
- Wind, not atmospheric pressure change, was the governing cause of building failure.
- Correlation of damage to wind speed was problematic for wind speeds exceeding approximately 175 mph.
- Building connectivity was a leading indicator of building component loss.

Davis-Jones and Kessler (1974) also doubted wind speeds in excess of 300 mph that were historically assigned to large-scale tornados.

Recent advances in meteorological devices have provided a means to determine tornado characteristics. Lee et al (2004) and Karstens et al (2010) describe the characteristics of a number of tornados that have been intercepted with In-situ Hardened Pressure Probes, Video Probes, and Mobile Mesonet Intrumentation since 2002. These interceptions have enabled meteorologists to report rough estimates of tornado size, translational velocity, and rotational velocity. Whereas these estimates are by no means concrete, they do serve as a starting point for understanding tornado size and wind characteristics. Table 1-1 shows the translational and rotational velocities and comparative size of intercepted tornados with respect to some common structures sizes (ratio of tornado radius to structure diameter or length).

Table 1-1. Illustration of Tornado Velocities from Karstens et al (2010) and Lee et al (2004) and Tornado Comparison to Common Structure Sizes.

Tornado	Translate Velocity (V _t) (m/s)	Rotate Velocity (V ₀) (m/s)	Tornado Radius (m)	Power Pole (R _{tor} /D _{str})	e 20 m Bldg. (R _{tor} /L _{str})
Stratford, TX (05-15-2003)	15	106	400	100+	20
Manchester, SD (06-24-2003)	9.4	98	96	24+	4.8

Laboratory Simulation of Tornado Forces

The next logical step to tornado understanding was laboratory simulation. Chang was commonly credited with producing the first laboratory simulation of a tornado, a schematic of which is shown in Figure 1-1 (Millet 2003, Fouts 2003). He was able to:

- Visualize the vortex with smoke;
- Control circulation;
- Avoid buoyancy affects with a high fan location;
- Create constant vertical pressure except in the core;
- Measure velocity profiles (tangential, radial, and vertical) with varying size of tornado cores;
- Measure pressure distribution.

Structural Calculations Solar Decathlon Team Drury February 12, 2015

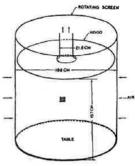


Figure 1-1: Schematic of the Chang Laboratory Simulator (Fouts 2003)

He found that static pressure and tangential velocity depended on the distance from center except in the vortex core region, where the probes in the flow skewed the results. Ward was credited with creating what is referred to as the Ward Simulator, a schematic of which is shown in Figure 1-2 (Fouts 2003). It was a chambered simulator. The lower chamber was for the convergent zone. The lower chamber was separated from the circular convection zone, or vortex chamber, by a rotating circular screen. Above the vortex chamber was a honeycomb screen. The screen separated the vortex chamber from a fan. The fan created inflow at the bottom of the simulator and updraft in the vortex chamber. The tangential velocity was controlled by the rotating screen and the radial velocity by the exhaust fan.

Figure 1-2: Schematic of the Ward Laboratory Simulator (Fouts 2003)

Ward's design was able to straighten the flow by separating the convergent and convection areas. It changed the top collection area design to remove tangential component vorticity variations. The simulator:

- Characterized surface pressure profiles;
- Produced bulging deformations of the vortex core;
- Produced multiple vortices in a single convergence.

Numerous other attempts at laboratory simulation have been performed, notably at Purdue University, Texas Tech University, and Oklahoma University (Fouts 2003). The work was based on the Ward Simulator. In particular, the work at Purdue University (Figure 1-3):

- Improved air inflow by using vane-created flow instead of screen-mesh inflow;
- Created multiple vortices within the chamber at the same time;

[Status] Published 8/17/2015

Structural Calculations Solar Decathlon

Team Drury February 12, 2015 1-25

- Realized downdraft pressure in a two-celled vortex;
- Used Laser-Doppler velocimeters to prevent skewing of results inherent in probe-type velocimeters.

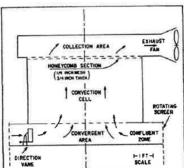


Figure 1-3: Schematic of Purdue and Other Current Laboratory Simulators (Fouts 2003)

The improvements from the Purdue work were incorporated into current laboratory simulator designs. Despite the work performed by the laboratory simulators, little simulator work was done to ascertain the forces on structures due to tornados until recently. Furthermore, tornados are a translating phenomenon, yet none of the previous attempts at laboratory simulation accounted for the translational effects of tornado wind forces. The lack of tornado-structure interaction and translation limited previous laboratory simulation attempts at characterizing tornado winds.

Sarkar et al (2005, 2006, 2008), Haans et al (2008, 2010), Sengupta et al (2008), and Zhang and Sarkar (2009) developed the first known simulator that could not only simulate tangential velocity and updraft but could also create translational velocity (Figures 1-4 and 1-5). The simulator was circular and was suspended from a crane rail system. The simulator created flow from continuous ducting around its perimeter. Airflow was drawn vertically through a honeycomb screen centered in the top of the vortex chamber by a fan suspended just above the screen. The air flow was recycled through the top of the simulator, through vanes capable of directing the airflow, and out to the outer perimeter of the simulator. The air was directed downward through the continuous perimeter ducting, where it was directed into the vortex chamber of the simulator again. The device simulated a thunderstorm by producing a strong region of updraft surrounding a spinning tube of air that descended toward the ground plane. This spinning air, which was created by adjustable turning vanes at the top of the simulator, simulated the Rear Flank Downdraft (RFD) of a tornado. The simulator used the swirl ratio to calculate the vortex tangential velocity. The simulator predicted the pressure drop through the airflow circuit. The pressure drop was used to calculate the vertical velocity. Tornado simulation was correlated to actual measured field conditions in a tornado that passed through Spencer, South Dakota in 1998 and one that passed through Mulhall, Oklahoma in 1999 (Figure 1-6).

Published 8/17/2015 [Status] Page - 35

Structural Calculations Solar Decathlon Team Drury February 12, 2015

Figure 1-4: Schematic of the Iowa State Laboratory Simulator (Sarkar et al 2005)

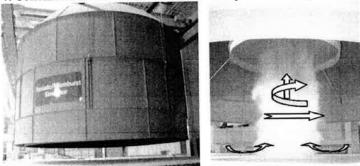


Figure 1-5: Iowa State Laboratory Simulator (Sarkar et al 2006)

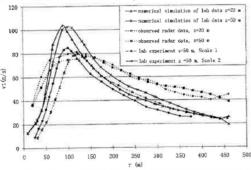


Figure 1-6: Correlation of the Iowa State Laboratory Simulator Tangential Velocity with Observed Data and Numerical Simulation (Sarkar et al 2005)

The simulator was also used to study the effect of surface roughness on tangential velocity. It was found that surface roughness decreased the tangential velocity. Furthermore, the simulator was used to measure the velocity and pressure effects on various sized buildings, including single-story, gable-roof buildings similar to typical residential dwellings. The laboratory simulation of a single-story, gable-roof building and a cube building showed that the peak lateral force coefficients in tornadoes may exceed the corresponding ASCE 7-05, main-wind-force-resisting system (MWFRS) design force coefficients for a 90 mile per hour straight line wind by a factor of 1.50 to 2.07. The peak uplift force coefficients were exceeded by a factor of between 1.46 to 1.8 to 3.2. For components and cladding, the lateral force coefficients in tornados may exceed the ASCE 7-05 coefficients by a factor of 1.3, with peak uplift force coefficients

[Status] Published 8/17/2015

Structural Calculations Solar Decathlon Team Drury February 12, 2015

exceeded by a factor of between 1.4 and 2.4. The simulation was correlated to an F2 tornado. Tornados of F5 intensity were shown to create uplift forces that ranged from 3.7 to 5.8.

The simulator does not, however, predict pressure drop but back calculates the pressure drop through the airflow. Further, the simulator does not use the Reynolds Number to calculate the pressure drop. Yet the Reynolds Number admittedly controls the structure of the tornado vortices. The model tends also to break down at high swirl ratios, indicating the larger diameter tornado simulation may not accurately predict the tangential and vertical velocities for large tornados. Furthermore, smaller diameter tornados were found to produce larger peak load coefficients, contrary to the intuitive sense that larger diameter tornados produce larger peak coefficients. Also, it has been historically shown through damage assessment that larger diameter tornados have more damaging effects on structures.

Semi-Empirical Computation of Tornado Forces

Wen (1975) proposed a semi-empirical calculation methodology for tornado forces on tall buildings. He proposed that the tornado forces and resulting drag and lift force coefficients should include an inertia force component because if the center of the tornado translating toward the structure is line with the structure, omission of the inertia force would artificially reduce the drag coefficient. Dynamic magnification should also be considered, especially with tall buildings, due to the inherent swaying of tall buildings engulfed by tornado flow. Numerical equations were developed to address inertia and dynamic tornado forces. A method to determine the probabilistic risk for tornado forces on tall buildings was developed. These equations were later shown to overestimate the magnitude of tornado forces on structure, primarily by Selvam et al (2002).

Computer Simulation and Computation of Tornado Forces

For more than twenty-five years, Dr. Panneer Selvam's group as the University of Arkansas (UARK) has studied tornado-structure interaction. Two computer programs have developed, a two dimensional (2D) program that is used to study tornado forces on a cylinder and a three dimensional (3D) program that is used to study tornado forces on rectangular buildings. Both programs are non-dimensional.

In both the two and three dimensional models (2D and 3D), computational fluid dynamics (CFD) is used. The modeling software was developed by Dr. R. Panneer Selvam over the past 30 years. Computer modeling of tornado interaction with structures was well documented in Selvam et al (2002), Millet (2003), and Selvam and Millet (2003, 2005). The modeling software translates a tornado wind field across a computational domain. The tornado wind field interacts with a structure body. No deformation of the body is assumed. Figure 1-7 illustrates the tornado-structure interaction.

Structural Calculations Solar Decathlon Team Drury February 12, 2015

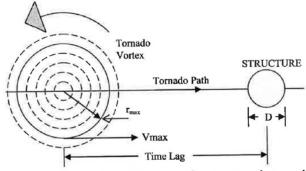


Figure 1-7: Illustration of the tornado-structure interaction.

Wind field modeling of tornado flow around structures is a complicated, fluid-dynamics phenomenon. Such modeling requires equations of velocity flow in all considered directions as well as pressure changes. Since tornado wind flow changes in time, time dependent equations are also needed. Dr. Selvam has found that the incompressible Navier-Stokes equations of fluid flow provide an adequate basis for representing wind and tornado velocity flow in a computerized, computational domain. The equations are illustrated below and are taken from Millet (2003). Principal directions for the equations are in line with the tornado path (X-direction), perpendicular to tornado path (Y-direction), and vertical (Z-direction).

Continuity Equation

$$\nabla \cdot V = 0$$

Momentum Equations

X-direction:
$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \mu \nabla^2 u + \rho f_x$$
Y-direction:
$$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \mu \nabla^2 v + \rho f_y$$
Z-direction:
$$\rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + \mu \nabla^2 w + \rho f_z$$

Where:

 μ is the viscosity of fluid (which includes the Reynolds number R_e) ρ is the fluid density

u,v, and w are velocities in the x-,y-, and z-directions

p is pressure

f are the body forces in the three principal directions

 ∇ is the Eulerian operator, which stands for $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)\Phi$

 ∇^2 is the Laplacian operator, which stands for $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\Phi$

Structural Calculations Solar Decathlon Team Drury February 12, 2015

What these equations show is that velocity flow in multiple directions, pressure with respect to the three principal directions, and Reynolds number all vary with time and must be determined. In the two-dimensional case, only the X and Y directions are pertinent. The model employs the Rankin Combined Vortex Model (RCVM) to simulate tornado rotational velocity flow in the forced vortex region of the tornado inner core region and the free vortex region of the tornado updraft and downdraft regions. The RCVM model has been shown to reasonably represent pressure and velocity changes in tornados in Lee et al (2004) and Karstens (2010). The RCVM model is shown in Figures 1-8. In the RCVM, the tangential velocity (V_{θ}) increases linearly from the center of the tornado core to a maximum at the outer edge of the inner core radius r_{max} by a rotational constant (α). Tangential velocity (V_{θ}) varies in an exponential fashion from the outer edge of the inner core radius until it dissipates some distance from the forced vortex region.

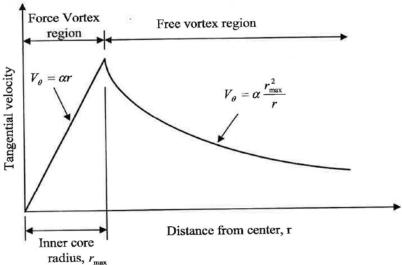


Figure 1-8. The Rankine Combined Vortex Model (RCVM) Showing Tornado Velocity Change.

Currently a maximum tornado velocity of 250 mph (110 m/s) is used.

Because of the complexity of the Navier-Stokes equations, they must be solved in an iterative process. Selvam (2002) showed that the equation variables can be solved with a finite difference, control volume procedure. Convection terms are approximated with central difference. Large-eddy simulation is used for the turbulence model. Various Reynolds numbers have been considered. Higher Reynolds numbers require three dimensions for accurate solution. Once the velocity values in the computational domain are found, forces on the surface of the cylinder are determined and converted to force coefficients. Simiu and Scanlan (1978) showed that a building is only subject to the pressure forces due to the velocity of the airflow in the tornado. Additional atmospheric forces can be neglected. The forces essentially simply to the following:

 $C_x = F_x/(0.5\rho V^2 D)$ $C_y = F_y/(0.5\rho V^2 D)$ $C_z = F_z/(0.5\rho V^2 D)$

[Status]
U.S. D.O.E. Solar Decathlon 20115

Structural Calculations Solar Decathlon Team Drury February 12, 2015

Where:

 F_x , F_y , and F_z are forces acting on the cylinder in the x, y, and z directions.

V is the reference velocity (V_{ref}) .

D is the cylinder diameter (D_{str}), which is taken as 1.0 or the dimension of the building, currently taken as 1.0.

ρ is the density of air.

The tornado traveling across the domain is assigned a translational velocity V_t , which is the same as V_{ref} . The velocities on the surfaces of the structures are taken to be zero which is called no-slip condition. The models use non-dimensional domains to generalize the problem, a circular domain as illustrated in Figure 2-9 for the 2D model and a three-dimensional "box" in the case of the 3d model. The 2D model domain is illustrated in figure 1-9.

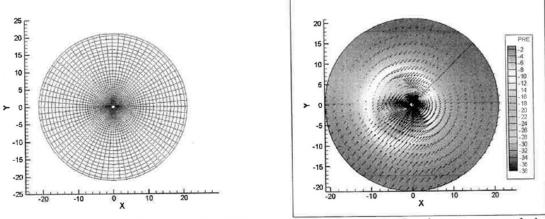


Figure 1-9.A representative example of the computational domain for the program and the velocity forces found with wind flow simulation. The tornado travels left to right and the cylinder is in the center (from Selvam and Gorecki 2012).

Further explanations of the mathematical formulations are given in Selvam (1993, 1995, 1996, 1997, 2008), Selvam and Patterson (1993), and Selvam and Qu (2001).

Using these programs, Selvam et al (2002) showed that for the ratio of tornado radius to cylindrical building diameter of 3:1, the force coefficients for tornadoes differed from those with SL winds. Selvam and Millet (2003 & 2005) showed that for the same maximum wind speed and the ratio of tornado radius to rectangular building dimension of 3:1, the force coefficients due to tornado wind were 1.5 to 2.0 times higher than SL winds. Alrasheedi and Selvam (2011) later showed that the force coefficients were closer to straight wind as the building plan size grew larger than the tornado. Alrasheedi (2012) showed that the force coefficients were increasing for thinner, rectangular structures when the ratio of tornado radius to structure dimension increased to 30:1. Grid resolution hampered their ability to capture time variation effects like vortex shedding. For instance, 32 points were used around the thin structure in Alrasheedi and Selvam (2011) but 91 points were used around a circular cylinder in Selvam et al (2002) where regular vortex shedding was demonstrated when the tornado was far away from the cylinder. Selvam and Gorecki (2012) showed for a circular cylinder that the force coefficients

[Status] Published 8/17/2015

Structural Calculations Solar Decathlon Team Drury February 12, 2015

increased for larger tornado-radius to cylinder-diameter ratios up to 8:1 but did show an increase in force coefficients. The study of tornado interaction with varying sizes of cylindrical structures was continued in Ragan et al (2013). The study showed that tornado force coefficients converged to an upper-bound maximum value when the tornado radius to structure diameter was greater than 15:1. Numerical issues in the CFD program must still be worked out to predict forces on thin, cylindrical structures. Table 1-2 lists a partial summary of the research work at UARK. No other similar work has been found to date in this literature survey.

Table 1-2: Partial Summary of Force Coefficients for the Research Work at UARK

Building	Tornado Radius to	Researcher	Force Coefficients (Tornado Travel on x)				
Dunang	Bldg. Dim.		Cx (Wall)	Cy (Wall)	Cz (Roof)		
1D Cylinder	3:1	Selvam et al	Cx>SL Wind	Cy>SL Wind			
,		(2002)	SL=1.4				
1Wx1Lx1H	3:1	Selvam and Millet	50%>SL Wind	50%>SL Wind	100%>SL Wind		
Cube		(2003, 2005)	1.36	1.36	1.81		
1D Cylinder	3:1	Selvam and Millet	Velocity Flow Study	Velocity Flow Study	NA		
12 Cyllians		(2003, 2005)					
8Wx8Lx1H	0.38:1 to 3:1	Selvam and Alrasheedi	18%>SL Wind	Same as SL Wind	Coef. <sl Wind</sl 		
		(2011)	0.90	0.00	0.07		
0.1Wx0.1Lx1H	3:1 to 30:1	Alrasheedi	50%>SL Wind	Coef.>SL Wind	75%>SL Wind		
o.i	2.2.3.2.3.2	(2012)	1.55	1.40	2.48		
1D Cylinder	1:1 to 8:1	Selvam and Gorecki	Coef. Trend	Coef. Trend	NA =		
		(2012)	Increasing	Increasing			

Additional work is ongoing for other structure shapes.

Design Methodology for Tornados

ASCE7 (2011) requires an intricate design methodology for the forces on a structure from straight wind. The design methodology considers not only force due to velocity but also changes in the forces due to building importance, terrain features, and structure type. In design for tornado forces, the forces are less understood. Consideration of building importance and terrain seems premature. As a result, tornado design here will only consider the forces from the velocity flow and the type of structure. The force coefficients will be taken from state of the art research discussed above. The tornado forces will be calculated from:

 $F=C_f(0.5\rho V^2A)$

[Status]
U.S. D.O.E. Solar Decathlon 20115

Structural Calculations Solar Decathlon Team Drury February 12, 2015

F is the total force on a building surface area (A) or a tributary area (A) for a structure component.

 C_f will be 1.5 for the building sides and 2.0 for the building roof. V will be a maximum of 250 mph based on Lee et al (2004) and Karstens et al (2010) and that used at UARK.

 ρ is the density of air.

Components and cladding forces will be calculated with the same force coefficients since detailed components and cladding force coefficients have not been developed.

References

- Alrasheedi, N.H., 2012, Computer Modeling of the Influence of Structure Plan Areas on Tornado Forces, A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas, USA.
- Alrasheedi, N.H. and Selvam, R.P., 2011, Tornado forces on Different Building Sizes using Computer Modeling, ASME Early Career Technical Conference, University of Arkansas, Fayetteville, Arkansas, USA.
- ASCE 7-10, 2011, Minimum Design Loads for Buildings and Other Structures, ASCE Standard, SEI/ASCE 7-10, American Society of Civil Engineers.
- Brooks, Charles et al., 1852, The Tornado of 1851 in Medford, West Cambridge, and Waltham in Middlesex County, Massachusetts, Boston, Massachusetts.
- Davis-Jones, K. and Kessler, E., 1974, Tornados, Weather and Climate Modification, Edited by W. N. Hess, John Wiley and Sons, Inc., New York, NY.
- Dole, E., 2007, A Tornado that Saved a City and Defeated an Enemy, Air Force Weather Observer, Air Force Reserve Command, http://www.afweather.af.mil/news/story.asp?id=123042444, 10/19/2012.
- Fouts, J.L., 2003, Flow Visualization and Fluid-Structure Interaction of Tornado-Like Vortices, A Thesis Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA.
- Fujita, T.T., 1971, Proposed Characteristics of Tornadoes and Hurricanes by Area and Intensity, SMRP, no. 91, 42 pp.
- Haan Jr., F.L., Sarkar, P.P. and Gallus, W.A., 2008, Design Construction and Performance of a Large Tornado Simulator for Wind Engineering Applications, Engineering Structures, vol. 30, no. 4, pp. 1146-1159.

Structural Calculations Solar Decathlon Team Drury February 12, 2015

- Haan Jr., F.L., Balaramudu, V.K. and Sarkar, P.P., 2010, Tornado-Induced Wind Loads on a Low-Rise Building, ASCE Journal of Structural Engineering, vol. 136, no. 1, pp. 106-116.
- Hoecker, W.H., 1960, Wind Speed and Air Flow Patterns in the Dallas Tornado of April 02, 1957, Monthly Weather Review, Edited by James E. Caskey, United States Department of Commerce Weather Bureau, vol. 88, no. 5, pp. 168-180.
- Karstens, C.D., Samaras, T.M., Lee, B.D., Gallus Jr., W.A. and Finley, C.A., 2010, Near Ground Pressure and Wind Measurements in Tornadoes, Monthly Weather Review, American Meteorological Society, vol. 138, pp. 2570-2588.
- Lee, J.J., Samaras, T. M. and Young, C. R., 2004, Pressure Measurements at the Ground in an F-4 Tornado, Proceedings of the American Meteorological Society (AMS)'s 22nd Conference on Severe Local Storms, Hyannis, Massachusetts, USA, 15.3.
- Mehta, K.C., Minor, J.E. and McDonald, J.R., 1976, Wind Speed Analysis of April 3-4, 1974 Tornados, ASCE Journal of the Structural Division, vol. 2, ST9, pp. 1709-1724.
- Millet, P.C., 2003, Computer Modeling of the Tornado-Structure Interaction: An Investigation of the Structural Loading on a Building, A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science, University of Arkansas, Fayetteville, Arkansas, USA.
- Ragan, Q.S., Selvam, R.P. and Gorecki, P., 2013, Tornado-Induced Wind-Forces for Cylindrical Structures, Proceedings of the 12th Americas Conference on Wind Engineering (12th ACWE), Seattle, Washington, USA, June 16-20, 2013.
- Sarkar, P.P., Haan Jr., F.L., Gallus, W.A., Le, K. and Wurman, J., 2005, A Laboratory Tornado Simulator: Comparison of Laboratory, Numerical and Full-Scale Measurements, Proceedings of the 10th Americas Conference on Wind Engineering, Baton Rouge, LA, USA, pp. 197-211.
- Sarkar, P.P., Haan Jr. F.L., Balaramudu, V., Sengupta, A., 2006, Laboratory Simulation of Tornados and Microbust to Assess Wind Loads on Buildings, Proceedings of ASCE Structures 2006: Structural Engineering and Public Safety, Saint Louis, Missouri, USA, May 18-21, 2006, pp. 1-10.
- Sarkar, P.P., Haan Jr., F.L., Gallus, W.A., Le, K. and Wurman, J., 2008, Velocity Measurements in a Laboratory Tornado Simulator and their Comparison with Numerical and Full Scale Data, Public Works Research Institute.
- Selvam, R.P., 1993, Computer Modeling of Tornado Forces on Buildings, Proceedings of the Seventh U.S. National Conference on Wind Engineering, Volume II, Los Angeles, CA, June 27-30, 1993, Edited by Gary C. Hart, pp. 605-613.
- Selvam, R.P. and Paterson, D.A., 1993, Computation of Conductor Drag Coefficients, Journal

Structural Calculations Solar Decathlon Team Drury February 12, 2015

of Wind Engineering and Industrial Aerodynamics, vol. 50, pp. 1-8.

- Selvam, R.P., 1995, Numerical Methodologies and Turbulent Flow Simulation in Computational Wind Engineering, Restructuring: America and Beyond, ASCE, NY, vol. 2, pp. 1269-1272.
- Selvam, R.P., 1996, Comparison of Flow Around Circular Cylinder Using FE and FD Procedures, Building an International Community of Structural Engineers, Edited by S.K. Ghosh and J. Mohammadi, ASCE, NY, vol. 2, pp. 1021-1028.
- Selvam, R.P., 1997, Computation of Pressures on Texas Tech Building using Large Eddy Simulation, Journal of Wind Engineering and Industrial Aerodynamics, vol. 67 and 68, pp. 647-657.
- Selvam, R.P. and Qu, Z.Q., 2001, Adaptive Finite Element Method for Wind Engineering Problems, Proceedings of the 2001 ASCE Structures Congress, Washington, DC, May 21-23, 2001.
- Selvam, R.P., Roy, U.K., Jung, Y, and Mehta, K.C., 2002, Investigation of Tornado Forces on a 2D Cylinder Using Computer Modeling, Wind Engineering: Proceedings of the National Conference of Wind Engineering (NCWE 2002), Roorkee, India, Edited by K. Kumar, Phoenix Publishing House, New Delhi, India, pp. 342-353.
- Selvam, R.P. and Millet, P.C., 2003, Computer Modeling of Tornado Forces on a Cubic Building Using Large Eddy Simulation, Journal of the Arkansas Academy of Sciences, vol. 57, pp. 140-146.
- Selvam, R.P. and Millet, P.C., 2003, Computer Modeling of the Tornado Forces on Buildings, Journal of Wind Engineering and Structures, vol. 6, pp. 209-220.
- Selvam, R.P. and Millet, P.C., 2005, Large Eddy Simulation of the Tornado-Structure Interaction to Determine Structural Loadings, Journal of Wind Engineering and Structures, vol. 8, pp. 49-60.
- Selvam, R.P., 2008, Developments in Computational Wind Engineering, Journal of Wind & Engineering, vol. 5, no. 1, pp. 47-54.
- Selvam, R.P. and Gorecki, P., 2012, Effect of Tornado Size on Forces on Thin 2D Cylinder, Proceedings of 3rd American Association of Wind Engineering (AAWE) Workshop, Hyannis, Massachusetts, USA, August 12-14, 2012.
- Sengupta, A., Haan Jr., F.L., Sarkar, P.P., and Balaramuda, V.K., 2008, *Transient Loads on Buildings in Microburst and Tornado Winds*, **Journal of Wind Engineering and Industrial Aerodynamics**, vol. 96, pp. 2173-2187.
- Simiu, E. and Scanlan, R., 1978, Wind Effects on Structures: An introduction to Wind

Structural Calculations Solar Decathlon Team Drury February 12, 2015

Engineering, pp. 7-35.

Wen, Y.K., 1975, Dynamic Tornado Wind Loads on Tall Buildings, ASCE Journal of the Structural Division, no. ST1, proceedings paper 11045, pp. 169-185.

Zhang, W. and Sarkar, P.P., 2009, Influence of Surrounding Buildings on Tornado-Induced Wind Loads of a Low-Rise Building, 11th Americas Conference on Wind Engineering, San Juan, Puerto Rico, June 22-26, 2013.

2-1

SECTION 2 MEMBER LOAD ANALYSIS

U.S. D.O.E. Solar Decathlon 20115

Structural Calculations Solar Decathlon 2015 Team Drury February 12, 2015 2-2

MEMBER LOAD ANALYSIS INTRODUCTION

The calculations in this section check the member sizes for gravity loading conditions. The members were analyzed for:

- Dead Load
- · Floor and Roof Live Loads
- Snow Loads
- Rain Surcharge Loads

An analysis of wind and earthquake load requirements on individual members was included here as well.

Information and codes used here include the following;

- American Institute of Steel Construction (AISC) Manual of Steel Construction 13th
- National Design Specifications for Wood Construction (NDS 2005)
- American Plywood Association (APA)

Title : Dsgnr: Description : Job # --Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004
User: KW-0606622, Ver 5.8.0, 1-Dec-2003
(c)1983-2003 ENERCALC Engineering Software

solar decathlon drury university.ecw.Calculat

Description

Roof Framing Member-8' Long (Wind Included)

General Information	Code	Ref: 1997/2001 NDS, 2000/	2003 IBC, 2003 NFPA 500	Base allowables are user defined
Section Name 2x6 Beam Width Beam Depth	1.500 in 5.500 in	Center Span Left Cantilever Right Cantilever	8.00 ftLu ftLu ftLu	0.00 ft 0.00 ft 0.00 ft
Member Type	Sawn	Spruce - Pine - Fir, N Fb Base Allow	o. 1/No. 2 875.0 psi	
Load Dur. Factor Beam End Fixity	1.600 Pin-Pin	Fv Allow Fc Allow	135.0 psi 425.0 psi	Repetitive Member

Full Length Uniform	Loads			on the supposition of the suppos	
Center	DL	19.00 #/ft	LL	#/ft	
Left Cantilever	DL	#/ft	LL	#/ft	
Right Cantilever	DL	#/ft	LL	#/ft	

Point Loads							
Dead Load Live Load distance	lbs -264.0 lbs 2.000 ft	lbs lbs 4.000 ft	-264.0 lbs 6.000 ft	lbs lbs 0.000 ft	lbs lbs 0.000 ft	lbs lbs 0.000 ft	lbs lbs 0.000 ft

Summ	ary						Beam Design OK
Span=	= 8.00ft, Beam Width =	= 1.500in x De	pth = 5.5in, E	Ends are Pin-Pin			
Maxi	Stress Ratio imum Moment Allowable		0.313 : 1 -0.4 k-ft 1.3 k-ft	Max	kimum Shear * Allowable	1.5	0.3 k 1.8 k
Max. P	Positive Moment legative Moment	0.00 k-f -0.41 k-f		8.000 ft 2.016 ft	Shear:	@ Left @ Right	0.19 k 0.19 k
Max @	Left Support Right Support	0.00 k-f			Camber:	@ Left @ Center @ Right	0.000 in 0.090 in 0.000 in
Max. N	A allow	1.32		Reactions		@ ragin	
fb Fb	655.96 psi 2,093.00 psi	fv Fv	35.73 psi 216.00 psi	Left DL Right DL	0.08 k 0.08 k	Max Max	-0.19 k -0.19 k

Deflections					CONTRACTOR OF THE PARTY OF THE
Center Span DeflectionLocationLength/Defl	<u>Dead Load</u> -0.060 in 4.000 ft 1,596.3	Total Load 0.170 in 4.000 ft 565.85	Left Cantilever DeflectionLength/Defl Right Cantilever	<u>Dead Load</u> 0.000 in 0.0	Total Load 0.000 in 0.0
Camber (using 1.5 * I @ Center @ Left	0.090 in 0.000 in	~	Deflection Length/Defl	0.000 in 0.0	0.000 in 0.0
@ Right	0.000 in				

Title: Dsgnr:

Date: 12:05PM, 9 OCT 14

Description:

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 solar decathlon drury university.ecw.Calculat

Description

Roof Framing Member-8' Long (Wind Included)

Stress Calc	s								
Bending Ck Cf @ Cen @ Left	Analysis 25.646 I 1.300 I	_e Rb <u>M</u>	0.000 ft 0.000 ax Moment 0.41 k-ft 0.00 k-ft	Sxx Cl	7.563 in3 188.000 Sxx Req'd 2.37 in3 0.00 in3 0.00 in3	Area <u>Al</u>	8.250 in2 lowable fb 2,093.00 psi 2,093.00 psi 2,093.00 psi		
Shear Ar Design	nalysis Shear equired	(D Left Support 0.29 k 1.365 in2 216.00 psi		@ Right Support 0.29 k 1.365 in2 216.00 psi				
Max. Le Max. R	@ Supports eft Reaction ight Reaction		-0.19 k -0.19 k		Bearing Length Req'd		0.295 in 0.295 in		
@ C @ R	& D @ Specific enter Span Locatight Cant. Locateff Cant. Locateff Cant.	cation = ation =	0.00 0.00 0.00	ft	Moment 0.00 k-ft 0.00 k-ft 0.00 k-ft	CACTOR VIN	Shear -0.19 k 0.00 k 0.00 k	Deflection 0.0000 in 0.0000 in 0.0000 in	

Title : Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

Scope:

				·	cope .				
ev: 580004 ser: KW-0606622, Ver 5.8.0 :)1983-2003 ENERCALC En	, 1-Dec-2003 gineering Softw	rare	Genera	l Timbe	er Bean	1	solar dec	athlon drury unive	Page 1
Description	Roof Fra	aming Membe	r-11' Long (V	Vind Incl	uded)				
eneral Informati	on	Cod	e Ref: 1997/20	01 NDS, 20	000/2003 IB	C, 2003 NF	PA 5000. Base	allowables are	user define
Section Name Beam Width Beam Depth Member Type	2x6	1.500 in 5.500 in Sawn	Right (Spruce Fb Bas	antilever Cantilever e - Pine - Fi se Allow	ir, No. 1/No.	ft 2 875.0 psi	Lu Lu Lu	0.00 ft 0.00 ft 0.00 ft	
Load Dur. Facto Beam End Fixit		1.600 Pin-Pin	Fv Allo Fc Allo E			135.0 psi 425.0 psi 400.0 ksi	Rep	etitive Memb	er
ull Length Unifo	rm Load	S			Wat Con				
Center Left Cantilever Right Cantileve		DL DL DL	19.00 #/ft #/ft #/ft	LL LL LL		#/ft #/ft #/ft			
oint Loads				AND DESCRIPTION OF THE PARTY OF	THE DINK		All Marie Salar	a management of the	and the same
Dead Load Live Load distance	lbs -264.0 lbs 2.000 ft	lbs -93.0 lbs 5.500 ft			lbs lbs 0.000 ft	0.0	lbs lbs 00 ft 0.	lbs lbs 000 ft	lbs lbs 0.000 ft
		dth = 1.500in x E		nds are Pir	ı-Pin			Beam De	sign OK
Max Stress Maximum I Allowa	Moment		0.376 : 1 -0.5 k-ft 1.3 k-ft			um Shear	* 1.5	0.3 k 1.8 k	
Max. Positive Max. Negative	Moment	0.00 k-1 -0.50 k-1		.000 ft 5.500 ft		Shear:	@ Left @ Right		21 k 21 k
Max @ Left Su Max @ Right S	pport	0.00 k-f 0.00 k-f 1.32		Desail		Camber	@ Left @ Center @ Right	0.3	00 in 22 in 00 in
	7.64 psi 3.00 psi	fv Fv	38.97 psi 216.00 psi	Reacti Left Righ	DL	0.10 k 0.10 k	Max Max		21 k 21 k
Deflections			-54 70 70 70 70 70			State of the state of		A Communication	
Center Span DeflectionLocationLength/I	1	Dead Load -0.215 in 5.500 ft 614.1	Total Loa 0.391 5.500 337.47	in ft	eft Cantile Deflection Lengt	on th/Defl	0.000 0.0	in	Load 0.000 in 0.0
Camber (using @ Center @ Left @ Right		0.322 in 0.000 in 0.000 in			DeflectionLeng	non	0.000	in	0.000 in 0.0

Title: Dsgnr: Description:

Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 solar decathlon drury university.ecw.Calculat

Description

Roof Framing Member-11' Long (Wind Included)

ress Calcs	3	NO THE REAL PROPERTY.		F 164	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A HEAD	Marie Company	or employed the pro-
	25.646 L 1.300 F	.e Rb <u>M</u>	0.000 ft 0.000 <u>lax Moment</u> 0.50 k-ft 0.00 k-ft 0.00 k-ft	Sxx Cl	7.563 in3 206.000 <u>Sxx Req'd</u> 2.85 in3 0.00 in3 0.00 in3	Area	8.250 in2 Nllowable fb 2,093.00 psi 2,093.00 psi 2,093.00 psi	
Shear Ana Design S Area Re Fv: Allov	Shear quired	(@ Left Support 0.32 k 1.489 in2 216.00 psi		@ Right Support 0.32 k 1.489 in2 216.00 psi			
Max. Le	Supports ft Reaction ght Reaction		-0.21 k -0.21 k		Bearing Length Req'd Bearing Length Req'd		0.323 in 0.323 in	
uery Value	es							
@ Ce @ Ri	LD @ Specific enter Span Loc ght Cant. Locat eft Cant. Locati	ation =	0.00 ft 0.00 ft 0.00 ft 0.00 ft		Moment 0.00 k-ft 0.00 k-ft 0.00 k-ft		-0.21 k 0.00 k 0.00 k	Deflection 0.0000 in 0.0000 in 0.0000 in

Title : Dsgnr: Description : Job # Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5. (c)1983-2003 ENERCALC	.8.0, 1-Dec-2003 Engineering Sof	lware	General Timber	Beam		Pag solar decathion drury university.ecw	
Description	Roof F	raming Member-	-19' Long (Wind Include	ed)			
General Informa	ation	Code	Ref: 1997/2001 NDS, 2000/	2003 IBC, 2003	NFPA 5000.	Base allowables are user of	define
Section Name Beam Width Beam Depth Member Type		1.500 in 11.250 in Sawn	Center Span Left Cantilever Right Cantilever Spruce - Pine - Fir, N	ft ft lo. 1/No. 2	Lu Lu Lu	0.00 ft 0.00 ft 0.00 ft	
Load Dur. Fa	ctor	1.600 Pin-Pin	Fb Base Allow Fv Allow Fc Allow	875.0 ps 135.0 ps 425.0 ps	L	Repetitive Member	

			600 Fv Allow I-Pin Fc Allow E			5.0 psi 5.0 psi).0 ksi	Repetitive Men	nber
ull Length Unif	orm Loads			WORNE TO				
Center	DL	19.0	0 #/ft	LL		#/ft		
Left Cantilever	DL		#/ft	LL		#/ft		
Right Cantileve	er DL		#/ft	LL		#/ft		
oint Loads			and a comment of the	GT SE		In real Source		
Dead Load	lbs	lbs	lbs		lbs	lbs	lbs	lbs
Live Load	-196.0 lbs	-196.0 lbs	-196.0 lbs		lbs	lbs	lbs	lbs
distance	4.000 ft	9.500 ft	15.000 ft		0.000 ft	0.000 ft	0.000 ft	0.000 ft
Summary							Beam D	esign OK
Span= 19.00	ft, Beam Width =	1.500in x Depti	n = 11.25in, End	ls are	Pin-Pin			
Max Stres	s Ratio	0.20	02:1				2.0	
Maximum		-0	.9 k-ft		Maximum	Shear * 1.5	0.2	
Allow			.2 k-ft		Allow	able	3.6	k

Span= 19.00ft, Beam Wi	dth = 1.500in	x Dep	oth = 11.25	in, Ends are Pin-l	Pin			
Max Stress Ratio			202 : 1	M	laximum Shear *	1.5	0.2 k	1
Maximum Moment Allowable			-0.9 k-ft 4.2 k-ft	IV	Allowable	1.0	3.6 k	1
Max. Positive Moment Max. Negative Moment		0 k-ft 6 k-ft	at at	19.000 ft 9.500 ft	Shear:	@ Left @ Right	0.18 k 0.18 k	1
Max @ Left Support Max @ Right Support	0.00 0.00	k-ft k-ft			Camber:	@ Left @ Center @ Right	0.000 in 0.335 in 0.000 in	Ì
Max. M allow	4.25			Reactions		W Right	0.000	1
fb 325.26 psi	fv		11.63 psi	Left DL	0.18 k	Max	-0.11 k	- 1
Fb 1,610.00 psi	Fv	2	216.00 psi	Right DL	0.18 k	Max	-0.11 k	

eflections					
Center Span DeflectionLocation	Dead Load -0.224 in 9.500 ft	Total Load 0.201 in 9.500 ft	Left Cantilever Deflection Length/Defl	<u>Dead Load</u> 0.000 in 0.0	<u>Total Load</u> 0.000 in 0.0
Length/Defl Camber (using 1.5 * I	1,019.7 D.L. Defl.)	1,131.59	Right Cantilever Deflection	0.000 in	0.000 in
@ Center	0.335 in		Length/Defl	0.0	0.0
@ Left	0.000 in				
@ Right	0.000 in				

Title: Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 solar decathlon drury university.ecw.Calculat

Description

Roof Framing Member-19' Long (Wind Included)

ress Calcs								
Bending An			0.000.4	Corr	31.641 in3	Area	16.875 in2	
Ck	25.646	Le	0.000 ft 0.000	Sxx Cl	113.500	Alea	10.075 1112	
Cf	1.000	Rb	Max Moment	G	Sxx Reg'd	All	owable fb	
0.0			0.86 k-ft		6.39 in3		1,610.00 psi	
@ Center			0.00 k-ft		0.00 in3		1,610.00 psi	
@ Left Su			0.00 k-ft		0.00 in3		1,610.00 psi	
@ Right S							1,010.00 par	
Shear Analy			@ Left Support		@ Right Support			
Design Sh			0.20 k		0.20 k			
Area Requ			0.909 in2		0.909 in2			
Fv: Allowa	ble		216.00 psi		216.00 psi			
Bearing @ S	Supports							
Max. Left F			-0.11 k		Bearing Length Req'd	1	0.178 in	
Max. Right	Reaction		-0.11 k		Bearing Length Req'd	1	0.178 in	

0		۵	m /	V	•	h	es
u	u	e	ΓV	v	a	ıu	t3

M, V, & D @ Specified Locations	a legiture parameters	Moment	Shear	Deflection
@ Center Span Location = @ Right Cant. Location = @ Left Cant. Location =	0.00 ft	0.00 k-ft	-0.11 k	0.0000 in
	0.00 ft	0.00 k-ft	0.00 k	0.0000 in
	0.00 ft	0.00 k-ft	0.00 k	0.0000 in

Published 8/17/2015 [Status] Page - 53

Title: Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

Scope:

General Timber Beam

Page 1 solar decathlon drury university.ecw.Calculat

neral Informat	ion		Code	Ref: 1997/2	2001 NDS, 2	2000/2003 IE	BC, 2003 N	NFPA 500	0. Base allov	vables are	user defii
Section Name	2x6		X-11-1		er Span			Lu .Lu		.00 ft	
Beam Width		1.500 in 5.500 in			Cantilever t Cantilever			Lu		.00 ft	
Beam Depth Member Type		5.500 iii Saw	n			Fir, No. 1/No		0.510.210.00			
					sase Allow		875.0 psi				
Load Dur. Fact	-	1.250 Pin-Pin		Fv A Fc A			135.0 psi 425.0 psi		Repetit	ive Membe	er
Beam End Fixit	ty	PHI-PHI		E			400.0 ksi				
I Length Unifo	orm Loa	ıds	× === =====					mestion of the			
Center	In Consulting	DL	19	.00 #/ft	LL	20.	00 #/ft				
Left Cantilever		DL		#/ft #/ft	LL LL		#/ft #/ft				
Right Cantileve	er ————	DL		#/IL		_	#//C			_	
int Loads	lb		lbs		Ibs	lbs	- CALL	lbs	market to the National State	lbs	Ib
Dead Load Live Load	9.0 lb		.0 lbs	9	.0 lbs	lbs		lbs		lbs	lb
distance	2.000 ft		00 ft	6.00	00 ft	0.000 ft	0.	000 ft	0.000	ft	0.000 ft
Summary									В	eam Des	ign OK
Span= 8.00ft			v Dani	LA - F Fin C							
		idth = 1.500in	v Deb	(n = 5.5in, t	ends are Pir	n-Pin					
Max Stress	s Ratio		0.	338 : 1	ends are Pir		um Shea	ar * 1.5		0.2 k	
Max Stress Maximum	s Ratio Moment		0.	338 : 1 0.3 k-ft 1.0 k-ft	±nds are Pir	Maxim	um Shea	ar * 1.5		0.2 k 1.4 k	
Max Stress Maximum Allowa	s Ratio Moment able	t	0.	338 : 1 0.3 k-ft 1.0 k-ft	ands are Pir	Maxim		0) Left	1.4 k 0.1	
Max Stress Maximum Allowa Max. Positive	s Ratio Moment able Moment	0.:	0. 35 k-ft	338 ; 1 0.3 k-ft		Maxim	owable Shear:	0	Right	1.4 k 0.1 0.1	7 k
Max Stress Maximum Allows Max. Positive Max. Negative Max @ Left St	s Ratio Moment able Moment Moment upport	0.3 0.4 0.0	0. 35 k-ft 00 k-ft 0 k-ft	338 : 1 0.3 k-ft 1.0 k-ft at	4.000 ft	Maxim	owable	@r: @	Right Left	1.4 k 0.1 0.1 0.00	7 k Oin
Max Stress Maximum Allowa Max. Positive Max. Negative	s Ratio Moment able Moment Moment upport	0.3 0.4 0.0	0. 35 k-ft 00 k-ft	338 : 1 0.3 k-ft 1.0 k-ft at	4.000 ft	Maxim	owable Shear:	er:	Right Left Center	1.4 k 0.1' 0.1' 0.00 0.09	7 k 0 in 0 in
Max Stress Maximum Allows Max. Positive Max. Negative Max @ Left St	s Ratio Moment able Moment Moment upport	0.3 0.4 0.0	0. 35 k-ft 00 k-ft 0 k-ft 0 k-ft	338 : 1 0.3 k-ft 1.0 k-ft at	4.000 ft 0.000 ft	Maxim Alle	owable Shear: Cambe	er: @	☑ Right ☑ Left ☑ Center ☑ Right	1.4 k 0.1' 0.1' 0.00 0.09 0.00	7 k Oin Oin Oin
Max Stress Maximum Allowa Max. Positive Max. Negative Max @ Left St Max @ Right St Max. M allow	s Ratio Moment able Moment Moment upport	0.3 0.4 0.00 0.00	0. 35 k-ft 00 k-ft) k-ft) k-ft 3	338 : 1 0.3 k-ft 1.0 k-ft at at 27.64 psi	4.000 ft 0.000 ft Reac Lef	Maxima Alla tions	Owable Shear: Cambe	er: @	☑ Right ☑ Left ☑ Center ☑ Right	1.4 k 0.1 0.1 0.00 0.09 0.00	7 k Oin Oin Oin Oin
Max Stress Maximum Allowa Max. Positive Max. Negative Max @ Left St Max @ Right St Max. M allow fb 55	s Ratio Moment able Moment Moment upport Support	0.0 0.0 0.00 0.00	0. 35 k-ft 00 k-ft) k-ft) k-ft 3	338 : 1 0.3 k-ft 1.0 k-ft at at	4.000 ft 0.000 ft Reac Lef	Maxim Alle	owable Shear: Cambe	er: @	☑ Right ☑ Left ☑ Center ☑ Right	1.4 k 0.1' 0.1' 0.00 0.09 0.00	7 k Oin Oin Oin Oin
Max Stress Maximum Allowa Max. Positive Max. Negative Max @ Left St Max @ Right St Max. M allow fb 55	s Ratio Moment able Moment Moment upport Support	0.0 0.0 0.00 0.00 1.00 fv	0. 35 k-ft 00 k-ft) k-ft) k-ft 3	338 : 1 0.3 k-ft 1.0 k-ft at at 27.64 psi 168.75 psi	4.000 ft 0.000 ft Reac Lef Rig	Maximi Alle tions t DL ht DL	Owable Shear: Cambe 0.08 k 0.08 k	PF: @	© Right © Left © Center © Right Max	1.4 k 0.1' 0.0' 0.00 0.09 0.00	7 k Oin Oin Oin 7 k 7 k
Max Stress Maximum Allows Max. Positive Max. Negative Max @ Left St Max @ Right St Max. M allow fb 55 Fb 1,65 Flections Center Span	s Ratio Moment able Moment Moment upport Support 52.20 psi 35.16 psi	0.0 0.0 0.00 1.00 fv Fv	0. 35 k-ft 00 k-ft 0 k-ft 0 k-ft	338 ; 1 0.3 k-ft 1.0 k-ft at at 27.64 psi 168.75 psi	4.000 ft 0.000 ft Reac Lef Rig	Maximi Alli tions t DL ht DL	Owable Shear: Cambe	PF: @	Right Left Center Right Max Max Max Max	1.4 k 0.1' 0.1' 0.00 0.09 0.00 0.1 0.1	7 k Oin Oin Oin 7 k 7 k
Max Stress Maximum Allowa Max. Positive Max. Negative Max @ Left St Max @ Right: Max. M allow fb 55 Fb 1,65 Flections Center Span Deflection	s Ratio Moment able Moment Moment upport Support 52.20 psi 35.16 psi	0.0 0.0 0.00 1.00 fv Fv	0. 35 k-ft 00 k-ft) k-ft 3	338 : 1 0.3 k-ft 1.0 k-ft at at 27.64 psi 168.75 psi	4.000 ft 0.000 ft Reac Lef Rig	Maximi Alli tions t DL ht DL Left Cantile Deflecti	Owable Shear: Cambe	PF: @	© Right © Left © Center © Right Max	1.4 k 0.1' 0.1' 0.00 0.09 0.00 0.1 0.1	7 k Oin Oin Oin 7 k 7 k
Max Stress Maximum Allowa Max. Positive Max. Negative Max @ Left St Max @ Right St Max. M allow fb 55 Fb 1,63 Flections Center Span DeflectionLocatio	s Ratio Moment able Moment Moment upport Support 52.20 psi 35.16 psi	0.0 0.0 0.00 1.00 fv Fv	0. 35 k-ft 00 k-ft) k-ft 3	338 : 1 0.3 k-ft 1.0 k-ft at at 27.64 psi 168.75 psi	4.000 ft 0.000 ft Reac Lef Rig	Maximi Alli tions t DL ht DL Left Cantile Deflecti Leng	Owable Shear: Cambe 0.08 k 0.08 k ver on th/Defi	PF: @	Right Left Center Right Max Max dat Load 0.000 in	1.4 k 0.1' 0.00 0.09 0.00 0.1 Total	7 k 0 in 0 in 0 in 7 k 7 k Load .000 in
Max Stress Maximum Allowa Max. Positive Max. Negative Max @ Left St Max @ Right St Max. M allow fb 55 Fb 1,63 Flections Center Span DeflectionLocatioLength/	s Ratio Moment able Moment Moment upport Support 52.20 psi 35.16 psi	0.0 0.0 0.00 1.00 fv Fv Dead Load -0.060 4.000 1,596.3	0. 35 k-ft 00 k-ft) k-ft 3	338 : 1 0.3 k-ft 1.0 k-ft at at 27.64 psi 168.75 psi Total Le -0.1 4.0	4.000 ft 0.000 ft Reac Lef Rig	Maximi Alli	Owable Shear: Cambe 0.08 k 0.08 k ver on th/Defi	PF: @	© Right © Left © Center © Right Max Max 0.000 in 0.00 in	1.4 k 0.1' 0.00 0.09 0.00 0.1 Total	7 k 0 in 0 in 0 in 7 k 7 k Load .000 in 0.0
Max Stress Maximum Allowa Max. Positive Max. Negative Max @ Left St Max @ Right St Max. M allow fb 55 Fb 1,65 flections Center Span DeflectionLocatioLength/ Camber (usin @ Center	s Ratio Moment able Moment Moment upport Support 52.20 psi 35.16 psi	0.0 0.0 0.00 1.00 fv Fv Dead Load -0.060 4.000 1,596.3 L. Defl)	0. 35 k-ft 00 k-ft) k-ft 3 in ft	338 : 1 0.3 k-ft 1.0 k-ft at at 27.64 psi 168.75 psi Total Le -0.1 4.0	4.000 ft 0.000 ft Reac Lef Rig	Maximi Alli	Owable Shear: Cambe 0.08 k 0.08 k ver on th/Defi	PF: @	© Right © Left © Center © Right Max Max 0.000 in	1.4 k 0.1' 0.00 0.09 0.00 0.1 Total	7 k 0 in 0 in 0 in 7 k 7 k Load .000 in
Max Stress Maximum Allowa Max. Positive Max. Negative Max @ Left St Max @ Right St Max. M allow fb 55 Fb 1,63 Flections Center Span DeflectionLocatioLength/ Camber (usin	s Ratio Moment able Moment Moment upport Support 52.20 psi 35.16 psi	0.0 0.0 0.0 1.0 fv Fv Dead Load -0.060 4.000 1,596.3	0. 35 k-ft 00 k-ft) k-ft 3 in ft	338 : 1 0.3 k-ft 1.0 k-ft at at 27.64 psi 168.75 psi Total Le -0.1 4.0	4.000 ft 0.000 ft Reac Lef Rig	Maximi Alli	Owable Shear: Cambe 0.08 k 0.08 k ver on th/Defi	PF: @	© Right © Left © Center © Right Max Max 0.000 in 0.00 in	1.4 k 0.1' 0.00 0.09 0.00 0.1 Total	7 k 0 in 0 in 0 in 7 k 7 k Load .000 in 0.0

Title: Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 solar decathlon drury university ecw:Calculat

Description

Roof Framing Member-8' Long (Earthquake Included)

ress Calcs								
Bending Ar Ck Cf @ Cente	29.015 1.300	Le Rb	0.000 ft 0.000 <u>Max Moment</u> 0.35 k-ft	Sxx CI	169.500 <u>Sxx Req'd</u> 2.55 in3	Area <u>Al</u>	8.250 in2 lowable fb 1,635.16 psi	
@ Left S @ Right			0.00 k-ft 0.00 k-ft		0.00 in3 0.00 in3		1,635.16 psi 1,635.16 psi	
Shear Anal Design S Area Req Fv: Allow	hear uired		@ Left Support 0.23 k 1.351 in2 168.75 psi		@ Right Support 0.23 k 1.351 in2 168.75 psi			
Bearing @ Max. Left Max. Rigi			0.17 k 0.17 k		Bearing Length Req'd Bearing Length Req'd		0.266 in 0.266 in	
uery Value	5				and the second second	I KIND AND S	WAR BELLEVINE INC.	
	D @ Speci				Moment		Shear	Deflection
	ter Span L		= 0.00 ft		0.00 k-ft		0.17 k	0.0000 in 0.0000 in

values			The state of the s	The state of the s
M, V, & D @ Specified Locations	THE RESERVE AND ADDRESS OF	Moment	Shear	Deflection
@ Center Span Location = @ Right Cant. Location = @ Left Cant. Location =	0.00 ft 0.00 ft 0.00 ft	0.00 k-ft 0.00 k-ft 0.00 k-ft	0.17 k 0.00 k 0.00 k	0.0000 in 0.0000 in 0.0000 in

2-11

Title : Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

Scope:

				Scope:				
ev: 580004 ser: KW-0606622, Ver 5.8.0)1983-2003 ENERCALC En	, 1-Dec-2003 gineering Softw	vare	General T	imber Be	am	solar decati	Pag hion drury university ecw.	
escription	Roof Fra	aming Member	-11' Long (Ear	thquake Inc	luded)			
eneral Informati	on	Code	e Ref: 1997/2001 l	NDS, 2000/200	03 IBC, 2003 NFP	A 5000. Base al	lowables are user d	efine
Section Name Beam Width Beam Depth Member Type	2x6	1.500 in 5.500 in Sawn	Fb Base A	lever tilever Pine - Fir, No. 1	875.0 psi	Lu	0.00 ft 0.00 ft 0.00 ft	
Load Dur. Facto Beam End Fixit		1.250 Pin-Pin	Fv Allow Fc Allow E		135.0 psi 425.0 psi 1,400.0 ksi	Repe	titive Member	
ull Length Unifo	rm Load	S		5.4		- MAN - 1/2	Market and the second	Mary Control
Center Left Cantilever Right Cantileve	Ī	DL 1 DL DL	9.00 #/ft #/ft #/ft	LL LL LL	20.00 #/ft #/ft #/ft			
oint Loads				CONTRACTOR OF THE PARTY OF THE				-
Dead Load Live Load distance	lbs 12.5 lbs 3.000 ft	12.5 lbs 5.500 ft	12.5 lbs 8.000 ft		lbs lbs ft 0.000	lbs lbs ft 0.00	lbs lbs 00 ft 0.00	lbs lbs 0 ft
Summary		-					Beam Design (эк
THE RESERVE TO SERVE			epth = 5.5in, Ends 0.642 : 1	are Pin-Pin			16	
Maximum I	Moment		0.7 k-ft 1.0 k-ft	Ma	kimum Shear * Allowable	1.5	0.3 k 1.4 k	
Max. Positive Max. Negative	vioment	0.66 k-fi 0.00 k-f			Shear:	@ Left @ Right	0.23 k 0.23 k	
Max @ Left Su Max @ Right S	pport	0.00 k-f 0.00 k-f 1.03			Camber:	@ Left @ Center @ Right	0.000 in 0.322 in 0.000 in	
1.0	i0.05 psi i5.16 psi	fv Fv	39.29 psi 168.75 psi	Reactions Left DL Right DL	0.10 k 0.10 k	Max Max	0.23 k 0.23 k	
Deflections							D 51 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
Center Span DeflectionLocationLength/l	ı Defl	Dead Load -0.215 in 5.500 ft 614.1	Total Load -0.492 in 5.500 ft 268.22	Det l Right C	ntilever lection _ength/Defl cantilever	Dead Load 0.000 in 0.0	0.0	
Camber (usin @ Center @ Left @ Right	g 1.5 * D.L.	0.322 in 0.000 in 0.000 in			flection _ength/Defl	0.000 in 0.0	0.000 i 0.0	n

Title : Dsgnr: Description :

Job # Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606522, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 solar decathlon drury university.ecw.Calculat

Description

Roof Framing Member-11' Long (Earthquake Included)

ess Calc	5					SEPREST SE	adoptiving a supplied	NAME OF TAXABLE PARTY.	-7 -73
Bending A	Analysis								
Ck	29.015	Le	0.000 ft	Sxx		Area	8.250 in2		
Cf	1.300	Rb	0.000	CI	233.250	Δ	llowable fb		
0.0			Max Moment 0.66 k-ft		<u>Sxx Req'd</u> 4.86 in3	-	1,635.16 psi		
@ Cent			0.00 k-ft		0.00 in3		1,635.16 psi		
-	Support t Support		0.00 k-ft		0.00 in3		1,635.16 psi		
Shear Ana			@ Left Support		@ Right Support				
Design S			0.32 k		0.32 k				
Area Re			1.921 in2		1.921 in2				
Fv: Allov	•		168.75 psi		168.75 psi				
Bearing @	Supports								
Max. Le	ft Reaction		0.23 k		Bearing Length Req'd		0.366 in		
Max. Rig	ht Reaction		0.23 k		Bearing Length Req	d	0.366 in		
ery Value	es								
M. V. 8	D @ Speci	ified Lo	ocations	AND DESCRIPTION OF PERSONS ASSESSMENT	Moment	Marin Co.	Shear	Deflection	
	enter Span L				0.00 k-ft		0.23 k	0.0000 in	
_	ght Cant. Lo				0.00 k-ft		0.00 k	0.0000 in	
	ft Cant. Loc		0.00 ft		0.00 k-ft		0.00 k	0.0000 in	

Title : Dsgnr: Description :

Job # Date: 12:05PM, 9 OCT 14

Scope:

				Scope	•		
ev: 580004 ser: KW-0606522, Ver 5.8.0)1983-2003 ENERCALC En	, 1-Dec-2003 gineering Sof	ftware	General T	imber B	eam	solar decath	Page Ion drury university.ecw.Calcu
escription	AND REAL PROPERTY.	BUT ONLING THE PARTY OF THE PAR	r-19' Long (Ear	thquake In	cluded)		
eneral Informati	ion	Cod	e Ref: 1997/2001 N	NDS, 2000/20	03 IBC, 2003 NFP	A 5000. Base allo	owables are user define
Section Name Beam Width Beam Depth Member Type	2x12	1.500 in 11.250 in Sawn	Center Spa Left Cantill Right Cant Spruce - P Fb Base A	ever tilever ine - Fir, No.	ft	Lu	0.00 ft 0.00 ft 0.00 ft
Load Dur. Facto Beam End Fixity		1.250 Pin-Pin	Fv Allow Fc Allow E		135.0 psi 425.0 psi 1,400.0 ksi	Repet	itive Member
ull Length Unifo	rm Loa	ds				day/semile/emyaciles	
Center Left Cantilever Right Cantileve	г	DL 2 DL DL	23.00 #/ft #/ft #/ft	LL LL	20.00 #/ft #/ft #/ft		
oint Loads						multi-ty-	
Dead Load Live Load distance	13.0 lbs 3.000 ft			13.0 13.000	lbs lbs 13.0 ft 16.000		lbs lbs lbs 0 ft 0.000 ft
Summary						E	Beam Design OK
			epth = 11.25in, En 0.639 : 1	ds are Pin-Pi	n		
Max Stress Maximum M Allowa	Moment		2.1 k-ft 3.3 k-ft	Ma	ximum Shear * Allowable	1.5	0.6 k 2.8 k
Max. Positive Max. Negative	Noment	2.12 k-f 0.00 k-f			Shear:	@ Left @ Right	0.44 k 0.44 k
Max @ Left Su Max @ Right S	pport	0.00 k-f			Camber:	@ Left @ Center @ Right	0.000 in 0.406 in 0.000 in
	3.70 psi 7.81 psi	3.32 fv Fv	35.71 psi 168.75 psi	Reactions Left DL Right DL	0.22 k 0.22 k	Max Max	0.44 k 0.44 k
Deflections	ры						
Center Span	-	Dead Load	Total Load	Left Ca	ntilever	Dead Load	Total Load
Deflection Location	1	-0.271 in 9.500 ft 842.4	-0.552 in 9.500 ft 413.15		flection Length/Defl Cantilever	0.000 in 0.0	0.000 in 0.0
Length/l Camber (using @ Center @ Left @ Right			410.10	De	flection Length/Defl	0.000 in 0.0	0.000 in 0.0

Title : Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

@ Center Span Location =

@ Right Cant. Location =
@ Left Cant. Location =

General Timber Beam

Page 2 solar decathion drury university.ecw.Calculat

0.0000 in

0.0000 in

0.0000 in

0.44 k

0.00 k

0.00 k

Description

Roof Framing Member-19' Long (Earthquake Included)

0.00 ft

0.00 ft

0.00 ft

				THE RESERVE AND ADDRESS OF THE PARTY OF THE
ery Values				
Max. Right Reaction	0.44 k	Bearing Length Rec	d'd 0.692 in	
Max. Left Reaction	0.44 k	Bearing Length Rec		
Bearing @ Supports				
Fv: Allowable	168.75 psi	168.75 psi		
Area Required	3.571 in2	3.571 in2		
Design Shear	0.60 k	0.60 k		
Shear Analysis	@ Left Support	@ Right Support		
@ Right Support	0.00 k-ft	0.00 in3	1,257.81 psi	
@ Left Support	0.00 k-ft	0.00 in3	1,257.81 psi	
@ Center	2.12 k-ft	20.22 in3	1,257.81 psi	
-	Max Moment	Sxx Reg'd	Allowable fb	
Cf 1.000 Rb	0.000	CI 441.000		
Bending Analysis Ck 29.015 Le	0.000 ft	Sxx 31.641 in3	Area 16.875 in2	15

0.00 k-ft

0.00 k-ft

0.00 k-ft

Title: Dsgnr: Description: Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 1 solar decathlon drury university ecw Calculat

or Framing Member-8' Long (Earthquake Included)

scription	F1001 F	raming Memb	CIPO LONG (Latinguako				
neral Informa	tion	Co	de Ref: 1997/	2001 NDS, 2000	/2003 IBC, 2003	3 NFPA 5000. Ba	ase allowables a	re user defin
Section Name Beam Width Beam Depth Member Type	2x6	1.500 in 5.500 in Sawn	Left Righ Spru	ter Span Cantilever It Cantilever Ice - Pine - Fir, N		Lu Lu	0.00 ft 0.00 ft 0.00 ft	
Load Dur. Fac Beam End Fix		1.250 Pin-Pin	FVA		135.0 ps 425.0 ps 1,400.0 ks	si si	Repetitive Men	nber
I Length Unif	orm Loa	ds						
Center Left Cantilever Right Cantilev		DL DL DL	19.00 #/ft #/ft #/ft	LL LL LL	100.00 #/ft #/ft #/ft		oláf	
int Loads							THE WATER TO	EFES DE CHEST
Dead Load Live Load distance	9.0 lb 2.000 ft	s 9.0 lb		lbs .0 lbs 00 ft 0.	lbs lbs 000 ft	lbs 0.000 ft	lbs lbs 0.000 ft	0.000 ft
Summary							Beam D	esign OK
		dth = 1.500in x E		Ends are Pin-Pir	1			
Max Stres	-		0.959 : 1		Maximum Sh	ear * 1.5	0.7	k
Maximum Allow			1.0 k-ft 1.0 k-ft		Allowable		1.4	k
Max. Positive Max. Negative	Moment	0.99 k 0.00 k		4.000 ft 8.000 ft	Shea	ar: @ Lef @ Rig	•).49 k).49 k
Max @ Left S Max @ Right	upport	0.00 k	-ft		Cam	ber: @ Lef @ Ce @ Ric	nter 0.	000 in .090 in .000 in
Max. M allow		1.03		Reactions				0.401
100	67.73 psi 35.16 psi	fv Ev	79.31 psi 168.75 psi	Left DL Right D				0.49 k 0.49 k
eflections	00. 10 poi							
Water Bridge Bridge Bridge	NAME OF TAXABLE PARTY.	Dead Load	Total L	oad Left	Cantilever	Dead Lo	oad Tol	tal Load
Center Span. Deflection		-0.060 in		390 in	Deflection		000 in	0.000 in
Locatio	n	4.000 ft	4.0	000 ft	Length/Defl		0.0	0.0
Length		1,596.3	246	.03 Rig	ht Cantilever			
Camber (usi	ng 1.5 * D.	L. Defl)		-	Deflection		000 in	0.000 in
@ Center		0.090 in			Length/Defl		0.0	0.0
@ Left		0.000 in						
@ Right		0.000 in						

U.S. D.O.E. Solar Decathlon 20115

Title: Dsgnr: Description: Job # Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0608622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 solar decathlon drury university.ecw Calculat

Description

Floor Framing Member-8' Long (Earthquake Included)

ress Calcs		241000	A STREET VEGUS AND	CHEST STATE		The last of	CONTRACTOR OF THE PERSON OF	BEST HERE VIEW BOOK SERVICE	N. Colonia
Bending Ar Ck Cf	1.300	Le Rb	0.000 ft 0.000	Sxx Cl	7.563 in3 489.500	Area			
@ Cente @ Left S @ Right	upport		Max Moment 0.99 k-ft 0.00 k-ft 0.00 k-ft		Sxx Reg'd 7.25 in3 0.00 in3 0.00 in3		Allowable fb 1,635.16 psi 1,635.16 psi 1,635.16 psi		
Shear Anal Design Sl Area Req Fv: Allows	near uired		@ Left Support 0.65 k 3.877 in2 168.75 psi		@ Right Support 0.65 k 3.877 in2 168.75 psi				
Bearing @ Max. Left Max. Righ			0.49 k 0.49 k		Bearing Length Red Bearing Length Red		0.768 in 0.768 in		
uery Values	3						THE RESERVE OF THE PARTY OF THE		SE HER
M, V, &	D @ Speci	fied L	ocations	DOSESSA	Moment		Shear	Deflection	
@ Rig	iter Span Lo ht Cant. Loc Cant. Loca	cation		ft	0.00 k-ft 0.00 k-ft 0.00 k-ft		0.49 k 0.00 k 0.00 k	0.0000 in 0.0000 in 0.0000 in	

Title: Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

						Scope					
ev: 580004 lser: KW-0606622, Ver 5.8.0, c)1983-2003 ENERCALC Engi	1-Dec-2003 ineering Softwar	e		Gener	al Ti	mber B	eam		solar d	ecathlon drury	Page university.ecw.Calcu
		ming Mem	ber-	-11' Long	(Supp	oort @ 6')	(EQ Ind	ol.)			
eneral Information	on	C	ode	Ref: 1997/2	2001 N E	os, 2000/20	03 IBC, 2	003 NFP	A 5000. Base	allowable	s are user defin
Section Name Beam Width Beam Depth Member Type	2x6	1.500 in 5.500 in Sawn		Left Righ Spru	er Spar Cantilev t Cantile ice - Pin sase Alle	er ever ne - Fir, No.	6.0 1/No. 2 875.	ft		0.00 f 0.00 f 0.00 f	t
Load Dur. Factor Beam End Fixity		1.250 Pin-Pin		Fv A Fc A E	llow		135. 425. 1,400.	0 psi 0 psi	Re	epetitive N	lember
ull Length Unifo	rm Loads	MITS STREET		A THE STREET	W 211		OR OTHER DESIGNATION OF THE PERSON OF THE PE				
Center Left Cantilever Right Cantilever	DI DI DI		19	9.00 #/ft #/ft #/ft		LL LL LL	1	#/ft #/ft #/ft >\→->>\	o Best	OPSF	
oint Loads					we want on the		-		400 and 100 an		
Dead Load Live Load distance	lbs 12.5 lbs 3.000 ft	12.5 5.500			lbs .5 lbs 00 ft	0.000	lbs lbs) ft	0.000	lbs lbs) ft	lbs lbs 0.000 ft	0.000 ft
Summary										Beam	Design OK
Span= 6.00ft, I Max Stress		= 1.500in x		.541 : 1	Ends are		ximum	Shear *	*15	0	.5 k
Maximum M Allowal				0.6 k-ft 1.0 k-ft		IVIA	Allowa			1	.4 k
Max. Positive M Max. Negative M		0.56		at at	3.000 0.000		S	hear:	@ Left @ Right		0.36 k 0.37 k
Max @ Left Sup Max @ Right Su	port	0.00 0.00					C	amber:	@ Left @ Cente @ Right		0.000 in 0.029 in 0.000 in
Max. M allow fb 884	.43 psi	1.03 fv		58,26 psi	R	Reactions Left DL	0.06		Max		0.36 k 0.39 k
	5.16 psi	Fv	_	168.75 psi	-	Right DL	0.0	6 k	Max		U.33 K
Deflections	No. of the last	MANAGEMENT OF THE PARTY OF THE	SOUR !	DIMENSI LAW	and the same	Loft Co	antilever.		Dead Load	NAME OF TAXABLE PARTY.	Total Load
Center Span DeflectionLocationLength/D		Dead Load -0.019 in 3.000 ft 3,783.8			23 in 000 ft	De	flection Length/D	efl	0.00	0 in	0.000 in 0.0
Camber (using @ Center @ Left						De	flection Length/D		0.00		0.000 in 0.0

@ Right

0.000 in

2-13

Title : Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 solar decathion drury university.ecw:Calculat

Description

Floor Framing Member-11' Long (Support @ 6') (EQ Incl.)

ess Calc	s					10000		HEAL TO BE STORY OF THE SAME O	1200
Bending	Analysis						0.050 :-0		
Ck	29.015	Le	0.000 ft	Sxx		Area	8.250 in2		
Cf	1.300	Rb	0.000	CI	364.292	Allo	wable fb		
			Max Moment		Sxx Reg'd				
@ Cen			0.56 k-ft		4.09 in3		,635.16 psi		
	Support		0.00 k-ft		0.00 in3		,635.16 psi		
@ Righ	nt Support		0.00 k-ft		0.00 in3		,635.16 psi		
Shear An	alysis		@ Left Support		@ Right Support				
Design	Shear		0.47 k		0.48 k				
Area Re	equired		2.756 in2		2.848 in2				
Fv: Allo	wable		168.75 psi		168.75 psi				
Bearing (@ Supports								
Max. Le	eft Reaction		0.36 k		Bearing Length Req'd		0.571 in		
Max. R	ight Reaction		0.39 k		Bearing Length Req'd		0.607 in		
iery Valu	es								MEETING.
M, V,	& D @ Speci	ified L	ocations	WARRING STREET	Moment	S	hear	Deflection	
	enter Span L				0.00 k-ft		0.36 k	0.0000 in	
_	ight Cant. Lo				0.00 k-ft		0.00 k	0.0000 in	
6	eft Cant. Loc	ation =	0.00 ft		0.00 k-ft		0.00 k	0.0000 in	

Title : Dsgnr: Description :

Job # Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004
User: KW-0606622, Ver 5.8.0, 1-Dec-2003
(c)1983-2003 ENERCALC Engineering Software

Page 1
solar decathlon drury university sow Calculat

escription	Floor Fra	aming Member	-19' Long	(Support @ 6')	(EQ Incl.)		
eneral Informati	on	Code	Ref: 1997/	2001 NDS, 2000/20	03 IBC, 2003 NFP	A 5000. Base allo	owables are user defin
Section Name Beam Width Beam Depth Member Type	2x6	1.500 in 5.500 in Sawn	Left Righ Spru	ter Span Cantilever It Cantilever Ice - Pine - Fir, No. Base Allow	6.00 ft ft ft 1/No. 2 875.0 psi	Lu	0.00 ft 0.00 ft 0.00 ft
Load Dur. Facto Beam End Fixity		1.250 Pin-Pin	Fv A	llow	135.0 psi 425.0 psi 1,400.0 ksi	Repet	itive Member
ull Length Unifo	rm Load	5			VAC III		DOSETH CONTRACTOR
Center Left Cantilever Right Cantilever		DL 19 DL DL	9.00 #/ft #/ft #/ft	LL LL LL	100.00 #/ft #/ft #/ft		
oint Loads			art and second section in the second				
Dead Load Live Load distance	12.5 lbs 3.000 ft	lbs 12.5 lbs 5.500 ft		lbs .5 lbs 00 ft 0.000	lbs	lbs ft 0.000	lbs lbs lb lbs lb ft 0.000 ft
Summary						E	Beam Design OK
		n = 1.500in x Dep		Ends are Pin-Pin			
Max Stress Maximum M	Moment	0	.541 : 1 0.6 k-ft 1.0 k-ft	Ma	ximum Shear * Allowable	1.5	0.5 k 1.4 k
Max. Positive M	Moment	0.56 k-ft 0.00 k-ft	at at	3.000 ft 0.000 ft	Shear:	@ Left @ Right	0.36 k 0.37 k
Max @ Left Su Max @ Right S	pport	0.00 k-ft 0.00 k-ft			Camber:	@ Left @ Center	0.000 in 0.029 in 0.000 in
Max. M allow		1.03		Reactions		@ Right	22.7.7
	4.43 psi 5.16 psi	fv Fv	58.26 psi 168.75 psi	Left DL Right DL	0.06 k 0.06 k	Max Max	0.36 k 0.39 k
eflections							
Contor Span	AT 18 9 30	Dead Load	Total Lo	and Left Ca	ntilever	Dead Load	Total Load

Deflections	i					
	tion ocation	Dead Load -0.019 in 3.000 ft	Total Load -0.123 in 3.000 ft	Left Cantilever Deflection Length/Defl	<u>Dead Load</u> 0.000 in 0.0	Total Load 0.000 in 0.0
	ength/Defl (using 1.5 * D	3,783.8 .L. Defl)	583.74	Right Cantilever Deflection	0.000 in	0.000 in
@ Ce @ Le' @ Rig	ft	0.029 in 0.000 in 0.000 in		Length/Defl	0.0	0.0

Title: Dsgnr: Description:

Date: 12:05PM,

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

solar decathlon drury university.ecw.Calculat

Description

Floor Framing Member-19' Long (Support @ 6') (EQ Incl.)

ress Calcs		No. 10 10 10 7/11	W. P. Land		of the latest terminal	NI-201617 - 31/8-31	Secretary and the second second second	entries
Bending Analysis Ck 29.01 Cf 1.30		0.000 ft 0.000 <u>Max Moment</u>	Sxx Cl	7.563 in3 364.292 Sxx Req'd	Area	8.250 in2		
@ Center@ Left Support@ Right Support		0.56 k-ft 0.00 k-ft 0.00 k-ft		4.09 in3 0.00 in3 0.00 in3		1,635.16 psi 1,635.16 psi 1,635.16 psi		
Shear Analysis Design Shear Area Required Fv: Allowable		@ Left Support 0.47 k 2.756 in2 168.75 psi		@ Right Support 0.48 k 2.848 in2 168.75 psi				
Bearing @ Suppor Max. Left Reactio Max. Right React	n	0.36 k 0.39 k		Bearing Length Req' Bearing Length Req'		0.571 in 0.607 in		
uery Values							Marie San Barahan Allian	- North
M, V, & D @ Sp	ecified L	ocations		Moment		Shear	Deflection	
@ Center Spa @ Right Cant. @ Left Cant. L	Location	n = 0.00 ft = 0.00 ft		0.00 k-ft 0.00 k-ft 0.00 k-ft		0.36 k 0.00 k 0.00 k	0.0000 in 0.0000 in 0.0000 in	

Title : Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 1 solar decathlon drury university.ecw.Calculat

Description

Wall Framing Member-8' Long (Wind)

General Information	Co	ode Ref: 1997/2001 NDS, 2000/	2003 IBC, 2003 NFPA 5000	D. Base allowables are user defined
Beam Width Beam Depth	1.500 in 5.500 in	Center Span Left Cantilever Right Cantilever	8.00 ftLu ftLu ftLu	0.00 ft 0.00 ft 0.00 ft
Member Type Load Dur. Factor Beam End Fixity	Sawn 1.600 Pin-Pin	Spruce - Pine - Fir, N Fb Base Allow Fv Allow Fc Allow E	0. 17N0, 2 875.0 psi 135.0 psi 425.0 psi 1,400.0 ksi	Repetitive Member
Full Length Uniform	Loads			
Center Left Cantilever Right Cantilever	DL DL DL	#/ft LL #/ft LL #/ft LL	26.00 #/ft #/ft #/ft	

Summ	ary							Beam Design OK
Span	= 8.00ft, Beam Width =	1.500in x	Dep	th = 5.5in, E	Ends are Pin-Pin			
Max	Stress Ratio		0.	158 : 1	-			0.4 %
Max	imum Moment			0.2 k-ft	N	aximum Shear *	1.5	0.1 k
IVIGA	Allowable			1.3 k-ft		Allowable		1.8 k
Max. P	Positive Moment	0.21	k-ft	at	4.000 ft	Shear:	@ Left	0.10 k
Max. N	legative Moment	0.00	k-ft	at	0.000 ft		@ Right	0.10 k
Max @	Left Support	0.00	k-ft			Camber:	@ Left	0.000 in
	Right Support	0.00					@ Center	0.000 in
_							@ Right	0.000 in
Max. N	Λ allow	1.32			Reactions		0.0	
fb	330.05 psi	fv		16.79 psi	Left DL	0.00 k	Max	0.10 k
Fb	2,093.00 psi	Fv		216.00 psi	Right DL	0.00 k	Max	0.10 k

ections	DATE OF THE PERSONS NAMED IN	a proper a de Mariagla disc	L 6 Contillation	Dondlood	Total Load
Center Span	Dead Load	Total Load	Left Cantilever	Dead Load	
Deflection	0.000 in	-0.082 in	Deflection	0.000 in	0.000 in
Location	8.000 ft	4.000 ft	Length/Defl	0.0	0.0
Length/Defl	0.0	1,166.52	Right Cantilever		
Camber (using 1.5 * D	D.L. Defl)		Deflection	0.000 in	0.000 in
@ Center	0.000 in		Length/Defl	0.0	0.0
@ Left	0.000 in				
@ Right	0.000 in				

		version of the section of the section of	NECTOR A	NAME OF TAXABLE PARTY.
	0	7 500 :- 2	^	8.250 in2
	CI	104.000	Area	6.230 III2
 Max Moment		Sxx Req'd	E	Allowable fb
0.21 k-ft		1.19 in3		2,093.00 psi
0.00 k-ft		0.00 in3		2,093.00 psi
0.00 k-ft		0.00 in3		2,093.00 psi
@ Left Support	0	Right Support		
0.14 k		0.14 k		
0.641 in2		0.641 in2		
216.00 psi		216.00 psi		
0.10 k				0.163 in
0.10 k		Bearing Length Red	ı'd	0.163 in
Le Rb	Rb 0.000 Max Moment 0.21 k-ft 0.00 k-ft 0.00 k-ft 0.01 k-ft 0.14 k 0.641 in2 216.00 psi 0.10 k	Rb 0.000 CI Max Moment 0.21 k-ft 0.00 k-ft 0.00 k-ft 0.00 k-ft 0.14 k 0.641 in2 216.00 psi 0.10 k	Rb 0.000 Cl 104.000 Max Moment Sxx Req'd 0.21 k-ft 1.19 in3 0.00 k-ft 0.00 in3 0.00 k-ft 0.00 in3 @ Left Support @ Right Support 0.14 k 0.14 k 0.641 in2 0.641 in2 216.00 psi 216.00 psi 0.10 k Bearing Length Req	Rb 0.000 CI 104.000 Max Moment Sxx Req'd A

Title : Dsgnr: Description : Job # Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 solar decathion drury university ecw Calculat

Description

Wall Framing Member-8' Long (Wind)

Query	Values
-------	---------------

M, V, & D @ Specified Locations	ENGINEE STATE OF THE RESIDENCE	Moment	Shear	Deflection
@ Center Span Location =	0.00 ft	0.00 k-ft	0.10 k	0.0000 in
@ Right Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in
@ Left Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in

Title : Dsgnr: Description :

Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0 (c)1983-2003 ENERCALC En	, 1-Dec-2003 gineering Softwa	re	Gene	ral Timb	er Bean	n		solar decath	lon drury unive	Page rsity.ecw.Calcu
Description	Wall Fran	ning Member	-8' Long (Earthquak	e)					
General Informati	ion	Code	e Ref: 1997	2001 NDS, 2	000/2003 IE	BC, 2003 N	FPA 5000	. Base allo	owables are	user defin
Section Name Beam Width Beam Depth Member Type	2x6	1.500 in 5.500 in Sawn	Left Rigi Spr Fb I	ter Span Cantilever nt Cantilever uce - Pine - F Base Allow		ft . ft . . 2 875.0 psi	Lu Lu Lu		0.00 ft 0.00 ft 0.00 ft	
Load Dur. Facto Beam End Fixit		1.600 Pin-Pin		Allow		135.0 psi 425.0 psi 400.0 ksi		Repet	itive Memb	oer
Point Loads							en en en en		NAME OF TAXABLE PARTY.	
Dead Load Live Load distance	lbs 28.5 lbs 2.000 ft	lbs 28.5 lbs 4.000 ft		lbs .5 lbs 00 ft	lbs lbs 0.000 ft	0.0	lbs lbs 00 ft	0.000	lbs lbs) ft	lbs lbs 0.000 ft
Summary								E	Beam De	sign OK
Span= 8.00ft,	Beam Width	= 1.500in x Dep		Ends are Pin-	Pin					
Max Stress	Ratio	C	0.086 : 1		A.A	Obc-	- * 1 E		0.1 k	
Maximum M Allowa			0.1 k-ft 1.3 k-ft			ım Shea owable	7.5		1.8 k	
Max. Positive Max. Negative		0.11 k-ft 0.00 k-ft		4.000 ft 8.000 ft		Shear:		Left Right)4 k)4 k
Max @ Left Su Max @ Right S	pport	0.00 k-ft 0.00 k-ft				Camber	@	Left Center Right	0.00 0.00 0.00	00 in
Max. M allow		1.32		Reacti	ons		@ 1	Night	0.00	70
100	0.89 psi 3.00 psi	fv Fv	7.77 psi 216.00 psi	Left Righ		0.00 k 0.00 k	Ma: Ma:)4 k)4 k

Fb	2,093.00 psi	Fv	216.00 psi	Right DL	0.00 K	Max	0.04 K
Deflection	ıs						
Defle	Center Span Dead Load Deflection 0.000 in Location 8.000 ft Length/Defi 0.0 Camber (using 1.5 * D.L. Defl) 0.000 in		Total Load -0.043 in 4.000 ft 2.240.41	Left Cantilever Deflection Length/Defl		<u>Dead Load</u> 0.000 in 0.0	Total Load 0.000 in 0.0
Camb			2,240.41	Defle	Cantilever Election Length/Defl	0.000 in 0.0	0.000 in 0.0
@ L @ F	∟eft Right	0.000 in 0.000 in					

ess Caics	5				THE RESERVE AND THE PARTY OF TH		HALLOW THE REAL PROPERTY OF THE PARTY OF THE	
Bending A	Analysis	Charles and a	NAME OF TAXABLE PARTY OF TAXABLE PARTY.					
Ck	25.646	Le	0.000 ft 0.000	Sxx Cl	7.563 in3 42.750	Area	8.250 in2	
Cf	1.300	Rb	Max Moment	Ci	Sxx Reg'd	All	owable fb	
@ Cent	er		0.11 k-ft		0.65 in3		2,093.00 psi	
@ Left Support			0.00 k-ft	0.00 in3			2,093.00 psi	
@ Right Support			0.00 k-ft		0.00 in3		2,093.00 psi	
Shear Ana	alysis		@ Left Support	0	Right Support			
Design S			0.06 k		0.06 k			
Area Re			0.297 in2		0.297 in2			
Fv: Allov			216.00 psi		216.00 psi			
Bearing @	Supports							
	ft Reaction		0.04 k		Bearing Length Red	q'd	0.067 in	
Max. Rig	ht Reaction		0.04 k		Bearing Length Red	d,q	0.067 in	

2-24

Title : Dsgnr: Description : Job # Date: 12:05PM, 9 OCT 14

Scope:

Rev: 580004 User: KW-0606622, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 solar decathlon drury university.ecw.Calculat

Description

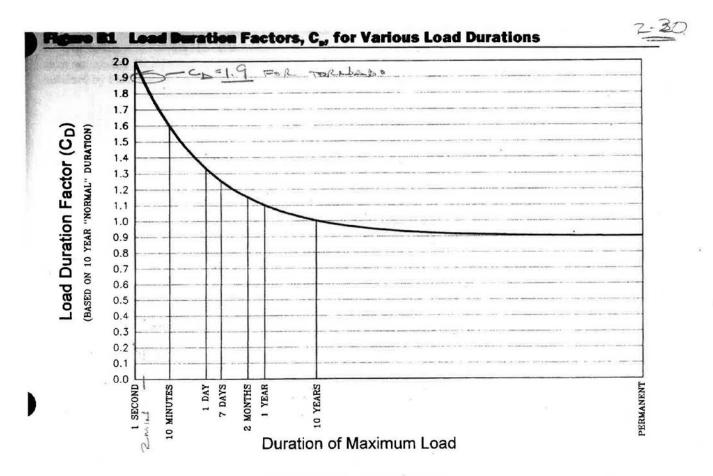
Wall Framing Member-8' Long (Earthquake)

-			Va	
	пα	n,	WS	 20

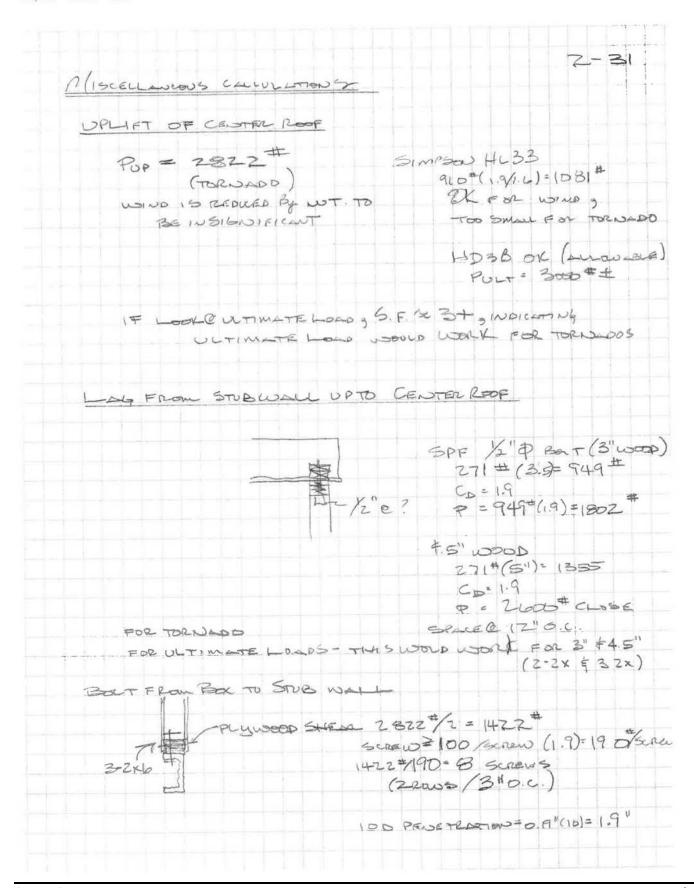
M, V, & D @ Specified Locations		Moment	Shear	Deflection
@ Center Span Location =	0.00 ft	0.00 k-ft	0.04 k	0.0000 in
@ Right Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in
@ Left Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in

MISIELLAROS CALCULATIONS	2-25
CONSECTED OF CENTER FLA	
12" RX 12" X9.5"	
P=119 P= (4')(4')=	
	M= 1904*(6")= 11-42 KIN F= 11.42 KIN = 22.8 KSI
7	$M = 1704^{+}(6^{+}) = 11.42 \times 10$ $F_{0} = 11.42 \times 10^{+} = 22.8 \times 11$ $(12^{+}) \times 5^{+}) \times 0 \times 10^{+} = 23.8 \times 11$ $F_{0} \approx 0.4(36 \times 1) = 23.8 \times 11$
F9"X	I = 12"(025")3 = 0.42144
	B = 19 = (61) = = 0.51" 3(29 0004 51 X 0.4-21NH)
	3(29000451)(04ZINH) (45
1/2 Labours wind wood	OF GOODFOL
5000 PRG = 2 5000 N TO GRAN	= 480 # 8 - 1/2 " \$ BOLTS
Shear I to GRA	N= 290 @ ANDLES TO PANEL
	Spacing EDGE Z"
	SPORTS 2" OF
MISICULADEOUS	
12 BOTS FLOOR TOCH	ANDEL @ BOXES (LOWER FLE LL)
SHEER 11 TO 6R	2N=720#-770#
SHEAR I TO GO	WN = 340-430 + + + = 085F = Leg PSF (5.5') 11) = 380 #
	OK
9' HELDER	(9.51) + 12838(41) = 340 eve
u=2015 (5.5)+2015	(9.5) - = 300 PLF
M. CO. BKET	7×19.1 fo= 6.8612)/12.3= 6.6451 of

TORNADO LOMOS	2-26
FRANING MEMBERS	
8 = 0.00256 (250MPW) = 160PSF	
Ferri 1100 PSF (2.0) = 320 PSF	
Promi 1100 PESE (1.5) = 245 PSF	
USALL (2x100/2"0,c.)	
w = 240PSF (1') = 2ADPLF	
M = Z40AF(81)7/8 = 19ZD#FT	
TXLO US/ 98"- 3" PLY BOTH SIDES (ADHERED	\$ Seews)
I = I + Ad2 = 20.80, 14 + 0.625" (12") (5.5	1/2+98/2) (2)
S_ = MC = 1920# FT (121/1) (5.5/2+0.625")	
-5_ = 483 PS1	
FOR SPENE PINE FIR	
To = 875751 Cac- = 875851(1.9)(1.15) 1917	- ps1 or
V = 240 PLR (4) = 9100 #	
= 3/2 1/4 = 3/2 (9100#) (1.5")(5.5	") WOOD ONLY
5v = M5P51	/
Fv = 135851 Cd = 135851 (1.9) = 25	20 PSI AL
= = 5(240(LF)(B))4(12/X)3 = E	0.10"= 1/978
384(1400 000/31)(16/107)	16'0.C.OK 100
1 6400	160,000


Z-27
CORNEDO LOSOS (CONT. D)
FRAMING MEMBRS (CONTID)
Rest (8'-11') @ 12" o.c.
W> = 320PSF(1') = 320PLF WOT = 19PLF
M = (320-19) (11) 7/8 = 45=3#FT
Zx10 ms/PLy LIKE WALL
z = 11124
F_ = 4553#F+ (121/1) (5.51/2 +61025") = 1145PS1
F2 = 1912 PSI OK
y = (320-19)(5,5") = (1055)#
5v = (655 # (72)(1.5)(5.5) = 301 PS1
Fuzzz = 250951
FUPLY = 63 4/10 PAISEL (12") = 750#/
V = 250851 (1.5") (5.5") +756# = 2868# OF WY
$T = \frac{5(320-19)(11)^{4}(121/)^{3}}{384(14000085)(161104)} = 0.44" = \frac{1}{3000}0K$
SHEAR FLOW
8 = VQ = (1055# (12"X0.625")(55½+0.1292) = Z3L#/12
SREWS@ 3"0.C. V = 100 # (1.9) = 190#/screw
GIVE MORE THANK WOOD, SO GLUE THAIL OK WOOD + PLY TAXES SHEAR, SOCK.

7-23
TORNOO LONDS (CONT'D)
FRAMING MEMBERS (CONTID)
ROF (19') e12'0.c.
$M = (320-23)(19)^2/8 = 13402 + FT$
2XTZ W/PLY EACH SIDE
I = 17814 + 0.625" (12") (11.251/2+6.6251/2) (2)=707N4
5= 13402 *FT (121/1) (11.251/2+0.6251) = 1422851
F6 - 875851 COCF = 875851(19X1.15) = 1912851 OK
V = (320-23) (191/2) = 2822#
FV = 32 (28234)/(1.5×11.25)= 251 PS1
FV = 135751(1.9) = 250151 OX FOR WOODALY
2 = 5(320-23×19)4(12)3 = 0.90" = 1/259 OK 384(1400000)(707)
SHEAR FLOW
0 = VQ = 2822 (0 625"(12")(11.251/2+6.6251/2))=178 /10 TOTINT DEED SURENS + GLOE (6LUE MORE THAN WOOD \$ 10000
DEED SLIENS & GLOE (GLUE MORE THAN WOOD \$ WOOD
OK w/ Sisten)


					2-29
TORNSLOD L	oups (ca	(4.14			
PLyw 201	SHELTHI	کر			
					× K
PRESSU	re/suctions	(3 SPEN 9	MOTION	/ L.	
	" span 98	" P.u		7	
135 DIV	Re			3	
W =	120M CD = 1	20(62514	(1-9)) 13 ,	
	1-2-	(12")2			, k
	500 01-	Di d			
w =	989 PSF	re on or			
Spean					
			(6-10/		
io =	20 Vs/Ls	= 20 /20	16 TET)(.	9/12 = 820	DISF
DEFLE	44				
	1743ET	W = 1742	DETA =	1743/247,0	D /FT //2
	1743EI		4	12-4	
	USE 4 : 424	Ð			
			N 57	F: POF	2 520 55
- حیا	1040 PSF	2		Would a	BE OK ME
arrac H	MENT				
USE	Screws				
	2850 42	. D			
FRO	m 1005 2005	FOR SAF	(5.4=0	40)	
	7				
v==	63 (+6)	320	PSF/86	%= 3.7"	SCREWS Q
Ba	69 (#7)			"	12 D.C.
\\\> €\\\	75 (#8)	2706	2F/86/14	2 = 1.86 5	0" D.C.
V3 =	86 (#10)	2101	PS=/86*/N	3 = 1-24	" Surcus
03.	00	2.0	-1/		40.0

AMERICAN FOREST & PAPER ASSOCIATION

[Status] Published 8/17/2015 U.S. D.O.E. Solar Decathlon 20115 Page - 75

2.32

WINDFORCES ON FEHUNG

TORUMO WINDS WILL CONTROL

PWALL = 24085F

FROUD SUPPORTE Z'O.C.

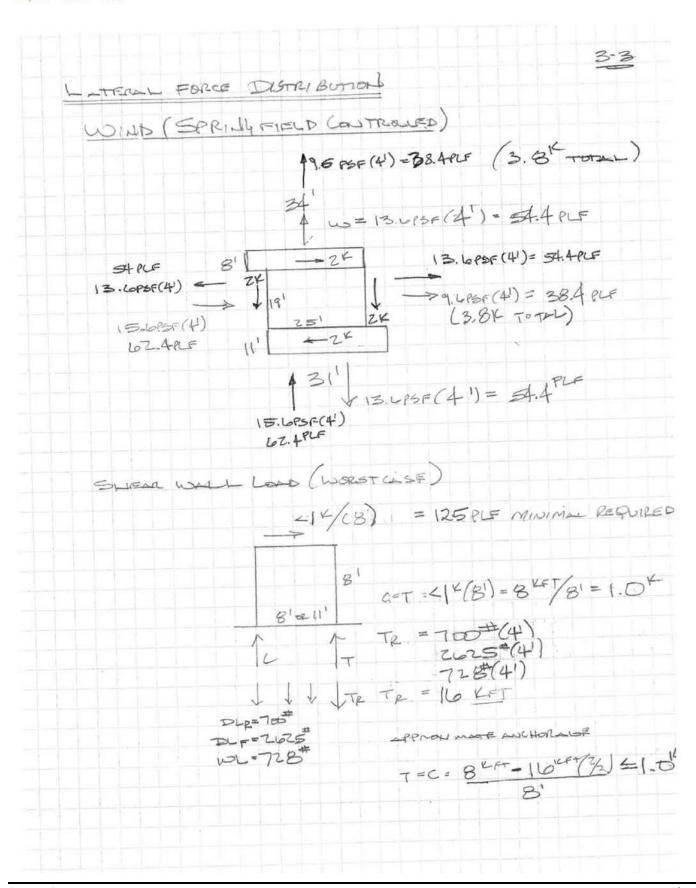
FESCING SUPPOSET & 40.C.

Standard wind (P\$ 2000 , 4/4 ok @ 4'X4' Specials)

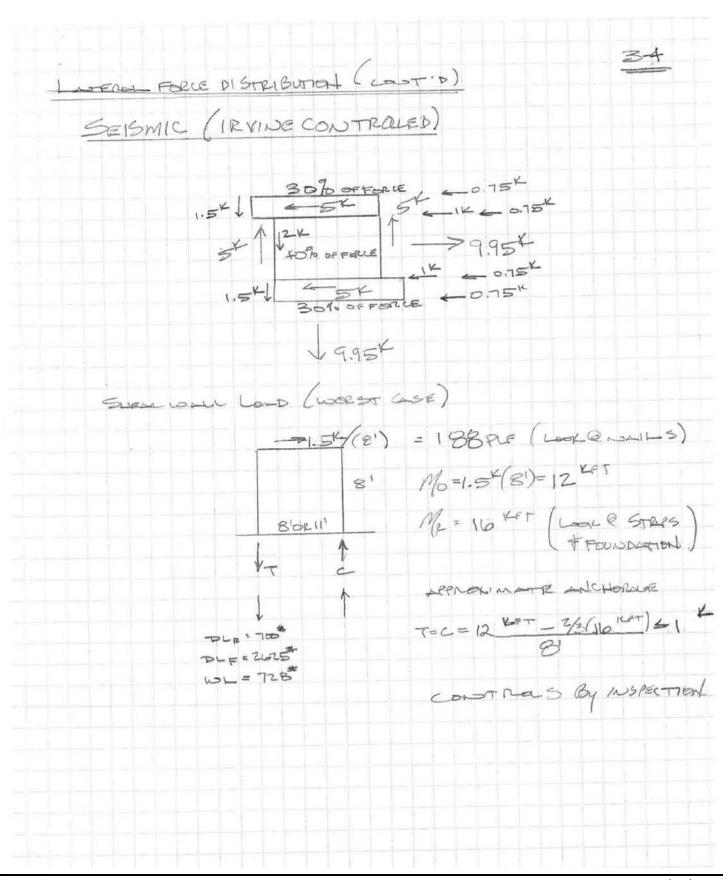
3-1

SECTION 3 LATERAL LOAD ANALYSIS

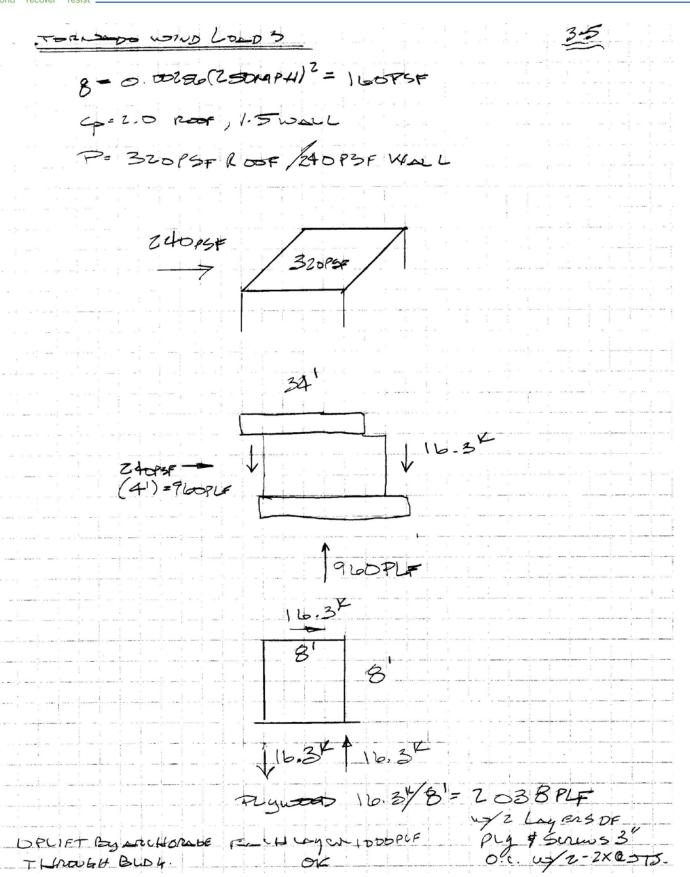
U.S. D.O.E. Solar Decathlon 20115


Structural Calculations Solar Decathlon 2015 Team Drury February 12, 2015 3-2

LATERAL LOAD ANALYSIS INTRODUCTION


The calculations in this section check the overall stability of the structure due to wind and earthquake loads. The members were analyzed for:

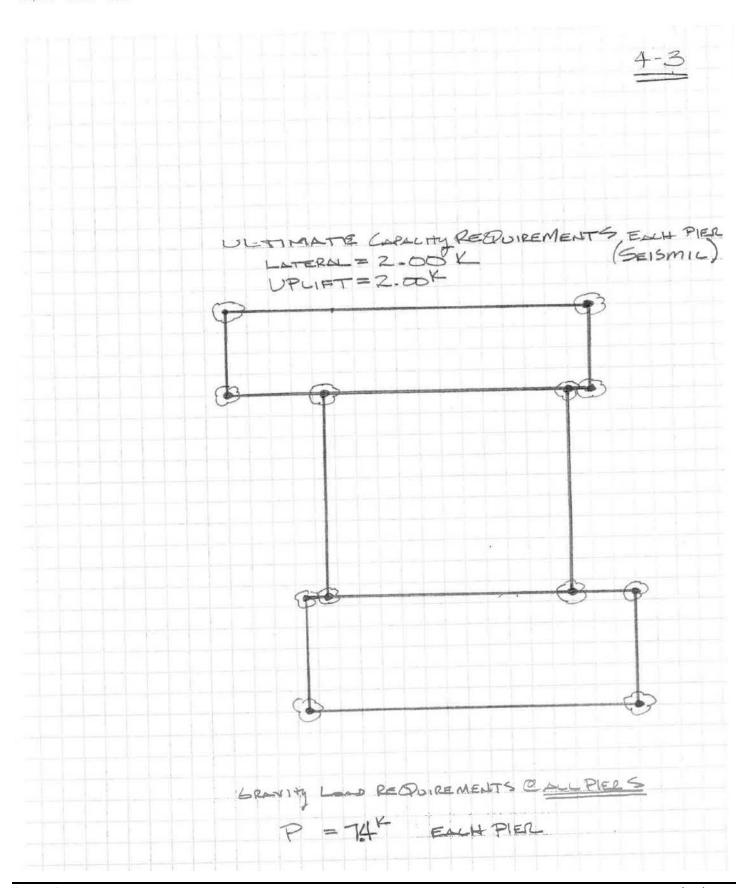
- Wind Load (Springfield/Neosho MO wind loading controlled)
- Earthquake Load (Irvine, California earthquake loading controlled)
- Tornado Wind Load (Experimentally Based Analysis)



4-1

SECTION 4 FOUNDATION ANALYSIS

U.S. D.O.E. Solar Decathlon 20115

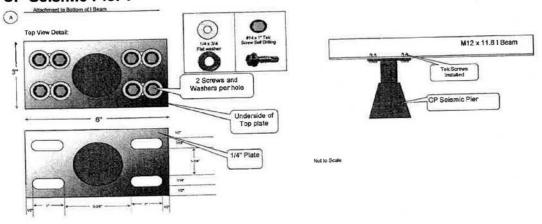

Structural Calculations Solar Decathlon 2015 Team Drury February 12, 2015 4-2

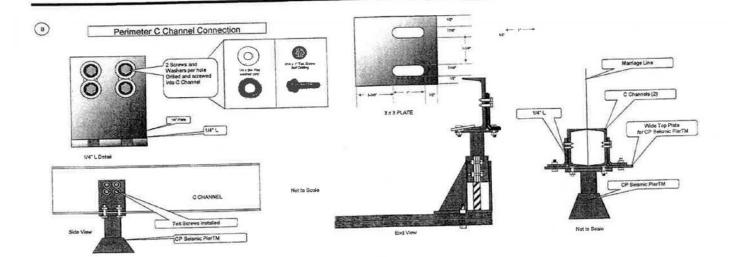
FOUNDATION ANALYSIS INTRODUCTION

The calculations in this section check the foundation capacity and overall stability due to the applied loads. Additional information about the seismic foundation supports for the Irvine, CA location are also included.

[Status]
U.S. D.O.E. Solar Decathlon 20115

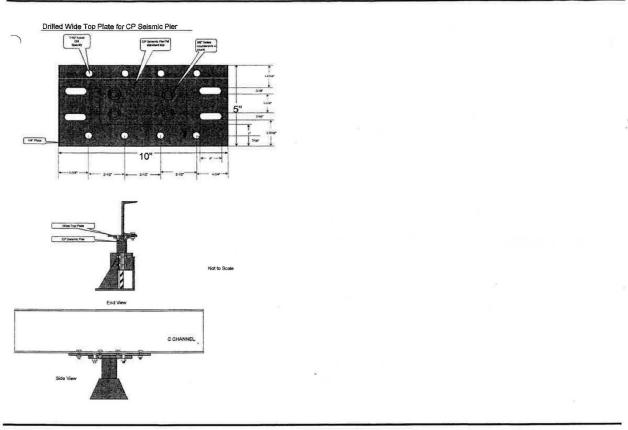
						4-4
P	IER > - 3	5 SF FI	_ (spp.on	KIMETE)		
		-6-700	(2+2395/2	V(35 5F)	700#	
	The second	= 1906	F (35'5F)		· 665#	
	Race P	= 19 00	F (35\$)		: Ld05#	TL=53837
	FLIC BC	= (anen	e/2+100856/2	(35 SF)	= 2625#	
		= 13 PS	F(B'X7'ma	*)	= 728#	(1.65 SOF
	(3500					
		= = -	e (spenoxin	INTE)		
77					13-	
	ROOF DL	= (17 00	F/Z+ 23058/	2)(50PSF)	2 1000	
	0-00	= 1985	F(50PSF)		= 150 #	TL= 7378#
			5F (50P5F)		= 950#	TL= 12/0
	FLOORLI		5F/2+100P5F/	21(50PSF)	- 2150	(1.92'50 Pa
	Wall	= 13P	SF (8') (7'V	MAX)	=728#	0.12 2012
_						

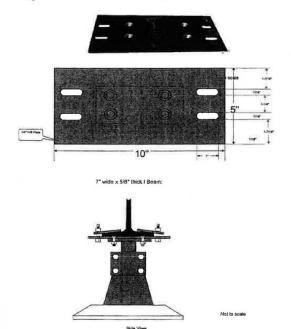




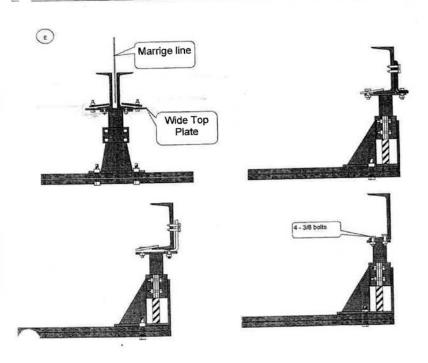
Central Piers Inc. 559-268-0828

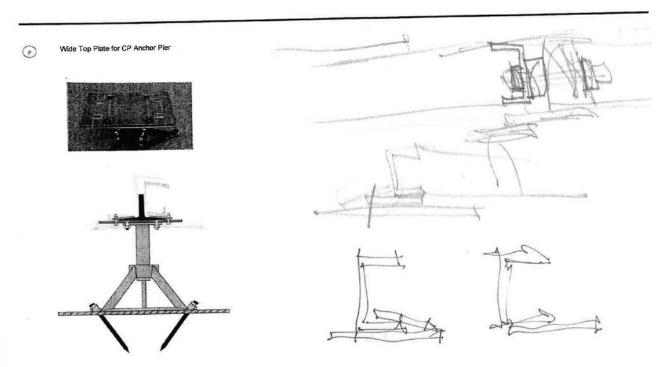
tional Alternate Connections for CP Seismic PierTM and CP Anchor Pier TM

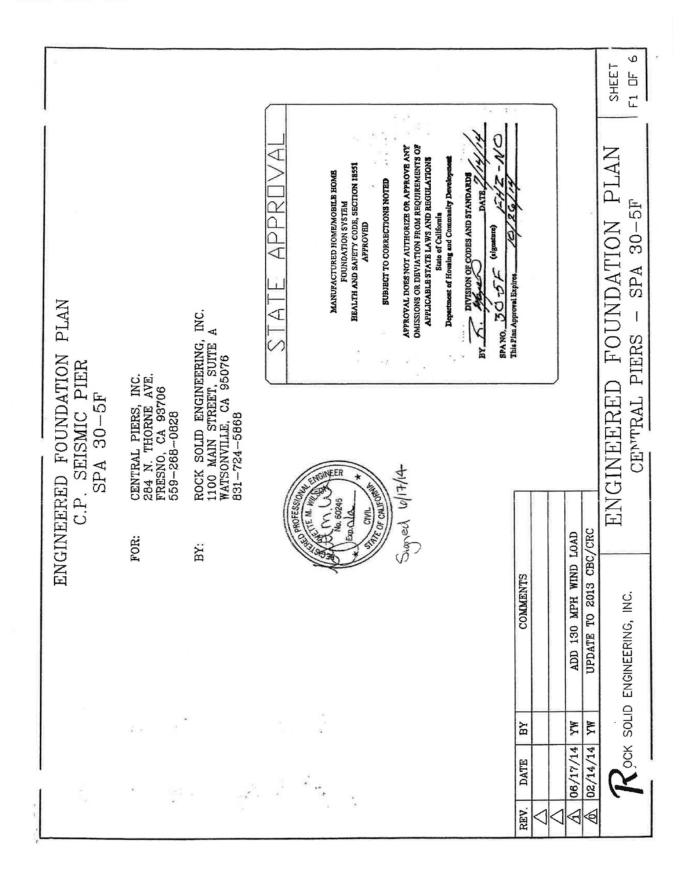

CP Seismic Pier:



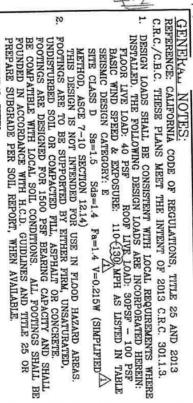
Standard Wide Top Plate for CP Seismic Pier







Other Options for C Channel



[Status]
U.S. D.O.E. Solar Decathlon 20115

STRUCTURAL STEEL:

a. SHALL CONFORM TO ASTM A36 Fy = 36 KSI MINIMUM.

b. SHALL BE FABRICATED ACCORDING TO AISC SPECIFICATIONS.

c. SHALL BE WELDED ACCORDING TO AWS SPECIFICATIONS:

i. ELECTRODES: E70

ii. PLATES: STANDARD ASTM A307

iii. BOLTS: STANDARD ASTM A307

iv. THREADED ROD: COLD DRAWN LOW CARBON WELDABLE iv. THREADED ROD: COLD DRAWN LOW CARBON WELDABLE

ARE TO

THE C.P. SEISMIC PIER SHALL BE LISTED & LABELED BY BSK ASSOCIATES FOR THESE ULTIMATE LOADS:
7" THRU 18 INCH PIERS: 3203 LBS. (STRONG DIR), 2273 (WEAK DIR), 18,000 VERTICAL ALL METAL COMPONENTS INCLUDING NAILS & SCREWS ETC. BE PROTECTIVE COATED.

THIS FOUNDATION SYSTEM IS DESIGNED TO BE CONSTRUCTED ON A FAIRLY LEVEL SITE WITH NO EXISTING SOIL PROBLEMS. SEE NOTE 2 AND TITLE 25, SECTION 1334(b). THIS FOUNDATION SYSTEM IS FOR PLACING MANUFACTURED HOMES CONSTRUCTED WITH LONGITUDINAL OR CROSS JOISTS.

N

& FOOTINGS MUST BE INSTALLED PER THE HOME MANUFACTURER'S INSTALLATION MANUAL. WITHOUT MANUAL, SPACING OF STANDARD PIERS TO BE DETERMINED BY TITLE 26, SECTION 1336.5. THE SIZE, TYPE & LOCATION OF STANDARD VERTICAL SUPPORT PIERS

FOUNDATION PAD NOTES:

- TWO FOUNDATION PADS ARE AVAILABLE FOR USE WITH THIS THE CUSTOMER MAY CHOOSE ONE OF THE PADS FOR THEIR SEE SHEET F6, FOUNDATION PADS.
- FOUNDATION PADS SHALL BE PLACED ON FIRM, LEVEL UNDISTURBED SOIL (SEE CEN. NOTE 2)

Ŋ

ç,

THE FOUNDATION PADS SHALL BE ORIENTED AS SHOWN VIEW DRAWING WITH THE BOLT HOLES PERPENDICULAR BEAM. SEE PLAN VIEWS, SHEETS F3 AND F4. ON THE PLAN

OCK SOLID ENGINEERING,

Z C

CONCRETE FOUNDATION PADS 2500 PSI AT 28 DAYS AS TESTED AND MANUFACTURED BY STARLITE

PRESSURE TREATED FOUNDATION PAD 3/4 INCH A.P.A. 48/24 EXTERIOR P.S.I.-83 CC. PLUGGED. NER-QA397,PRP-108.

ATTACHMENT TO EXISTING CONCRETE SLAB
THE C.P. SEISMIC PIER MAY BE ATTACHED TO AN EXISTING
CONCRETE SLAB OR CONCRETE FOOTING ACCORDING TO THE E FOLLOWING

ATTACH WITH TWO 5/8" DIAM. REDHEAD WEDGE ANCHORS MINIMUM EMBEDMENT = 2.5"

MINIMUM CONCRETE THICKNESS MINIMUM EDGE DISTANCE = 2"

COACH SIZE NOTES

UNIESS APPROVED BY ROCK SOLID SHOULD NOT EXCEED:

A. SINGLE WIDES: 4:12
B. DOUBLE AND TRIPLE WIDES:
AS LISTED IN TABLE ROCK SOLID ENGINEERING, INC., THE ROOF PITCH

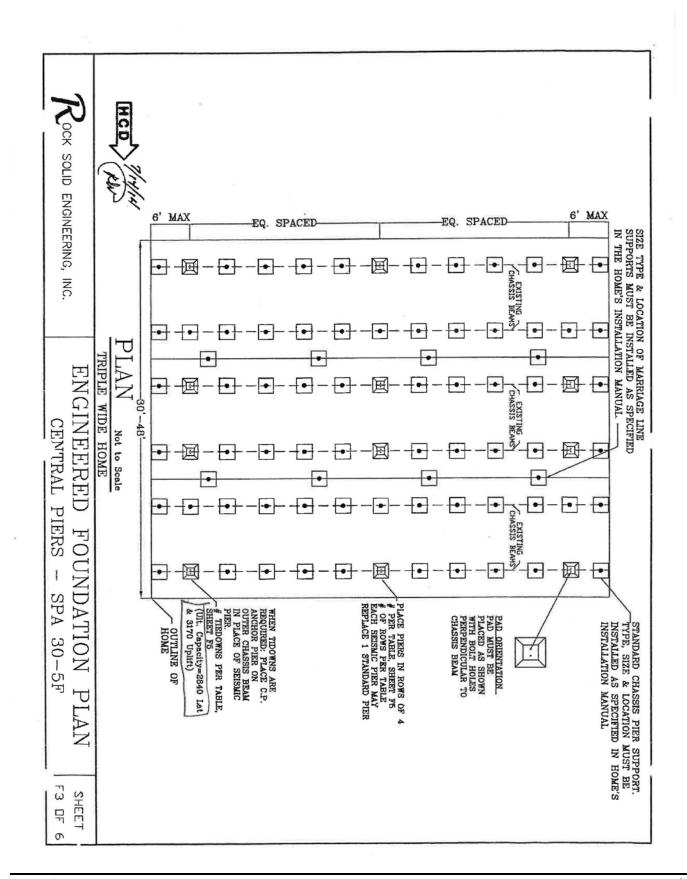
3:12 or 4:12

FOR ANY HOME SIZE OTHER THAN AS SHOWN ON REFERENCED IN THE TABLE, THE LAYOUT SHALL I APPROVED BY ROCK SOLID ENGINEERING, INC. BE REVIEWED &

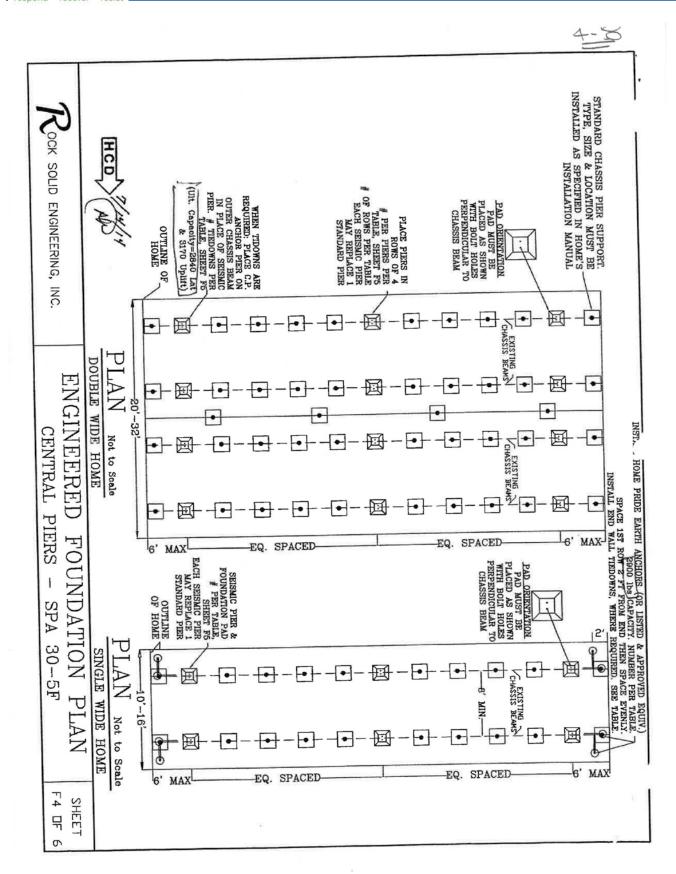
INSPECTION REQUIREMENTS:

- -THE DESIGN OF THIS SYSTEM IS BASED ON STANDARD MANUFACTURED HOMES AS BUILT BY THE MANUFACTURER. SITE BUILT ADDITIONS SUCH AS GARAGES AND SECONDARY ROOFS HAVE NOT BEEN INCLUDED IN THIS
- ALL DIMENSIONS INCLUDED ON THIS PLAN, INCLUDING COACH SIZE, ROUBERT AND PIER HEIGHT, SHOULD BE FIELD VERIFIED BY THE LOCAL BUILDING OFFICIAL. ANY DISCREPENCIES SHOULD BE IMMEDIATELY EROUGHT TO THE ENGINEER'S ATTENTION.
- THE BUILDING PAD SHOULD BE INSPECTED TO ENSURE THAT PROPER SOIL CONDITIONS AND DRAINAGE PATTERNS HAVE BEEN ESTABLISHED ACCORDANCE WITH TITLE 25 & THE HOME INSTALLATION MANUAL.

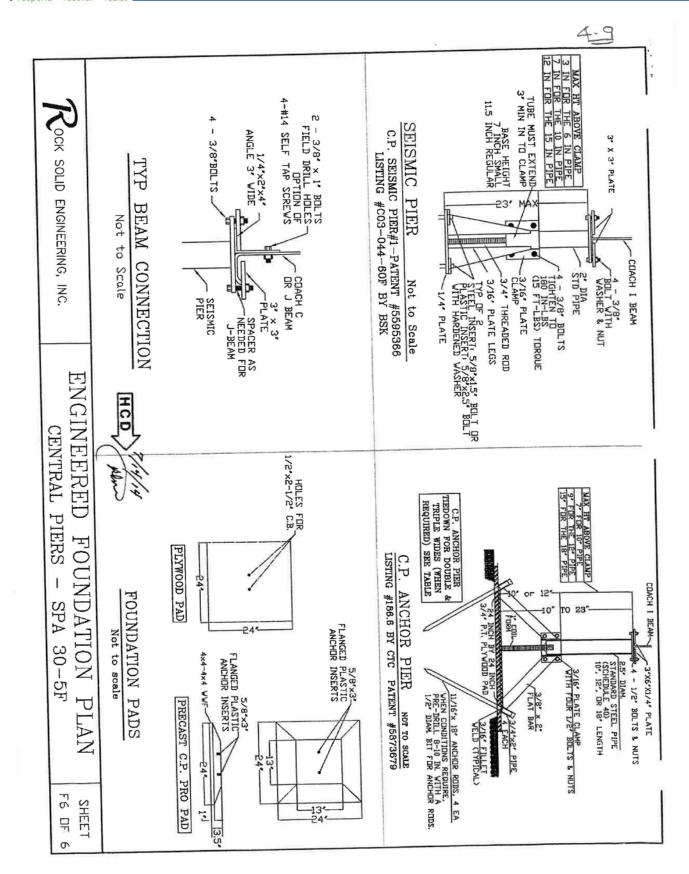
ENGINEERE CENTRAL JNDATI τ


> 되 무

σ


[Status] U.S. D.O.E. Solar Decathlon 20115 Published 8/17/2015

Page - 91



	EASU	HE T	OME /	OME	OR E	ABLE O US ESIG	_	_	TRI	IPLI	es v	TDE	s	Т	_	_		DO	UBL	E W	IDES	3	_	_	T	SINC	SLES		П	
\mathcal{R}_{ock}	THIS PLAN MAY BE USED WITH C.P. SEISMIC PIERS UP MEASURED FROM THE BASE PLATE TO THE TOP PLATE.	THE TIEDOWNS SHALL BE LISTED & INSTALLATION INSTRUCTIONS SHALL BE ON	HOME SIZES REFER	*FOR SINGLE WIDES, HOME IS INDICATED	FOR EXAMPLE, FOR A 24'x70' HOME WITH A 3:12 ROOF PITCH, DESIGN SNOW LOAD OF 30 PSF & 110 MPH, EXPOSURE PLACED IN 3 ROWS, WITH O C.P. ANCHOR PIER TIEDOWNS. LAYOUT SHOWN IN DOUBLE WIDE PLAN VIEW, SHEET F4	TABLE NOTES TO USE TABLE, FIND DESIGN WIND LOAD. PIERS AND TIEDOWN				4:10							4.12					3:12			Ī	1	4.19	ROOF PITCH		*
SOLID EN	USED WITH	ALL BE LISTE	TOT		8 A 24'x70' 8. WITH 0 C.	ND HOME SIZE (SII)). READ TOTAL NU N SPECIFICATIONS.		40.0 -40	40 5' 40'			90'-43'				30 5'-39'		20'-30'			28.5'-32'			20'-28'	1	70-70	10,18,	HTCIW	HOME SIZE	MAX. WIND LOAD(MPH,EXP
${\cal R}$ ock solid engineering, inc.	ATE TO THE	LIATSINI & DE	VOMINAL SIZES THAT ARE COMMONLY MANUFACTURED. THAT REQUIRED MORE PIERS.	WHERE TIEDOWN COLUMN IS SPLIT AS SHOWN, INSTAIL & EARTH ANCHOR TIEDOWNS AT EACH ENDWALL INSTAIL BY *. 4 —— TOTAL # OF ENDWALL TIEDOWNS	HOME WITH A	MBE	68.5'78'	56.5'-68'	48.5'-56'	UP TO 48'	66.5'-78'	60.5'-66'	48.5'-60'	UP TO 48'	88 5' 78'	UP TO 58'	66.5'-78'	60,5'-66'	UP TO 60'	68.5'-78'	56.5'-68'	UP TO 56'	66.5'-78'	56.5'-66'	TID TO SE'	80 5'-7B'	48 5'-AD'	LENGTH		MAX. WIND LOAD(MPH,EXP)
, INC	C PIERS	ATION	T ARE	N SI	1 3:12 ER TII	R OF C.P.	16	12	12	12	16	120	12	B 1	3	D 00	12	8	8	12	8	В	12	В	, a	D (4 0	PIERS	-	
_		INSTRUCTIO	COMMONLY ERS.	SPLIT AS SHOWN, INSTALL & EAI -TOTAL # OF SIDEWALL TIEDOWNS TOTAL # OF ENDWALL TIEDOWNS	ROOF PITC	OR TRIPL	4 ROWS	3 ROWS	3 ROWS	3 ROWS	4 ROWS	3 Rows		2 ROWS	SWOG E	2 ROWS	3 ROWS	2 ROWS	2 ROWS	3 ROWS	2 ROWS		3 ROWS	2 ROWS	S BOWS	4 ROWS	S ROWS	ROWS	# OF	110B & 110C
<u> </u>	HE 18	HS SNC	MANU	HOWN, SIDEWA OF EN	H, DESI	E), THE PIERS,	0	0	0	٥	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	• •	4	4	S	F	8
NG	INCH P	ALL BE	ACTUR	INSTAL LL TIED	SHOWN SNOR	# OF 1	12 4	8 5	L	_	100	i		00 6		120	12 3	12 3	12 3		~	_i	j	1	0 4		4 0	PIERS	# OF	
ENGINEERED	TO THE 18 INCH PIER SIZE.	SITE	¥	L 2 EARTH OWNS TIEDOWNS	IN DOUBL	OR TRIPLE), THEN FIND ROOF PITCH, WIDTH AND LENGTH. SEISMIC PIERS, # OF ROWS & TIDOWNS REQUIRED. SEE	ROWS 4		ROWS	ROWS	ROWS	ROWS	ROWS	ROWS	BOWS	ROWS	ROWS 0	3 ROWS	ROWS	ROWS 0	ROWS	ROWS	ROWS	ROWS	SMOA	SMOR		ROWS	# OF # OF	110C
NEERE	THE 1	AT TIM	THE EXA	1 ANCH	DF 30 I	CCH, WI	-		H	4 8	+	+	+	+	+	8 8	8	0 B	0 B	Н	+	+	+	+	+	A 4	4			+
	AXIMUA	of IN	EXACT SIZE	OR THEE	PLAN 1	DTH AN REQUIR	4	12 4 R	ω	ಚ	4	23 (ω (20 0	2 0	ωω	ယ	3	ಬ	3	3	20	3		0 4	4 0	1	80	- 1	12
) FO	THE MAXIMUM HEIGHT OF THE C.P. S	AT TIME OF INSPECTION	OF THE	SNAO	VIEW, SI	d leng Jed, si	ROWS		\Box	7	\neg	\neg	十	ROWS	\top	3 ROWS	ROWS				\neg	7	\neg	+	S BOWS	\top	-	_	-1	120B
FOUNDAT	T OF T	Ŋ.	E HOME	IT EACH	HEET F	TH. FC	4	4	Н	4	+	+	+	4 4	+	4	4	4	4	-	+	+	+	4	+	+	Т	TO .	# OF #	+
DA'	HE C.P	HCD	IS NOT	ENDW	SURE C	PLAN, SHEETS	14 5	14 5	\perp	12 4	51	Oi ,	4 0	B 5	1	8	12 4	8 3	B 3	4	4	3	4	1	0 4	\perp			# OF	,
	SEISM	ë		-	¥		ROWS	ROWS	4 ROWS	4 ROWS	ROWS	ROWS	ROWS	3 ROWS	SMOD	3 ROWS	4 ROWS	3 ROWS	3 ROWS	ROWS	ROWS	ROWS	ROWS	3 ROWS	S POMO	A DOWN	SMON	ROWS	OF	120C
ION I	IC AND	11/4	D, CHE	OTAL #	LOAD, I	ROSS T	8	8	4	4	8	4	4	4	4	4 4	*	4	4	4	4	4	4	4	4.	14	D 14	BNANO	0.5	
PL.	C.P. A	30	CK THE	OF EN	ND LOAD, READ 12 C.P.	O DESIG	10	10	8	8	10	8	В		0	20 00	8	8	8	8	8	0	8	5	0	p 0	4 0	PIERS	40 F	
AN	EISMIC AND C.P. ANCHOR PIERS IS 23"	U	LISTED, CHECK THE NEXT HIGHER OR LOWER	TOTAL # OF ENDWALL TIEDOWS PER		ACROSS TO DESIGN SNOW LOAD THEN F3 & F4, FOR PLACEMENT OF C.P. SEISMIC	5 ROWS	5 ROWS	4 ROWS	4 ROWS	5 ROWS		4 ROWS	3 ROWS	A DOWS	3 ROWS	4 ROWS	3 ROWS	3 ROWS	4 ROWS	4 ROWS	3 ROWS	4 ROWS	3 ROWS	4 NOTE	O ROWS	2 ROWS		. r	130C
SHEET F5 OF	ers is		GHER	EDOWS	SEISMIC PIERS	OF C.F		10	П	8	\neg			T	1	B 05	8		8		7	7	1	00 0	1	_	2/4	DOWNS		

Detailed Water Budget

		Crov	vder/Drury W	ater Bu	ıdget
Operation/Task	Water (gallons)	Liters	Gallons per Draw	Draws	Notes
Hot Water	240	908.50	15	16	Calculated 15 gallons of water per draw
Cooking	4.2	15.9	0.70	6	Calculated 0.7 gallons of water per draw
Dishwasher	11.1	42.02	2.2	5	Calculated 2.2 gallons of water per cycle
Clothes Washer	120	454.25	15	8	Assumes 15 gallons of water per load
Fire Supression	230	1135.60			Uponor recommended amount
Vegetation	0	0	0	0	Water for vegetation will be brought by the team
Total	605.3	2556.27			
Safety Factor	10%	10%			10% Contingency
Total	665.83	2811.893			

Published 8/17/2015 [Status] Page - 96

Summary of Unlisted Electrical Components

Not Applicable

Published 8/17/2015 [Status] U.S. D.O.E. Solar Decathlon 20115 Page - 97

Summary of Reconfigurable Features

Not Applicable

[Status] Published 8/17/2015 U.S. D.O.E. Solar Decathlon 20115 Page - 98

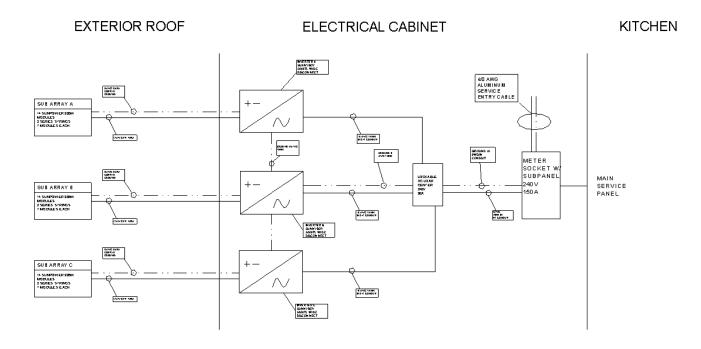
Interconnection Application Form

Interconnection Application Form - Crowder Drury 2015 Solar Decathlon Team

	Pł	notovoltaic Sys	tem	
String	Module Manufacturer	Module Model	Module Watt Rating	Modules in Series
A1	Sunpower	X21	335 Watts	7
A2	Sunpower	X21	335 Watts	7
B1	Sunpower	X21	335 Watts	7
B2	Sunpower	X21	335 Watts	7
C1	Sunpower	X21	335 Watts	7
C2	Sunpower	X21	335 Watts	7

			Combiner Boxes			
Box Name	Box Manufacturer	Box Model	Max VDC	Max Amps	Max Number of Strings	OCPD
Α	Midnite Solar Inc.	MNPV3 (HV)	600	30	2	FUSE
В	Midnite Solar Inc.	MNPV3 (HV)	600	30	2	FUSE
С	Midnite Solar Inc.	MNPV3 (HV)	600	30	2	FUSE

		Inverters		
Inverter Name	Inverter Manufacurer	Inverter Model	Inverter VA Rating	Voltage
Α	SunnyBoy	5000TL	5kW	240
В	SunnyBoy	5000TL	5kW	240
С	SunnyBoy	5000TL	5kW	240


Total Power of PV System is 14.07kW

Published 8/17/2015 Page - 99

		S	olar Array Sp	ecs		
	Module	String	Sub Array A	Sub Array B	Sub Array C	Array
Pnom	335 W	2345 W	4690 W	4690 W	4690 W	14.07 kW DC
Vmp	57.3	401.1	401.1	401.1	401.1	
Imp	5.85	5.85	11.7	11.7	11.7	
Voc	67.9	475.3	475.3	475.3	475.3	
Isc	6.23	6.23	12.46	12.46	12.46	
Max Voltage	600VDC					
Power Temp Coef	30%/C	30%/C	30%/C	30%/C	30%/C	30%/C
Voltage Temp Coef	-167.4 mV/C	-167.4 mV/C	-167.4 mV/C	-167.4 mV/C	-167.4 mV/C	-167.4 mV/C
Current Temp Coef	3.5 mA/C	3.5 mA/C	3.5 mA/C	3.5 mA/C	3.5 mA/C	3.5 mA/C

One Line Diagram

[Status] Published 8/17/2015

Load Calculation

		Servi	ice Fe	eder	Calcul	ations		
General Ligh	ting Loa	d						
Square Footage	of the dwe	elling		1000	x 3	3000		
Kitchen small ap	pliance cir	cuits		2	x 1500	3000		
Laundry branch	circuit			1	x 1500	1500		
	Subto	tal of gen. li	ghting load	s per NEC S	Section 220.52	7500		
			Subtract 1s	t 3000VA p	er NEC 220.42	3000	X 100%	3000
			Remaining '	VA X 35% p	er NEC 220.42	4500	x 35%	1575
					Total demand	for general lighting	loads =	4575
Fixed Applia	nce Loac	s (namepla	te per NEC	Section 220	0.14)		•	
• •	Applia	nce		Voltage	Amperage	VA		
Dishwasher				120	12	1440		
Range Hood				120	6	720		
Water Heater				240	75	18000		
Disposal 1/2 HP				120	9.8	1176		
			Subt	otal of Fixe	ed Appliances	21336		
NEC 220.53			3	or less Fixe	ed Appliances	x 100%		
NEC 220.55			4 o	r more Fixe	ed Appliances	x 75%	16002	
Cooking								
Electric Range				240	35	8400		
Stove				240	30	7200		
			Si	ubtotal of 0	Cooking Loads	15600		
					NEC 220.55	x 65%	10140	
Heating & Co	ooling					•		
HVAC						2120		
Other Loads								
EVSE				240	30	7200		
1/2 HP Water Su	amu9 vlaaı)				373		
						3.10		
				Total V	A Demand	40410		
		V	A divided b		Amps		1	
				, Panel Size	Amps	200		
Neutral Con	ductor							
General Lighting		220 61(a)			x 100%	4575		
Fixed Appliance					x 100%	16002		
Cooking Loads N		. ,			x 70%	7098		
Other Loads NEC		~,			x 100%	7573		
Circi Lodds NEC	(a)			Total V	A Demand	35248		
			A divided b	_	Amps			

Published 8/17/2015 Page - 101 U.S. D.O.E. Solar Decathlon 20115

Quantity Takeoff of Competition Prototype

Assembly Number	Description	Quantity	Unit
01 Site Work			
01	Reynobond Fencing	1.00	Ea.
011000	Landscaping & Plants	138.00	Ea.
0120000	1 1/2 " tubular steel for fencing	964.00	L.F.
02 Foundation			
02	CP seismic piers & Standard Piers	28.00	Ea.
03 Framing			
03	1/2" Threaded Steel Rods	544.00	L.F.
03	MC 7x19.1 C Channel including fabrication	1.00	Ea.
0308042	Exterior wall framing systems, 2" x 6", 16"	1,494.00	S.F.
0332042	OC Shed/flat roof framing systems, 2" x 8", 16" OC, 4/12 pitch	1,000.00	S.F.
04 Exterior Walls			
0400000	Lexan	1.00	Ea.
0410000	Zip wall sheathing system and tape	52.00	Ea.
0411000	Swiss Pearl Siding	1,494.00	Ea.
0414000	Kawneer windows, doors and fence material	1.00	Ea.
05 Roofing			
0511000	Flat Rubber Membrane Roof with 11" batt	409.50	Ea.
0511000	insulation and 2" rigid; Slope 1/4=1' Roof membrane and insulation on bedroom and kitchen modules	591.00	S.F.
06 Interiors			
06	Resilient Modular Carpet Tile	772.00	Ea.
06	Resilient Tile Flooring	228.00	S.F.
06	Hollow Core Interior Door	3.00	Ea.
06	Built in Entertainment Center	9.00	L.F.
06	1x4 Base Board	16.00	L.F.

Published 8/17/2015 Page - 102

Assembly Number	Description	Quantity	Unit
0604026	Wall system, 1/2" drywall, taped & finished	1,488.00	S.F
0608026	1/2" gypsum wallboard, taped & finished	559.00	S.F
0609000	ceilings MDF Panel Ceiling	414.00	Ea
7 Specialties			
07	Big Ass Fans	1.00	Ea
07	Bosch Dishwasher	1.00	Ea
07	Water Storage Tanks	3.00	Ea
07	Sun Power X21 335 watt panels; including	57.00	Ea
07	inverters and structure Wood ramps, 4X4 post foundation	48.00	L.F
07	Frididaire Refrigerator/Freezer	1.00	Ea
,	Model#FFHT10F2L		
07	Bosch Tronic 5000 Tankless Electric Water Heater	3.00	Еғ
07	LG WM3997HWA Washer/ Dryer	1.00	Ea
07	Daikin Mini Split HVAC System	2.00	Ea
07	Fridgaire 30" Induction Range	1.00	Ea
)7	Ramp Decking	380.00	S.F
07	Pressure Treated Wood Deck, 24" OC	677.00	S.F
0708046	Laminate Countertops	16.00	Ea
0708046	Kitchen, custom grade	18.00	L.F
0711000	Wet pipe suppression system	1.00	Еа
0712036	Sinks, stainless steel, single bowl 22" x 25"	1.00	Ea
8 Mechanical			
0812032	Three fixture bathroom installed with vanity	1.00	Ег
9 Electrical			
09	LED Lighting 4.5" Downlight	7.00	Ea
99000	LED Lighting 40 Watt 12" X 12" Downlight	4.00	Е
9930006	Air conditioning receptacles using non-metallic sheathed cable	1.00	Е
930010	Disposal wiring using non-metallic sheathed cable	1.00	Ea
9930014	Dryer circuit using non-metallic sheathed cable	1.00	Ea
0930026	Furnace circuit & switch using non-metallic sheathed cable	1.00	Еа
0930034	Heater circuits using non-metallic sheathed cable	1.00	Еа
0930038	Lighting wiring using non-metallic sheathed cable	1.00	Е

[Status] Published 8/17/2015

Assembly Number	Description	Quantity	Unit	
0930042	Range circuits using non-metallic sheathed	1.00	Ea.	
	cable			
0930046	Switches, using non-metallic sheathed cable	1.00	Ea.	

Date: 08/17/2015

Solar Drury Uniformat Year 2014 Quarter 3 Assembly Detail Report Prepared By: Travis Bond CrowderDrury-Solar Decathalon

Assembly Number	O	T	Description	Quantity	Unit	Total Incl. O&P	Ext. Total Incl. O&P
01 Site Work							
01	(A)		Reynobond Fencing	1.00	Ea.	\$24,373.00	\$24,373.00
011000	0		Landscaping & Plants	138.00	Ea.	\$10.00	\$1,380.00
0120000	(A)		1 1/2 " tubular steel for fencing	964.00	L.F.	\$7.55	\$7,278.20
01 Site Work Sub	total						\$33,031.20
02 Foundation							
02	O.		CP seismic piers & Standard Piers	28.00	Ea.	\$78.57	\$2,199.96
02 Foundation Su	btotal						\$2,199.96
03 Framing							
03	Ø.		1/2" Threaded Steel Rods	544.00	L.F.	\$9.43	\$5,129.92
03	Ø.		MC 7x19.1 C Channel including fabrication	1.00	Ea.	\$14,000.00	\$14,000.00
0308042			Exterior wall framing systems, 2" x 6", 16"	1,494.00	S.F.	\$3.71	\$5,542.74
0332042			OC Shed/flat roof framing systems, 2" x 8", 16" OC, 4/12 pitch	1,000.00	S.F.	\$4.51	\$4,510.00
03 Framing Subto	tal		00, 112 pices				\$29,182.66
04 Exterior Walls							
0400000	Ø.		Lexan	1.00	Ea.	\$15,945.00	\$15,945.00
0410000	O.		Zip wall sheathing system and tape	52.00	Ea.	\$34.20	\$1,778.40
0411000	0		Swiss Pearl Siding	1,494.00	Ea.	\$7.82	\$11,683.08
0414000	O.		Kawneer windows, doors and fence material	1.00	Ea.	\$58,347.00	\$58,347.00
04 Exterior Walls	Subtot	al					\$87,753.48
05 Roofing							
0511000	6		Flat Rubber Membrane Roof with 11" batt	409.50	Ea.	\$15.58	\$6,380.01
0511000	O		insulation and 2" rigid; Slope 1/4=1' Roof membrane and insulation on bedroom and kitchen modules	591.00	S.F.	\$18.23	\$10,773.93
05 Roofing Subtot	al						\$17,153.94
06 Interiors							
06	Q.		Resilient Modular Carpet Tile	772.00	Ea.	\$2.17	\$1,675.24
06	0		Resilient Tile Flooring	228.00	S.F.	\$2.17	\$494.76
06	O		Hollow Core Interior Door	3.00	Ea.	\$185.00	\$555.00
06	O.		Built in Entertainment Center	9.00	L.F.	\$400.00	\$3,600.00
06	O		1x4 Base Board	16.00	L.F.	\$15.86	\$253.76

Assembly Number	Ø	T	Description	Quantity	Unit	Total Incl. O&P	Ext. Total Incl. O&P
0604026			Wall system, 1/2" drywall, taped & finished	1,488.00	S.F.	\$2.84	\$4,225.92
0608026		0	1/2" gypsum wallboard, taped & finished	559.00	S.F.	\$2.28	\$1,274.52
0609000	0	o	ceilings MDF Panel Ceiling	414.00	Ea.	\$10.30	\$4,264.20
06 Interiors Subto	tal						\$16,343.40
07 Specialties							
07	0	0	Big Ass Fans	1.00	Ea.	\$1,020.00	\$1,020.00
07	0	0	Bosch Dishwasher	1.00	Ea.	\$763.00	\$763.00
07	0		Water Storage Tanks	3.00	Ea.	\$700.00	\$2,100.00
07	0	0	Sun Power X21 335 watt panels; including	57.00	Ea.	\$736.84	\$41,999.88
07	0	ė	inverters and structure Wood ramps, 4X4 post foundation	48.00	L.F.	\$172.32	\$8,271.36
07	O	ē	Frididaire Refrigerator/Freezer	1.00	Ea.	\$550.00	\$550.00
V/	ω.	Ξ	Model#FFHT10F2L				
07	Ø.	-	Bosch Tronic 5000 Tankless Electric Water Heater	3.00	Ea.	\$905.00	\$2,715.00
07	0		LG WM3997HWA Washer/ Dryer	1.00	Ea.	\$1,439.00	\$1,439.00
07	O.		Daikin Mini Split HVAC System	2.00	Ea.	\$2,000.00	\$4,000.00
07	0		Fridgaire 30" Induction Range	1.00	Ea.	\$1,899.00	\$1,899.00
07	0	0	Ramp Decking	380.00	S.F.	\$1.69	\$642.20
07	C.		Pressure Treated Wood Deck, 24" OC	677.00	S.F.	\$22.50	\$15,232.50
0708046	0	0	Laminate Countertops	16.00	Ea.	\$296.16	\$4,738.56
0708046		0	Kitchen, custom grade	18.00	L.F.	\$656.87	\$11,823.66
0711000	0		Wet pipe suppression system	1.00	Ea.	\$3,300.00	\$3,300.00
0712036		0	Sinks, stainless steel, single bowl 22" x 25"	1.00	Ea.	\$1,805.00	\$1,805.00
07 Specialties Sub	total						\$102,299.16
08 Mechanical							
0812032		0	Three fixture bathroom installed with vanity	1.00	Ea.	\$4,438.53	\$4,438.53
08 Mechanical Sub	ototal						\$4,438.53
09 Electrical							
09	0		LED Lighting 4.5" Downlight	7.00	Ea.	\$823.50	\$5,764.50
09000	0		LED Lighting 40 Watt 12" X 12" Downlight	4.00	Ea.	\$918.50	\$3,674.00
0930006			Air conditioning receptacles using non-metallic sheathed cable	1.00	Ea.	\$70.00	\$70.00
0930010			Disposal wiring using non-metallic sheathed	1.00	Ea.	\$71.85	\$71.85
0930014			cable Dryer circuit using non-metallic sheathed	1.00	Ea.	\$127.50	\$127.50
0930026		•	cable Furnace circuit & switch using non-metallic	1.00	Ea.	\$108.50	\$108.50
0930034			sheathed cable Heater circuits using non-metallic sheathed	1.00	Ea.	\$86.00	\$86.00
0930038			cable Lighting wiring using non-metallic sheathed cable	1.00	Ea.	\$57.50	\$57.50

Assembly Number	Ø.	Description	Quantity	Unit	Total Incl. O&P	Ext. Total Incl. O&P
0930042		Range circuits using non-metallic sheathed cable	1.00	Ea.	\$203.00	\$203.00
0930046		Switches, using non-metallic sheathed cable	1.00	Ea.	\$53.00	\$53.00
09 Electrical Subtot	al					\$10,215.85
10						
10	0	Trucks	4.00	Ea.	\$2,000.00	\$8,000.00
10	0	Lull/fork lift	6.00	Day	\$1,025.00	\$6,150.00
10						\$14,150.00
Subtotal						\$316,768.18
General Contractor	's Mark	cup on Subs			0.00%	\$0.00
Subtotal						\$316,768.18
General Conditions					0.00%	\$0.00
Subtotal						\$316,768.18
General Contractor	's Overl	nead and Profit			0.00%	\$0.00
Grand Total						\$316,768.18

Division 00 - Procurement and Contracting Requirements
Division 01 - General Requirements
Division 02 – Existing Conditions
Division 03 – Concrete
Division 04 – Masonry
Division 05 - Metals
Division 06 - Wood, Plastics, and Composites
Division 07 - Thermal and Moisture Protection
07 21 16 Blanket Insulation
07 21 19 Foamed-In-Place Insulation
07 21 29 Sprayed Insulation
07 92 00 Joint Sealants
Division 08 - Openings
Division 09 - Finishes
Division 10 - Specialties
Division 11 - Equipment
Division 12 - Furnishings
Division 13 – Special Construction
Division 14 – Conveying Equipment
Division 21 - Fire Suppression
Division 22 - Plumbing
Division 23 - Heating, Ventilating, and Air-Conditioning (HVAC)
Division 25 – Integrated Automation
Division 26 - Electrical
Division 27 – Communications
Division 28 – Electronic Safety and Security
Division 31 - Earthwork
Division 32 - Exterior Improvements
Division 33 – Utilities
Division 34 – Transportation
Division 35 – Waterway and Marine Construction
Division 40 – Process Integration
Division 41 – Material Processing and Handling Equipment
Division 42 – Process Heating, Cooling, and Drying Equipment
Division 43 – Process Gas and Liquid Handling, Purification, and Storage Equipmen
Division 44 – Pollution Control Equipment
Division 45 – Industry-Specific Manufacturing Equipment

Division 48 - Electrical Power Generation

[Status] Published 8/17/2015 U.S. D.O.E. Solar Decathlon 20115 Page - 108

DIVISION 05 METAL

05 10 00 Structural Metal Framing PART 1 – GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes
- 1.02. RELATED SECTIONS

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 05 12 23 Structural Steel for Buildings
 - b. 05 12 23 Structural Steel for Buildings
 - c. 05 12 23 Structural Steel for Buildings
 - d. 05 12 23 Structural Steel for Buildings

2.02. SPECIFICATIONS

- a. Structural Steel for Buildings
 - 1. Product: MC7x19.1
 - 2. Manufacture/Supplier:
 - 3. Product Summary:
 - 4. Dimensions:

Depth: 7"

Flange Width: 3.45" Flange Thickness: 0.5" Web Thickness: 0.352"

- 5. Reference: http://www.constructionknowledge.net
- b. Structural Steel for Buildings
 - 1. Product: HSS 1 $\frac{1}{2}$ " x 1 $\frac{1}{2}$ " x $\frac{1}{4}$ "
 - 2. Manufacture:
 - 3. Product Summary: Tube steel structure for fence
 - 4. Dimensions: Tube Steel- 1 1/2" x 1 1/2"
 - 5. Reference:
- c. Structural Steel for Buildings
 - 1. Product: 0.5" Metal Rod
 - 2. Manufacture:
 - 3. Product Summary:
 - 4. Dimensions: 0.5" thick by 8'-6" and 0.5" thick by 4'-6"
 - 5. Reference: N/A

PART 3 - EXECUTION

3.01. INSTALLATION

a. Complete install without removing the cover

END OF DIVISION 05 METAL

DIVISION 06 WOOD, PLASTICS, AND COMPOSITES

06 10 00 Rough Carpentry

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. N/A

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 06 10 53 Miscellaneous Rough Carpentry
 - b. 06 10 53 Miscellaneous Rough Carpentry

2.02. SPECIFICATIONS

- a. 06 10 53 Miscellaneous Rough Carpentry
 - 1. Product: Wall Studs
 - 2. Manufacturer/Supplier: N/A
 - 3. Product Summary: Wood wall studs
 - 4. Dimensions: HxWxD (in): 2x4x8' and 2x6x8'
 - 5. Reference: N/A
- b. 06 10 53 Miscellaneous Rough Carpentry
 - 1. Product: Wall headers
 - 2. Manufacturer/Supplier: N/A
 - 3. Product Summary: Wood wall headers
 - 4. Dimensions: HxWxD (in): N/A
 - 5. Reference: N/A

PART 3 - EXECUTION

3.01. INSTALLATION

N/A

06 16 00 Sheathing

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. N/A

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 06 16 36 Wood Panel Product Sheathing
- b. 06 16 53 Moisture Resistant Sheathing Board

2.02. SPECIFICATIONS

- a. 06 16 36 Wood Panel Product Sheathing
 - 1. Product: Plywood Sheathing
 - 2. Manufacturer/Supplier: Advantech Sheathing
 - 3. Product Summary:
 - 4. Dimensions: 3/4" wall sheathing (in): N/A
 - 5. Reference: http://www.huberwood.com/advantech/products/advantech-flooring

b. 06 16 53 Moisture Resistant Sheathing Board

- 1. Product: Zip Wall Sheathing
- 2. Manufacturer/Supplier: Huber
- 3. Product Summary: Oriented standard structural panels with built-in protective overlays that eliminate the need for building wrap or roofing felt. They function as wall sheathing, code recognized water resistive, and air barrier.
- 4. Dimensions: 5/8" wall sheathing (in): N/A
- 5. Reference:

http://www.huberwood.com/assets/user/library/ZIPRoofWallDataSheets_v3.pdf

PART 3 - EXECUTION

3.01. INSTALLATION

- a. N/A
- b. Install the panels, tape the seams with Huber's ZIP system tape, the buildings is rough dried in.

06 40 00 Architectural Woodwork

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

- a. 11 30 00 Residential Equipment
- b. 22 40 00 Plumbing Fixtures

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 06 41 13 Wood-Veneer-Faced Architectural Cabinets A
- b. 06 41 03 Wood-Veneer-Faced Architectural Cabinets B

2.02. SPECIFICATIONS

- a. Wood-Veneer-Faced Architectural Cabinets A
 - 1. Product: Custom wood base cabinets
 - 2. Manufacturer/Supplier: N/A
 - 3. Product Summary: Seamless wood cabinets

4. Dimensions: HxWxD (in): 2'0" depth

5. Reference: N/A

- b. Wood-Veneer-Faced Architectural Cabinets B
 - 1. Product: Custom wood wall-mounted cabinets
 - 2. Manufacturer/Supplier: N/A
 - 3. Product Summary: Seamless wood cabinets
 - 4. Dimensions: HxWxD (in): Cup shelf 9" depth, upper cabine 14" depth
 - 5. Reference: N/A

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

06 50 00 Structural Plastics PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. N/A

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 06 51 00 Structural Plastic Shapes and Plates
 - b. 06 51 00 Structural Plastic Shapes and Plates

2.02. SPECIFICATIONS

- a. 06 51 00 Structural Plastic Shapes and Plates
 - 1. Product: Lexan MR101 Polycarbonate Sheet
 - 2. Manufacturer/Supplier: Sabic
 - 3. Product Summary: Siding the house directly over the waterproofing and underneath the swiss pearl rainscreen. It adds insulation and a layer of protection to the house. (all exterior walls, clear)

Mar/UV-resistant Lexan MR10 sheet combines the impact strength of Lexan polycarbonate sheet with a proprietary abrasion/UV resistant surface that approaches glass in performance. Lexan MR10 Sheet with Margard coating backed by a ten-year limited warranty against yellowing, abrasion resistance, breakage, loss of light transmission, and coating failure£.) Lexan MR10 sheet's unique coating is graffitiresistant enabling restoration to a like-new condition. In addition, Lexan MR10 sheet offers improved

resistance to weathering as well as forced-entry protection.

- 4. Dimensions: Sheet good (1,600 sf) 0.236" x 72" x 96"
- 5. Reference: http://www.sabic-

ip.com/resins/DataSheet/Internet/PDF/1002002131_1002003947_1002038344_SI.pdf

b. 06 51 00 Structural Plastic Shapes and Plates

- 1. Product: Lexan MR10 Polycarbonate Sheet
- 2. Manufacturer/Supplier: Sabic
- 3. Product Summary: Lites for Accordian Door shields that close to protect the sliding glass door of the house. $\frac{1}{2}$ " lexan pieces are inserted between stiles and rails of aluminum doors. (2 walls, clear)
- 4. Dimensions: Sheet good (400 sf) 0.5" x 57" x 100"
- 5. Reference: http://sfs.sabic.eu/product/lexan-solid-sheet/margard-coated-sheet/

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

b. N/A

END OF DIVISION 06 WOOD, PLASTICS, AND COMPOSITES

DIVISION 07 THERMAL AND MOISTURE PROTECTION

07 20 00 Thermal Protection PART 1 – GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. To be determined

PART 2 - PRODUCTS

- 2.01. PRODUCTS (List of products in section)
 - a. 07 21 13.13 Foam Board Insulation
 - b. 07 21 19 Foamed in Place Insulation

2.02. SPECIFICATIONS (Generalized Specs)

- a. 07 21 13.13 Foam Board Insulation
 - 1. Product: Polyiso Rigid Foam Insulation Board
 - 2. Manufacture/Supplier: Home Depot
 - 3. Product Summary: Rigid foam plastic thermal insulation board composed of environmentally sound, closed cell, foam bonded to a durable white-matte aluminum facer ad a reflective reinforced aluminum facer.
 - 4. Dimensions: DxWxH (in): .5x48x96
 - 5. Reference: http://www.homedepot.com/p/Rmax-R-Matte-Plus-3-1-2-in-x-4-ft-x-8-ft-R-3-2-Polyiso-Rigid-Foam-Insulation-Board-754404/100572981?N=5yc1vZbaxx#specifications
- b. 07 21 19 Foamed-in-Place Insulation
 - 1. Product:
 - 2. Manufacture/Supplier:
 - 3. Product Summary:
 - 4. Dimensions:
 - 5. Reference:

PART 3 - EXECUTION

- 3.01. INSTALLATION
 - a. N/A
 - b. Easily installs in either wood or metal framing cavities.

07 25 00 Weather Barriers

PART 1 – GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings

c. Standards and Codes

1.02. RELATED SECTIONS

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 07 25 00 Weather Barrier

2.02. SPECIFICATIONS

- a. 07 25 00 Refrigerator/ Freezer
 - 1. Product: Protecto Premium Energy Sill Sealer
 - 2. Manufacture/Supplier: Protecto Wrap
 - 3. Product Summary: Self adhering waterproofing membrane
 - 4. Dimensions H x W (in): 3 1/2 x 5 1/2
 - 5. Reference: http://www.protectowrap.com/static-content/pdf/specdata/sillsealer-specdata.pdf

PART 3 - EXECUTION

- 3.01. INSTALLATION
 - a. 07 25 00 Refrigerator/ Freezer
 - 1. http://www.protectowrap.com/static-content/pdf/specdata/sillsealer-specdata.pdf

07 42 00 Wall Panels

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

- a. 05 10 00 Structural Metal Framing
- b. 09 70 00 Wall Finishes

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 07 42 13 Metal Wall Panels
 - b. 07 42 43 Composite Wall Panels

2.02. SPECIFICATIONS

- a. Metal Wall Panels
 - 1. Product: Reynobond Aluminum Fence
 - 2. Manufacturer/Supplier: Alcoa
 - 3. Product Summary: Bone white aluminum fence
 - 4. Dimensions:
 - 5. Reference:

https://www.alcoa.com/aap/north_america/en/info_page/product_specifications.asp/

- b. Composite Wall Panels
 - 1. Product: Swiss Pearl Carat

- 2. Manufacture/Supplier: Eternit Switzerland
- 3. Product Summary: Swiss Pearl is an 8 mm (3/8") fiber cement composite panel with top finishing and core colored through. This product is designed as a rear ventilated rainscreen cladding system, 100% recyclable.
- 4. Dimensions: 8 mm thickness, custom panel size
- 5. Reference: http://www.swisspearl.com/products-and-solutions/
- 6. Colors: J- Jade 7052, C- Crystal 7010, X-Onyx 7091, Y-Onyx 7092, N-Onyx 7094, see elevations

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

07 50 00 Membrane Roofing

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 07 58 00 Roll Roofing

2.02. SPECIFICATIONS

- a. 07 58 00 Roll Roofing
 - 1. Product: TPO 45 mil single ply membrane roof
 - 2. Manufacture/Supplier: Tremco Incorporated
 - 3. Product Summary: white
 - 4. Dimensions W x L (ft): 45 mil x 78" x 100'
 - 5. Reference: https://www.tremcoroofing.com/products/single-ply-roofing-products/single-ply-membranes/tpo-single-ply-membrane/

Page - 116

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

07 60 00 Flashing and Sheet Metal PART 1 – GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings

c. Standards and Codes

1.02. RELATED SECTIONS

a. 07 71 16 Manufactured Counter Flashing Systems

PART 2 - PRODUCTS

- 2.01. PRODUCTS (List of products in section)
 - a. 07 62 00 Metal Flashing and Trim
- 2.02. SPECIFICATIONS (Generalized Specs)
 - a. Metal Flashing and Trim
 - 1. Product: Galvalume Trim
 - 2. Manufacture/Supplier: Montopolis Supply Company, LP
 - 3. Product Summary: Trim made from 26 gauge Galvalume coated steel, plain ridge roll.
 - 4. Dimensions: 14" girth, 10' in length

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

END OF DIVISION 07 THERMAL AND MOISTURE PROTECTION

DIVISION 08 - OPENINGS

08 10 00 Doors and Frames PART 1 – GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 08 11 13 Hollow Metal Doors and Frames
 - b. 08 11 13 Hollow Metal Doors and Frames
 - c. 08 11 13 Hollow Metal Doors and Frames

2.02. SPECIFICATIONS

- a. 08 11 13 Hollow Metal Doors and Frames
 - 1. Product: Kawneer AA3200 IR Thermal Sliding Doors (AA3200IR)
 - 2. Manufacture/Supplier: Kawneer Hurricane Resistant Windows and Doors
 - 3. Product Summary: Meeting the challenges of high winds, heavy rain, blizzards and hurricanes. (Quantity 4, Location Living Room)
 - 4. Dimensions: Total opening 17'-10 1/2" wide x 9'-11" high
 - 5. Reference:

http://www.kawneer.com/kawneer/north_america/en/product.asp?prod_id=4057

- b. 08 11 13 Hollow Metal Doors and Frames
 - 1. Product: Kawneer 2000T Terrace Door
 - 2. Manufacture/Supplier: Kawneer Hurricane Resistant Windows and Doors
 - 3. Product Summary: Terrace doors
 - 4. Dimensions: (1) 3'-1 1/4"" W x 7'-1 1/2" H (kitchen door), (2) 6'-5 1/4" wide x 6'-4 1/4" H at outdoor electrical closet on deck
 - 5. Reference:

http://www.kawneer.com/kawneer/north_america/en/product.asp?prod_id=1822

- c. 08 11 13 Hollow Metal Doors and Frames
 - 1. Product: Kawneer Casement Window AA4325 Ultra Thermal Window
 - 2. Manufacture/Supplier: Alcoa Kawneer
 - 3. Product Summary: Hurricane Resistant window and glass
 - 4. Dimensions:
 - a. (2) 47 1/4" by 44 3/4" egress window
 - b. (2) 15 " by 44 3/4"
 - c. (4) 42 1/4" by 14 3/4", fixed window
- d. 08 11 13 Hollow Metal Doors and Frames

track at head,

Team Crowder College - Drury University

- 1. Product: Kawneer Bloomsburg Folding Door
- 2. Manufacture/Supplier: Alcoa Kawneer Hurricane Resistant Windows and Doors
- 3. Product Summary: 2 sets of 4 Accordian Folding door to protect sliding glass doors with light bronze
- 4. Dimensions: 53" W x 116 15/32" H
- 5. Reference: (Quantity 8 doors)

http://www.kawneer.com/kawneer/united_kingdom/catalog/pdf/brochures/sliding_solution s2.pdf

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

b.Intended to be installed in "punched" openings or as a liner frame within other Kawneer framing or curtain wall systems. When sidelites and/or transoms are required the 2000T door frame is installed as a liner frame within other Kawneer framing or curtain wall systems.

c. N/A

END OF DIVISION 08 OPENINGS

DIVISION 09 FINISHES

09 90 00 Painting and Coating

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

- a. 09 70 00 Wall Finishes
- b. 07 10 00 Damp proofing and Waterproofing
- c. 07 80 00 Fire and Smoke Protection

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 09 91 23 Interior Paint
- b. 09 91 23 Interior Paint
- c. 09 96 43 Fire-Retardant Coatings

2.02 SPECIFICATIONS

- a. Interior Paint
 - 1. Product: PREMIUM PLUS® Interior Eggshell Enamel
 - 2. Manufacturer/Supplier: BEHR
 - 3. Product Summary: For tough, all-purpose paint with a touch of style, choose BEHR PREMIUM PLUS Interior Eggshell Enamel. This soft, subtle sheen resists dirt and grime, so it's perfect for all of your home's busiest rooms, and its velvety, reflective appearance will also brighten up your hallways; Color: Igloo 760E-1
 - 4. Dimensions: 250-400 Sq. Ft. per Gallon
 - 5. Reference: http://www.behr.com/consumer/ColorDetailView/760E-1

b. Interior Paint

- 1. Product: PREMIUM PLUS® Interior Eggshell Enamel
- 2. Manufacturer/Supplier: BEHR
- 3. Product Summary: For tough, all-purpose paint with a touch of style, choose BEHR PREMIUM PLUS Interior Eggshell Enamel. This soft, subtle sheen resists dirt and grime, so it's perfect for all of your home's busiest rooms, and its velvety, reflective appearance will also brighten up your hallways; Color: Desert Cactus 440 D-4
- 4. Dimensions: 250-400 Sq. Ft. per Gallon
- 5. Reference: http://www.homedepot.com/p/BEHR-Premium-Plus-Ultra-8-oz-440D-4-Desert-Cactus-Interior-Exterior-Paint-Sample-440D-4U/202180883

c. Fire Retardant Coatings

- 1. Product: Flame Stop III
- 2. Manufacturer/Supplier: Flame Stop INC.
- 3. Product Summary: Flame Stop III is a water-based, interior, fire-retardant paint additive that protects the material by developing a self-extinguishing reaction. One pint of this additive can be mixed into a gallon of most latex-based paints with up to two pints of water.

Once mixed, the product assumes the characteristics of the paint. When the mixture of paint and Flame Stop III is applied to drywall, the material shall have a class A rating. When applied on wood, the material shall have a class B rating. Flame Stop III is non-toxic, non-combustible, non-carcinogenic, easy to apply, and contains no PDBE's; Color: Clear

- 4. Dimensions: Weight per Gallon: 12.5LBS; Average ph: 7.0
- 5. Reference: http://www.flamestop.com/fire-retardant-paint.html

PART 3 - EXECUTION

3.01 - INSTALLATION

a. Interior Paint

1. Apply when air and surface temperatures are between 50-90°F (10-32°C).

Stir paint occasionally.

Intermix containers of same product to ensure color and sheen uniformity.

Use a high quality 3/8-1/2" nap roller cover, nylon/polyester brush or airless sprayer (.015-.019" spray tip, 60 mesh filter).

Do not think if using a roller or brush; however, if using a sprayer and thinning is required, thin with water at a rate of no more than 1/2 pint per gallon.

Certain colors may require more than one coat for complete hide.

Darker colors may require additional dry time between coats.

Cooler temperatures or higher humidity may prolong drying time

b. Interior Paint

1. Apply when air and surface temperatures are between 50-90°F (10-` 32°C). Stir paint occasionally.

Intermix containers of same product to ensure color and sheen uniformity.

Use a high quality 3/8-1/2" nap roller cover, nylon/polyester brush or airless sprayer (.015-.019" spray tip, 60 mesh filter).

Do not think if using a roller or brush; however, if using a sprayer and thinning is required, thin with water at a rate of no more than 1/2 pint per gallon.

Certain colors may require more than one coat for complete hide.

Darker colors may require additional dry time between coats.

Cooler temperatures or higher humidity may prolong drying time

c. Fire Retardant Coatings

1. N/A

END OF DIVISION 09 FINISHES

DIVISION 10 SPECIALTIES

10 20 00 Interior Specialties

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. N/A

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 10 28 19.16 Shower Doors

2.02. SPECIFICATIONS

- a. Shower Doors
 - 1. Product: Cardinal Glass Shower Swing door Craftsman series
 - 2. Manufacture/Supplier: Cardinal
 - 3. Product Summary: Swing shower door with chrome frame and obscure glass
 - 4. Dimensions: HxWxD (in): 72" x 36" x 5/32"
 - 5. Reference: http://www.cardinalshower.com/enclosures/swing-door

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

END OF DIVISION 10 SPECIALTIES

DIVISION 11 EQUIPMENT

11 30 00 Residential Equipment

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

- a. 33 10 00 Water Utilities
- b. 06 40 00 Architectural Woodwork

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 11 30 13.13 Refrigerator/ Freezer
- b. 11 30 13.14 Cooktop
- c. 11 30 13.15 Oven
- d. 11 30 13.17 Dishwasher
- e. 11 30 13.17 Downdraft Blower System
- f. 11 30 13.18 Washer-Dryer Combo
- g. 11 30 34 Residential Ceiling Fans

2.02. SPECIFICATIONS

- a. Refrigerator/ Freezer
 - 1. Product: Refrigerator/ Freezer, Model number FFHT10F2L
 - 2. Manufacture/Supplier: Frigidaire 12 Cu Ft. top Freezer Apartment-Size Refrigerator
 - 3. Product Summary: white
 - 4. Dimensions (in): 60" H x 29" D x 24" W
 - 5. Reference: http://www.frigidaire.ca/Kitchen/Refrigerators/Top-Freezer-

Refrigerators/FFET1222QS/

b. Range

- 1. Product: Frigidaire 30" Induction Range
- 2. Manufacture/Supplier: Frigidaire Gallery 30" Slide-In Range
- 3. Product Summary: FGES3065PF
- 4. Dimensions (in): 30" W x 26-5/16" D x 36 5/8" H
- 5. Reference: http://www.frigidaire.com/Kitchen-Appliances/Ranges/Electric-Range/FGES3065PF/
- c. Dishwasher
 - 1. Product: Dishwasher, Model number: SHP53TL5UC
 - 2. Manufacture/Supplier: Bosch
 - 3. Product Summary: Color: white
 - 4. Dimensions: H x W x D (in): 33 7/8" x23 9/16"x 23 3/4"

Reference: http://www.bosch-home.com/us/products/dishwashers/shop-all-dishwashers/SHP53TL5UC.html

- d. Washer-Dryer Combo
 - 1. Product: Washer and Dryer, Model Number: SPWD1800
 - 2. Manufacture/ Supplier: Summit
 - 3. Product Summary: White
 - 4. Dimensions H x W x D (in): 33 1/2 x 23 1/2 x 23 63/100
 - 5. Reference: http://www.appliancesconnection.com/summit-spwd1800-

i192827.html?ref=bing

- e. Residential Ceiling Fans
 - 1. Product: Haiku 60 with SenseME Technology
 - 2. Manufacture: Big Ass Fans
 - 3. Product Summary: The 60-inch Haiku® with SenseME™ brings effortless comfort to bedrooms and other smaller residential spaces. The world's first smart fan technology, SenseME monitors temperature conditions and adjusts the fan speed to keep you comfortable automatically. When you change the speed via the smartphone app or supplied IR remote, SenseME remembers your comfort preferences for the future. Featuring a built-in motion sensor and a variety of control modes, Haiku with SenseME also works with the Nest Learning Thermostat™ to help you save up to 30 percent on home air conditioning costs. Now that's a Smart Ass Fan.
 - 4. Dimensions: Fan Diameter: 60 in. (1.3 m); Fan Height (A): 12.3 in.; Fan Height (B): 12.8 in; Hanging Weight: 13 lb; Color: Black
 - 5. Reference: http://www.bigassfans.com/products/haiku/Haiku60-info-sheet.pdf

PART 3 - EXECUTION

3.01. INSTALLATION

- a. Refrigerator/ Freezer
 - 1. N/A
- b. Cooktop
 - 1. Drop in Place
- c. Oven
 - 1. N/A
- d. Dishwasher
 - 1. N/A
- e. Downdraft Blower System
 - 1. N/A
- f. Washer-Dryer Combo
 - 1. N/A
- g. Residential Ceiling Fans
 - 1. http://www.bigassfans.com/onlineguides/haiku/Haiku-S0-Install-

GuideOnline.pdf

END OF DIVISION 11 EQUIPMENT

DIVISION 12 FURNISHINGS

12 30 00 Casework

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings

c. Standards and Codes

1.02. RELATED SECTIONS

a. 06 41 13 Wood-Veneer-Faced Architectural Cabinets

PART 2 - PRODUCTS

- 2.01. PRODUCTS (List of products in section)
 - a. 12 36 00 Plastic Laminate Countertops

2.02. SPECIFICATIONS (Generalized Specs)

- a. Plasitc Laminate Countertops
 - 1. Product: Plastic Laminate
 - 2. Manufacture/Supplier: Formica
 - 3. Product Summary: blackstone
 - 4. Dimensions: 24" deep countertop x 15'-4" long

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

12 58 00 Residential Furniture

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. N/A

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 12 52 13 Couches and Loveseats
- b. 12 58 19 A Dining Tables and Chairs
- c. 12 58 19 B Dining Tables and Chairs
- d. 12 58 23 Coffee Tables
- e. 12 58 26 Entertainment Centers
- f. 12 58 29 Beds
- g. 12 58 33 Dressers

2.02. SPECIFICATIONS (Generalized Specs)

- a. Dining Tables and Chairs
 - 1. Product: Goliath Table
 - 2. Manufacture/Supplier: Resource Furniture

- 3. Product Summary: A space saving console table that extends from a console of 17 inches into a dining table 115 inches utilizing an aluminum telescoping cechanism, seats 10, matt white lacquer
- 4. Dimensions: HxLxD: 29.5"x115"x39.37, quantity 1
- 5. Reference: http://resourcefurniture.com/product/goliath/

c. Dining Chairs

- 1. Product: Pocket Chair
- 2. Manufacture/Supplier: Resource Furniture
- 3. Product Summary: Compact folding chair with chrome steel frame, seat white satin lacquer
- 4. Dimensions: HxWxD (in): 30.75" x 17.75" x 18.5", quantity 10
- 5. Reference: http://resourcefurniture.com/product/pocket-chair/

d. Bed and Desk Combination

- 1. Product: Ulisse Desk
- 2. Manufacture/Supplier: Resource Furniture
- 3. Product Summary: A queen size fold out murphy wall bed with a 5' desk on the front.
- 4. Dimensions: HxWxD (in): 86.6x85x67.5
- 5. Reference: http://resourcefurniture.com/product/ulisse-desk/

e. Bed and Desk Combination

- 1. Product: Kali Duo Board
- 2. Manufacture/Supplier: Resource Furniture
- 3. Product Summary: Fold out bunk beds with a full-time desk,
- 4. Dimensions: HxWxD (in): 76.5x85x37.5
- 5. Reference: http://resourcefurniture.com/product/kali-duo-board/

f. Closet Storage System

- 1. Product: Double Door
- 2. Manufacture/Supplier: Resource Furniture
- 3. Product Summary: This storage system offers 50 storage options. All pieces are modular and customizable and designed to be paired with bed and shelving systems.
- 4. Dimensions: HxWxD (in): 86.625" x66.75" x12.25", in master bedroom and 2nd bedroom
- 5. Reference: http://resourcefurniture.com/product/closet-systems/#.VDSI-vIdW1U

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

END OF DIVISION 12 FURNISHINGS

DIVISION 21 FIRE SUPPRESSION

21 10 00 Water-Based Fire-Suppression Systems PART 1 – GENERAL

1.01. SECTIONS REQUIREMENTS

- a. Product Data
- b. Construction and Shop Drawings

c. Standards and Codes

1.02. RELATED SECTIONS

- a. 07 10 00 Damp Proofing and Waterproofing
- b. 07 80 00 Fire and Smoke Protection
- c. 09 96 43 Fire Retardant Coatings
- d. 10 44 00 Fire Protection Specialties

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 21 10 00 Water Based Fire Suppression Sprinkler System
- b. 21 10 00 Water Based Fire Suppression Sprinkler System

2.02. SPECIFICATIONS

- a. 21 10 00 Water Based Fire Suppression Sprinkler System
 - 1. Product: Uponor AquaSAFE Fire Sprinkler Systems
 - 2. Manufacture/Supplier: Uponor
 - 3. Product Summary: Uponor ProPEX systms is a stand along fire suppression system.
 - 4. Dimensions: 1" Uponor AquaPEX white tubing
 - 5. Reference: http://www.uponor-usa.com/Residential-Fire-Safety.aspx
- b. 21 10 00 Water Based Fire Suppression Sprinkler System
 - Product: Freedom Residential Concealed Horizontal Sidewall Lead Free Sprinkler (VK4800)
 - 2. Manufacturer/Supplier: Viking
 - 3. Product Summary: A small high-sensitivty solder link and lever residential sprinkler designed for installation on concealed pipe systems, where the appearance of a smooth wall is desired. The cover plate is available in several decorative finishes.
 - 4. Dimensions: Overall length of sprinkler, 2"
 - 5. Reference: N/A

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

END OF DIVISION 12 FIRE SUPPRESSION

DIVISION 22 - PLUMBING

22 12 00 Facility Potable Water Storage Tanks PART 1 – GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

- a. 22 11 16 Domestic Water Piping
- b. 22 11 19 Domestic Water Piping Specialties
- c. 22 11 23 Domestic Water Pumps
- d. 22 13 63 Facility Gray Water Tanks
- e. 26 30 00 Facility Electrical Power Generating and Storing Equipment
- f. 33 70 00 Electrical Utilities

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 22 12 19 Facility Potable-Water Storage Tanks

2.02. SPECIFICATIONS

- a. Facility Potable-Water Storage Tanks
 - 1. Product: 300 Gallon Portable Utility Tanks CRMI-300RT
 - 2. Manufacturer/Supplier: Custom Roto Mold
 - 3. Product Summary: Facility for potable-water storage that is portable.
 - 4. Dimensions: HxWxD (in): 30"Hx48"Wx58"L Weight: 115 lbs.
 - 5. Reference: plastic-mart.com, 1-866-310-2556, direct 1-512-599-8020

PART 3 - EXECUTION

- 3.01. INSTALLATION
 - a. Complete install without removing the cover

22 33 00 Elecric Domestic Water Heaters

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. N/A

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 22 33 00 Electric Domestic Water Heaters
 - b. 22 33 00 Electric Domestic Water Heaters

2.02. SPECIFICATIONS

- a. Electric Domestic Water Heaters
 - 1. Product: RTE 3 / 444250
 - 2. Manufacture/Supplier: Bosch Tronic 5000 WH17
 - 3. Product Summary: Whole house electric tankless water heater
 - 4. Dimensions: W x L x H (in): $12 \frac{1}{2}$ " x $15 \frac{1}{4}$ " x $4 \frac{1}{2}$
 - 5. Reference: http://www.bosch-climate.us/products-bosch-thermotechnology/electric-tankless-water-heaters/bosch-tronic-wh27-wh17.htm/

PART 3 - EXECUTION

3.01. INSTALLATION

1. N/A

22 40 00 Plumbing Fixtures

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. 06 41 13 Wood-Veneer-Faced Architectural Cabinets

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 22 41 16.13 Residential Lavatories
- b. 22 41 16.16 Residential Sinks
- c. 22 41 39 Residential Faucets, Supplies, and Trim
- d. 22 41 23 Residential Showers

2.02. SPECIFICATIONS

- a. Residential Lavatories
 - 1. Product: Maverick II (267), Oval, single faucet center
 - 2. Manufacture/Supplier: Mansfield
 - 3. Product Summary: White vitreous china, self-rimming lavatory
 - 4. Dimensions: (Basin): 20" x 17" oval
 - 5. Reference: http://www.mansfieldplumbing.com/wp-content/uploads/2015/03/267.pdf
- b. Residential Sinks
 - 1. Product: Kitchen Sink Carrington, CLS-2522, one hole, 8" depth
 - 2. Manufacture/Supplier: Revere
 - 3. Product Summary: 25" x 22" x 8" depth, diamond-glo stainless steel, single bowl drop-in kitchen sink with one hole faucet
 - 4. Dimensions: (in): 21" x 15 1/4"" x 8", fits 30" cabinet
 - 5. Reference: http://www.reveresink.com/products/carringtons.pdf
- c. Residential Faucets, Supplies, and Trim

- 1. Product: Delta Trinsic, single Handle Pull-Out faucet, one hole installation
- 2. Manufacture/Supplier: Delta
- 3. Product Summary: Kitchen faucet
- 4. Dimensions HxW (in): 6 7/16" L x 7 7/8" H, 4159-DST, chrome
- 5. Reference: http://www.deltafaucet.com/kitchen/details/9159-dst.html
- d. Residential Faucets, Supplies, and Trim
 - 1. Product: Delta Compel, 561-MPU-DST, one hole installation, 6 7/16" L x 7 3/8" H
 - 2. Manufacture/Supplier: Delta
 - 3. Product Summary: Kitchen faucet
 - 4. Dimensions HxW (in): 6 7/16" L x 7 7/8" H, 4159-DST, chrome
 - 5. Reference: N/A
- d. Residential Showers
 - 1. Product: Sterling Advantage Shower
 - 2. Manufacture/Supplier: Sterling/Kohler
 - 3. Product Summary: Shower base and wall surround made of Vikrell material with durable swirl gloss finish.
 - 4. Dimensions: WxDxH (in): 32x34x72

PART 3 - EXECUTION

- 3.01. INSTALLATION
 - a. Residential Lavatories
 - 1. N/A
 - b. Residential Sinks
 - 2. N/A
 - c. Residential Faucets, Supplies, and Trim
 - 3. N/A
 - d. Residential Showers
 - 1. Tongue and groove four piece modular design allows for easy snap together installation. Some caulk is required for proper installation.
 - 2. Double studding is recommended for pivot shower door installation.
 - 3. Studs should be positions as shown in illustration

END OF DIVISION 22 PLUMBING

DIVISION 23 CENTRAL HEATING EQUIPMENT

23 57 00 Heat Exchagers for HVAC

PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. N/A

PART 2 - PRODUCTS

2.01. PRODUCTS

a. 23 57 00 Heat Exchangers for HVAC

2.02. SPECIFICATIONS

- a. Heat Exchangers for HVAC
 - 1. Product: Daikin Ductless LV Series .75 ton Slim Duct Built-in Concealed Ceiling Unit
 - 2. Manufacture/Supplier: Daikin
 - 3. Product Summary: Ceiling mount built in unit that connects to an single outdor unit.
 - 4. Energy Efficiency Levels:

SEER 19.5 HSPF 11.3

5. Reference:

http://www.daikinac.com/content/assets/DOC/SubmittalDataSheets/2015/Single%20Split%20Systems/Slim%20Duct-STD%20EFF/GENERATED_FDXS09LVJURXS09LVJU.pdf

- b. Heat Exchangers for HVAC-Outdoor Unit
 - 1. Product: Daikin Outdoor unit heat pump
 - 2. Manufacture/Supplier: Daikin
 - 3. Product Summary: Heating and cooling that connect indoor units to a single outdor unit.
 - 4. Energy Efficiency Levels:

SEER 19.5

HSPF 11.3

6. Reference:

http://www.daikinac.com/content/assets/DOC/SubmittalDataSheets/2015/Single%20Split%20Systems/Slim%20Duct-STD%20EFF/GENERATED_FDXS09LVJURXS09LVJU.pdf

PART 3 - EXECUTION

3.01. INSTALLATION

1. N/A

END OF DIVISION 23 CENTRAL HEATING EQUIPMENT

DIVISION 26 ELECTRICAL

26 05 00 Common Work Results for Electrical PART 1 – GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 26 05 13.13 Medium-Voltage Open Conductors
 - b. 26 05 13.13 Medium-Voltage Open Conductors
 - c. 26 05 13.13 Medium-Voltage Open Conductors
 - d. 26 05 13.13 Medium-Voltage Open Conductors
 - e. 26 05 13.13 Medium-Voltage Open Conductors
 - f. 26 05 13.13 Medium-Voltage Open Conductors
 - g. 26 05 13.13 Medium-Voltage Open Conductors

2.02. SPECIFICATIONS

- a. 26 05 13.13 Medium-Voltage Open Conductors
 - 1. Product: 12/3 NM-B Wire
 - 2. Manufacture/Supplier: Romex
 - 3. Product Summary: Solid bare copper strands, additional 12 awg uninsulated bare ground wire, indoor only cable, 107 lbs per 1000 feet, 20 AMPS, yellow, PVC Jacket, 600 volts
 - 4. Dimensions: 50', 250', 1000' lengths available
 - 5. Reference: http://www.wesbellwireandcable.com/Romex/Romexnmb12-3.html
- b. 26 05 13.13 Medium-Voltage Open Conductors
 - 1. Product: 10/3 NM-B Wire
 - 2. Manufacture/Supplier: Romex
 - 3. Product Summary: Solid bare copper strands, additional 10 awg uninsulated bare ground wire, indoor only cable, 164 lbs per 1000 feet, 30 AMPS, orange, PVC jacket, 600 volts
 - 4. Dimensions: 50', 250', 1000' lengths available
 - 5. Reference: http://www.wesbellwireandcable.com/Romex/Romexnmb10-3.html
- c. 26 05 13.13 Medium-Voltage Open Conductors
 - 1. Product: 10/4 NM-B Wire
 - 2. Manufacture/Supplier: Romex
 - 3. Product Summary: Solid bare copper strands, additional 10 awg, nylon jacketed, 600 volts, 30 AMPS, 201 lbs per 1000 feet
 - 4. Dimensions (DxHxW): 50', 250', 1000' lengths available
 - 5. Reference: http://www.crownindustrial.com/10-4-romex-nmb.html
- d. 26 05 13.13 Medium-Voltage Open Conductors

- 1. Product: 10 AWG, Type THHN or THWN-2 Conductor
- 2. Manufacture/Supplier: Southwire
- 3. Product Summary: gasoline and oil resistant, 600 volts, annealed copper, insulated with high-heat and moisture resistant PVC, jacketed with nylon, 37 lbs per 1000 feet, 30 AMPS
- 4. Dimensions: 20 mils insulation thickness, 4 mils jacket thickness
- 5.Reference:http://www.southwire.com/ProductCatalog/XTEInterfaceServlet?contentKey=prodcatsheet0EM120
- e. 26 05 13.13 Medium-Voltage Open Conductors
 - 1. Product: 6 AWG, Type THHN or THWN-2 Conductor
 - 2. Manufacture/Supplier: Southwire
 - 3. Product Summary: gasoline and oil resistant, 600 volts, annealed copper, insulated with high-heat and moisture resistant PVC, jacketed with nylon, 95 lbs per 1000 feet, 75 AMPS
 - 4. Dimensions (DxHxW): 30 mils insulation thickness, 5 mils jacket thickness
- 5.Reference:http://www.southwire.com/ProductCatalog/XTEInterfaceServlet?contentKey=prodcatsheetOEM120
- f. 26 05 13.13 Medium-Voltage Open Conductors
 - 1. Product: 4 AWG, Single Copper Conductor
 - 2. Manufacture/Supplier: Southwire
 - 3. Product Summary: gasoline and oil resistant, 1000 volts, annealed copper, insulated with high-heat and moisture resistant PVC, jacketed with nylon, 164 lbs per 1000 feet, 135 AMPS
 - 4. Dimensions (DxHxW): .08" insulation thickness, .39" in diameter
- 5.Reference:http://www.southwire.com/ProductCatalog/XTEInterfaceServlet?contentKey=prodcatsheet0EM161
- g. 26 05 13.13 Medium-Voltage Open Conductors
 - 1. Product: 2/0 AWG Service Entry Cable
 - 2. Manufacture/Supplier: Southwire
 - 3. Product Summary: gasoline and oil resistant, 1000 volts, annealed copper, insulated with high-heat and moisture resistant PVC, jacketed with nylon, 480 lbs per 1000 feet, 285 AMPS
 - 4. Dimensions (DxHxW): .095" insulation thickness, .59" in diameter
- 5.Reference:http://www.southwire.com/ProductCatalog/XTEInterfaceServlet?contentKey=prodcatsheet0EM161

26 24 00 Switchboards and Panelboards PART 1 – GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes
- 1.02. RELATED SECTIONS

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 26 24 16 Panelboards
 - b. 26 24 16 Panelboards
 - c. 26 24 16 Panelboards

d. 26 24 16 Panelboards

2.02. SPECIFICATIONS

- a. 26 24 16 Panelboards
 - 1. Product: Fusible Outdoor General-Duty Safety Switch, #TG4323R
 - 2. Manufacture/Supplier: GE
 - 3. Product Summary: Ideal for residential and commercial applications, 3-point mounting, galvanized steel enclosure, single-phase, 3-pole, 100 amp, 240-volt maximum
 - 4. Dimensions (DxHxW): 9.06" x 21.31" x 10.3"
- 5. Reference: http://www.homedepot.com/p/GE-100-Amp-240-Volt-Fusible-Outdoor-General-Duty-Safety-Switch-TG3223R/202978656?N=5yc1vZbm0hZ1z11za5
- b. 26 24 19 Panelboards (Load Center)
 - 1. Product: Homeline Indoor Main Plug-On Neutral Breaker Load Center with Cover, #HOM4080M200PCVP
 - 2. Manufacture/Supplier: Square D
 - 3. Product Summary: 200 amp 40-Space 80-Circuit, for residential and commercial power distribution, built with plate aluminum, fully distributed neutral bar, accepts full-size, tandem or quad breakers, up to (3) #10-14 equipment grounds, rate 120/240 VAC and 22,000 AIR short circuit current rating, three ground bar mounting locations
 - 4. Dimensions (DxHxW): 3.75 x 39.37 x 14.25
- 5. Reference: http://www.homedepot.com/p/Square-D-Homeline-200-Amp-40-Space-80-Circuit-Indoor-Main-Plug-On-Neutral-Breaker-Load-Center-with-Cover-Value-Pack-HOM4080M200PCVP/204836379?N=5yc1vZbm2w
- a. 26 24 16 Panelboards (Boxes)
 - 1. Product: Non-Metallic Switch and Outlet Box
 - 2. Manufacture/Supplier: Carlon
 - 3. Product Summary: For residential and commercial light use, thermoplastic construction, sized for standard devices and switches, permissible for use with 90 degree C-conductors, UL classified for 2-hour fire wall, meets NEMA OS-2
 - 4. Dimensions (DxHxW): 2.83 x 4.16 x 3.51
 - 5. Reference: http://www.homedepot.com/p/Carlon-1-Gang-18-cu-in-Zip-Box-Non-Metallic-Switch-and-Outlet-Box-Blue-Case-of-100-B118A/100404124
- a. 26 24 16 Panelboards (Boxes)
 - 1. Product: Non-Metallic Old Work Switch and Outlet Box
 - 2. Manufacture/Supplier: Carlon
 - 3. Product Summary: Residential and commercial use, use with non-metallic cable, thermoplastic construction, mounting ears and swing clamps, sized for standard devices and switches, extra capacity for wiring, built-in cable clamps to hold wires firmly in place, UL listed and fire rated
 - 4. Dimensions (DxHxW): 4.3 x 2.78 x 3.96
 - 5. Reference: http://www.homedepot.com/p/Carlon-2-Gang-25-cu-in-Non-Metallic-Old-Work-Switch-and-Outlet-Box-B225R-UPC/100404169

26 27 00 Low-Voltage Distribution Equipment PART 1 – GENERAL

1.01. SECTIONS REQUIREMENTS

- a. Product Data
- b. Construction and Shop Drawings
- c. Standards and Codes

1.02. RELATED SECTIONS

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 26 27 26 Wiring Devices
- b. 26 27 26 Wiring Devices
- c. 26 27 26 Wiring Devices
- d. 26 27 26 Wiring Devices
- e. 26 27 26 Wiring Devices
- f. 26 27 26 Wiring Devices
- g. 26 27 26 Wiring Devices
- h. 26 27 26 Wiring Devices
- j. 26 27 26 Wiring Devices
- k. 26 27 26 Wiring Devices
- I. 26 27 26 Wiring Devices
- m. 26 27 26 Wiring Devices
- n. 26 27 26 Wiring Devices
- o. 26 27 26 Wiring Devices

2.02. SPECIFICATIONS

- a. 26 27 26 Wiring Devices
 - 1. Product: Switches & Motor Controls 1453-21
 - 2. Manufacture/Supplier: Leviton
 - 3. Product Summary: 15 Amp, 120 Volt, Toggle Framed 3-Way AC Quiet Switch, Residential Grade, Grounding, Quickwire Push-In & Side Wired
 - 4. Dimensions:
 - 5. Reference: http://www.leviton.com/OA_HTML/ProductDetail.jsp?partnumber=1453-21%section=41455%minisite=10251
- b. 26 27 26 Wiring Devices
 - 1. Product: Switches & Motor Controls 1453-ICP
 - 2. Manufacture/Supplier: Leviton
 - 3. Product Summary: 15 Amp, 120 Volt, Toggle Framed 3-Way AC Quiet Switch, Residential Grade, Non-Grounding, Quickwire Push-In & Side Wired
 - 4. Dimensions:
 - 5. Reference: http://www.leviton.com/OA_HTML/ProductDetail.jsp?partnumber=1453-ICP§ion=41455&minisite=10251
- c. 26 27 26 Wiring Devices
 - 1. Product: Tamper-Resistant Receptacles TBR15-1
 - 2. Manufacture/Supplier: Leviton
 - 3. Product Summary: 15 Amp, 125 Volt, NEMA 5-15R, 2P, 3W, Tamper-Resistant, Narrow Body Duplex Receptacle, Straight Blade, Commercial Grade, Self Grounding, Back & Side Wired. Steel Strap
 - 4. Dimensions:

5. Reference: http://www.leviton.com/OA_HTML/ProductDetail.jsp?partnumber=TBR15-l§ion=42524&minisite=10251

d. 26 27 26 Wiring Devices

- 1. Product: Tamper-Resistant Receptacles TBR20-1
- 2. Manufacture/Supplier: Leviton
- 3. Product Summary: 20 Amp, 125 Volt, NEMA 5-20R, 2P, 3W, Tamper-Resistant, Duplex Receptacle, Straight Blade, Commercial Grade, Self Grounding, , Back & Side Wired, Steel Strap
- 4. Dimensions:
- 5. Reference: http://www.leviton.com/OA HTML/ProductDetail.jsp?partnumber=TBR20-l§ion=42525&minisite=10251

e. 26 27 26 Wiring Devices

- 1. Product: USB Charger Devices T5830-I
- 2. Manufacture/Supplier: Leviton
- 3. Product Summary: Combination Receptacle/Outlet And Usb Charger. 20A-125V, 2Pole, 3-Wire Grounding Decora Tamper Resistant Receptacle/Outlet
- 4. Dimensions:
- 5. Reference: http http://www.leviton.com/OA_HTML/ProductDetail.jsp?partnumber=T5830-l§ion=63492&minisite=102511. Product: Tamper-Resistant Receptacles TBR20-1

f. 26 27 26 Wiring Devices

- 1. Product: CFCI Receptacles N7899-HGI
- 2. Manufacture/Supplier: Leviton
- 3. Product Summary: 20 Amp, 125 Volt Receptacle, Hospital Grade, 20 Amp Feed-Through, SmartLock Pro Slim GFCI, monochromatic, back and side wired, wallplate and self grounding clip included
- 4. Dimensions:
- 5. Reference: http://www.leviton.com/OA HTML/ProductDetail.jsp?partnumber=N7899-HGl§ion=65900&minisite=10251

g. 26 27 26 Wiring Devices

- 1. Product: Occupancy Sensors IPPOR-1LI
- 2. Manufacture/Supplier: Leviton
- 3. Product Summary: Manual-On Occupancy Sensor Remote, 15A 120VAC, 60Hz, provides 3-way occupancy detection when used with an IPP15 or Vizia Dimmer, 180 Degree, 900 Sq. Ft. Coverage, Decora® Passive Infrared Wall Switch- Ivory, California Title 24 2005 Compliant
- 4. Dimensions:
- 5. Reference: http://www.leviton.com/OA_HTML/ProductDetail.jsp?partnumber=IPPOR-1LI§ion=38557&minisite=10251

h. 26 27 26 Wiring Devices

- 1. Product: Straight Blade Wiring Devices 279
- 2. Manufacture/Supplier: Leviton
- 3. Product Summary: 50 Amp, 125/250 Volt, NEMA 14-50R, 3P, 4W, Flush Mtg Receptacle, Straight Blade, Industrial Grade, Grounding, , Side Wired, Steel Strap, Black
- 4. Dimensions:
- 5. Reference:

http://www.leviton.com/OA HTML/ProductDetail.jsp?partnumber=279§ion=42418&minisite=10251

i. 26 27 26 Wiring Devices

- 1. Product: Homeline 20 Amp Single-Pole AFCI Circuit Breaker Model # HOM120AFIC
- 2. Manufacture/Supplier: Schneider Electric Homeline
- 3. Product Summary: Single-Pole AFCI Circuit Breaker features an AFCI for arc-fault, overload and short-circuit protection of your electrical system
- 4. Dimensions:
- 5. Reference:

http://www.homedepot.com/p/Square-D-Homeline-20-Amp-Single-Pole-AFCI-Circuit-Breaker-HOM120AFIC/100128763?cm mmc=shopping- -googleads- -pla- -

100128763&ci sku=100128763&ci gpa=pla&ci src=17588969&gclid=CjwKEAjw8760BR CYr86w6KGfpkgSJAAClidwN73xClM4nenzJhNu3uXzSF9Q1n2xw-dApZFu5rjoXhoCb9Hw wcB

j. 26 27 26 Wiring Devices

- 1. Product: Homeline 20 Amp Single-Pole Circuit Breaker
- 2. Manufacture/Supplier: Schneider Electric Homeline
- 3. Product Summary: The Square D by Schneider Electric Homeline 20 Amp One-Pole Circuit Breaker is used for overload and short-circuit protection of your electrical system. This breaker is compatible with Homeline load centers and CSED devices. The ANSI-certified and UL-listed unit is rated for 120/240 VAC and 10,000 AIR.
- 4. Dimensions:
- 5. Reference: http://www.homedepot.com/p/Square-D-Homeline-20-Amp-Single-Pole-Circuit-Breaker-HOM120CP/100045009?N=5yc1vZbm3aZ1z11yyo

k. 26 27 26 Wiring Devices

- 1. Product: Homeline 15 Amp Single-Pole Circuit Breaker
- 2. Manufacture/Supplier: Schneider Electric Homeline
- 3. Product Summary: The Square D by Schneider Electric Homeline 15 Amp One-Pole Circuit Breaker is used for overload and short-circuit protection of your electrical system. This breaker is compatible with Homeline load centers and CSED devices. The ANSI-certified and UL-listed unit is rated for 120/240 VAC and 10,000 AIR
- 4. Dimensions:
- 5. Reference: http://www.homedepot.com/p/Square-D-Homeline-15-Amp-Single-Pole-Circuit-Breaker-HOM115CP/100153952?N=5yc1vZbm3aZ1z11z3t

I. 26 27 26 Wiring Devices

- 1. Product: Homeline 40 Amp Two-Pole Circuit Breaker
- 2. Manufacture/Supplier: Schneider Electric Homeline
- 3. Product Summary: used for overload and short-circuit protection of your electrical system. This breaker is compatible with Homeline load centers and CSED devices. The ANSI-certified and UL-listed unit is rated for 120/240 VAC and 10,000 AIR
- 4. Dimensions:
- 5. Reference: http://www.homedepot.com/p/Square-D-Homeline-40-Amp-Two-Pole-Circuit-Breaker-HOM240CP/202353324?N=5yc1vZbm1eZ1z11spb

m. 26 27 26 Wiring Devices

- 1. Product: Homeline 15 Amp Two-Pole Circuit Breaker
- 2. Manufacture/Supplier: Schneider Electric Homeline
- 3. Product Summary: used for overload and short-circuit protection of your electrical system. This breaker is compatible with Homeline load centers and CSED devices. The ANSI-certified and UL-listed unit is rated for 120/240 VAC and 10,000 AIR
- 4. Dimensions:
- 5. Reference: http://www.homedepot.com/p/Square-D-Homeline-15-Amp-Two-Pole-Circuit-Breaker-HOM215CP/202353317?N=5yc1vZbm1eZ1z11z3t

n. 26 27 26 Wiring Devices

- 1. Product: Homeline 30 Amp Two-Pole Circuit Breaker
- 2. Manufacture/Supplier: Schneider Electric Homeline
- 3. Product Summary: used for overload and short-circuit protection of your electrical system. This breaker is compatible with Homeline load centers and CSED devices. The ANSI-certified and UL-listed unit is rated for 120/240 VAC and 10,000 AIR
- 4. Dimensions:
- 5. Reference: http://www.homedepot.com/p/Square-D-Homeline-30-Amp-Two-Pole-Circuit-Breaker-HOM230CP/202353325?N=5yc1vZbm1eZ1z11vjb

o. 26 27 26 Wiring Devices

- 1. Product: Homeline 90 Amp Two-Pole Circuit Breaker
- 2. Manufacture/Supplier: Schneider Electric Homeline
- 3. Product Summary: used for overload and short-circuit protection of your electrical system. This breaker is compatible with Homeline load centers and CSED devices. The ANSI-certified and UL-listed unit is rated for 120/240 VAC and 10,000 AIR
- 4. Dimensions:
- 5. Reference: http://www.homedepot.com/p/Square-D-Homeline-90-Amp-Two-Pole-Circuit-Breaker-HOM290CP/100206837?N=5yc1vZbm1eZ1z11srr

26 50 00 Lighting PART 1 – GENERAL

1.01. SECTIONS REQUIREMENTS

- a. Product Data
- b. Construction and Shop Drawings
- c. Standards and Codes

1.02. RELATED SECTIONS

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 26 50 00 Lighting A
- b. 26 50 01 Lighting B
- c. 26 50 02 Lighting C

2.02. SPECIFICATIONS

- a. Lighting A
 - 1. Product: LED45 4.5" round LED Downlight
 - 2. Manufacture/Supplier: H.E. Williams, Inc.
 - 3. Product Summary: Rated for 50,000 hours at 70% lumen maintenance, 1100-lumen module
 - 4. Dimensions: H x WxL (in): 8 1/8" x 12" x 16 1/4"
 - 5. Reference: http://hewilliams.com/specification/70441.pdf

c. Lighting B

- 1. Product: HET 1' x 1' Square Architectural downlight-LED
- 2. Manufacture/Supplier: H. E. Williams, Inc
- 3. Product Summary: Compact, LED downlight, rated for 50,000 hours at 70% lumen maintenance
- 4. Dimensions: H x WxL (in): 6 5/16" " x 17" x 23"
- 5. Reference: http://hewilliams.com/specification/70339.pdf

c. Lighting C

- 1. Product: LLMS-2-LED UT11-S-RD-WRS/120, Architectural Slimline Surface mount
- 2. Manufacture/Supplier: H. E. Williams, Inc
- 3. Product Summary: Rated for 50,000 hours at 70% lumen maintenance, slim, low profile, frosted, round, extruded acrylic lens
- 4. Dimensions: Pan Size W x H (in): 2' long x 3 7/16" x 2 5/8"
- 5. Reference: http://hewilliams.com/specification/70402.pdf

PART 3 - EXECUTION

3.01. INSTALLATION

a. Lighting A

1. N/A

b. 26 50 01 Lighting B

1.N/A

c. 26 50 02 Lighting C

1. N/A

26 56 00 Exterior Lighting PART 1 – GENERAL

1.01. SECTIONS REQUIREMENTS

- a. Product Data
- b. Construction and Shop Drawings
- c. Standards and Codes

1.02. RELATED SECTIONS

PART 2 - PRODUCTS

2.01. PRODUCTS

a. 26 56 29 Site Lighting

PART 3 - EXECUTION

3.01. INSTALLATION

END OF DIVISION 26 ELECTRICAL

DIVISION 32 - EXTERIOR IMPROVEMENTS

32 90 00 Planting PART 1 - GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

a. N/A

PART 2 - PRODUCTS

- 2.01. PRODUCTS
 - a. 32 91 13.16 Mulching
 - b. 32 93 23 Plants and Bulbs
 - c. 32 94 00 Planting Accessories

2.02. SPECIFICATIONS

- a. Mulching
 - 1. Product: Mulch (in planters)-NONE
 - 2. Manufacturer: N/A
 - 3. Product Summary: N/A
 - 4. Dimensions: N/A
 - 5. Reference: N/A
- b. Plants and Bulbs
 - 1. Product: Type A, Liriope ground cover, plants will remain in nursery pots
 - 2. Supplier: Green Thumb Nursery, Lake Forest, CA 949-847-3040
 - 3. Product Summary: plants in 5 gallon containers
 - 4. Dimensions: N/A
 - 5. Reference: N/A
- c. Plants and Bulbs
 - 1. Product: Type B Native California grass, 5 gallon, plants will remain in nursery pots
 - 2. Supplier: Green Thumb Nursery, Lake Forest, CA 949-847-3040
 - 3. Product Summary: Creeping Red Fescue, 3'x3', in 5 gallon containers
 - 4. Dimensions: N/A
 - 5. Reference: N/A
- c. Plants and Bulbs
 - 1. Product: Type C Variety of herbs such as Rosemary, Thyme, Sage, Basil
 - 2. Supplier: Green Thumb Nursery, Lake Forest, CA 949-847-3040
 - 3. Product Summary: herbs in pots, plants remain in nursery pots
 - 4. Dimensions: N/A
 - 5. Reference: N/A

- e. Planting Accessories
 - 1. Product: Planter- 2 x 4 wood skirt with ½" plywood on top
 - 2. Manufacturer: N/A
 - 3. Product Summary: N/A
 - 4. Dimensions WxLxH (in): 1'x8'x4" tall
 - 5. Reference: N/A

PART 3 - EXECUTION

3.01. INSTALLATION

a. N/A

END OF DIVISION 32 EXTERIOR IMPROVEMENTS

DIVISION 48 - ELECTRICAL POWER GENERATION

48 10 00 Electrical Power Generation Equipment PART 1 – GENERAL

- 1.01. SECTIONS REQUIREMENTS
 - a. Product Data
 - b. Construction and Shop Drawings
 - c. Standards and Codes

1.02. RELATED SECTIONS

- a. 26 05 19 Low-Voltage Electrical Power Conductors and Cables
- b. 26 31 00 Photovoltaic Collectors
- c. 45 45 00 Electrical Equipment, Appliance, and Component Manufacturing Equipment
- d. 48 19 00 Electrical Power Control Equipment

PART 2 - PRODUCTS

2.01. PRODUCTS

- a. 48 14 00 Solar Energy Electrical Power Generation Equipment
- b. 48 14 00 Solar Energy Electrical Power Generation Equipment
- c. 48 14 13 Solar Energy Collector
- d. 48 14 00 Solar Energy Electrical Power Generation Equipment

2.02. SPECIFICATIONS

- a. Solar Energy Electrical Power Generation Equipment
 - 1. Product: Sunny Boy Inverter SB3000TL-US with integrated AFCI
 - 2. Manufacture: Sunny Boy
 - 3. Product Summary: convert solar energy DC to AC.
 - 4. Dimensions: 24"Hx18.5"Wx9"D Weight: 141 lbs.
 - 5. Reference: http://www.sma-america.com/en_US/home.html
- b. Solar Energy Electrical Power Generation Equipment
 - 1. Product: Sunny Boy Inverter SB4000TL-US with integrated AFCI
 - 2. Manufacture: Sunny Boy
 - 3. Product Summary: convert solar energy DC to AC.
 - 4. Dimensions: 24"Hx18.5"Wx9"D
 - Weight: 141 lbs.
 - 5. Reference: http://www.sma-america.com/en_US/home.html
- c. Solar Energy Collector
 - 1. Product: Sun Power Solar Panels X-21-335
 - 2. Manufacture: Sun Power
 - 3. Product Summary: The Sun Power Solar Panels generate more energy per square foot and produce more energy per rated watt.
 - 4. Dimensions: 41.2"Hx61.4"Wx1.81"D
 - Weight: 41 lbs.
 - 5. Reference: http://us.sunpower.com

- d. Solar Energy Electrical Power Generation Equipment
 - 1. Product: Solar mount
 - 2. Manufacture/Supplier: Unirac
 - 3. Product Summary: Clear Anodized
 - 4. Dimensions: W x L (in): 1" x 1 1/4"
 - 5. Reference:http://unirac.com/sites/default/files/solarmounttechdata sheet.pdf

PART 3 – EXECUTION 3.01. INSTALLATION a. N/A

END OF DIVISION 48 ELECTRICAL POWER GENERATION