HARVEST VILLAGE

SOLAR DECATHLON - U.S. DEPARTMENT OF ENERGY - ATTACHED HOUSING 2019 STUDENT DESIGN COMPETITION - DIVISION PRESENTATION BY **THE NEW RURALISTS**

COMMUNITY MASTERPLAN

Pollinator Prairie 1 Nature Hut 2

Residential Parking Lot 3 Community Greenway 4 Community Barn 5 Sowing Seeds Academy 6 Proposed BCRTA Bus Stop 7

PROJECT INTRODUCTION

ENERGY PERFORMANCE

ENGINEERIN

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

PROJECT DATA

- Location: 3260 Oxford Millville Rd, Oxford, OH 45056
- **County:** Butler

•

- **Development Details:** Community housing development of 1, 2 and 3 bedroom attached homes
 - Total Number of Units: 108
- Maximum Density: 12 units/acre
- Proposed Density: 4.7 units/acre

Unit Sizes (Leaseable SF):

1-Bedroom (12): 722 SF

- 1-Bedroom Accessible (12): 839 SF
- 2-Bedrooom (60): 1,632 SF
- 2-Bedroom Accessible (12): 1,394 SF
- 3-Bedroom (12): 1,726 SF

TEAM MEMBERS

PROJECT INTRODUCTION

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

BEN ARIAS Zoology Major Architecture Minor 4th-Year Student Team Leader

EMMA HOY Engineering Major Spanish Linguistics Minor 4th-Year Student

MAITREY PRAJAPATI Architecture Major Passive House Consultant 3rd-Year Student Team Leader

BLAKE KEM

Architecture Major

Spanish Major

3rd-Year Student

IVAN DYE Architecture Major Student-Athlete 3rd-Year Student

AMY FERRIS Architecture Major Sustainability Major 3rd-Year Student

KARI KRUSE Architecture Major Management Minor 4th-Year Student

YUE SHI Architecture Major Interactive Media Studies 4th-Year Student

PROJECT INTRODUCTION

ENERGY PERFORMANCE

ENGINEERIN

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

INNOVATION

FACULTY AND INDUSTRY PARTNERS

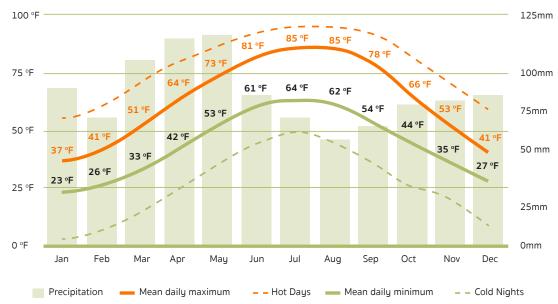
MARY ROGERO Dept. of Architecture Associate Professor Licensed Architect CPHC, LEED AP

JOHN RICHTER Dept. of Mechanical and Manufacturing Engineering Clinical Faculty

Nationally Recognized Leader in Sustainability

DOUG HAMMERLE Director of Energy Systems

CLIMATE


CLIMATE DATA

ENERGY PERFORMANCI

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY Climate Zone: 5A Annual Precipitation: 41.67 inches Annual Average Sunrise: 177 days, 2,124 hours Annual Average Global Solar Radiation: 4.39 kWh/m2/day or 1604.41 kWh/m2/year Elevation: 928 feet Average Heating Degree Days (68 Degree): 5,931 Average Cooling Degree Days (68 Degree): 977 ASHRAE 99.6% Heating DB: -18.1 F ASHRAE 99% Heating DB: -14.9 F ASHRAE 0.4% Cooling DB/MCWB: 32.5/22.5 F ASHRAE 1% Cooling DB/MCWB: 31.3/22.8 F Extrapolated EPA Radon Zone: 1

AVERAGE TEMPERATURE AND PRECIPITATION

ARKET POTENTIA

COMFORT AND ENVIRONMENTAL OUALITY

Source: Meteoblue

PROJECT INTRODUCTION

CONTEXT

ENERGY PERFORMANC

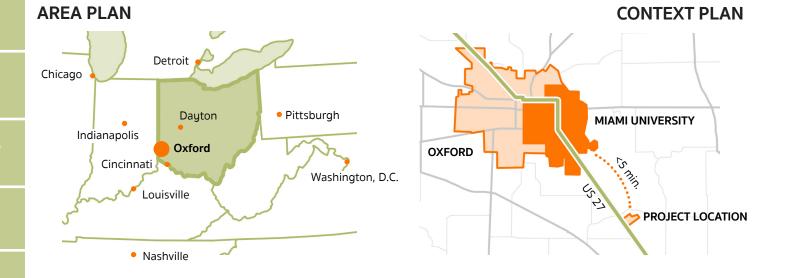
ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

THE CITY


المتعاديم

THIN

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

THE NEIGHBORHOOD

THE SITE

PROJECT INTRODUCTION	DBOI	ECT	INTD		CTIO	М
		EGI		UUU	CHU	X.

	PHIUS+ 2018 DESIGN PARAMETERS				
ENERGY PERFORMANCE	 Annual Heating Demand: 9.0 kBTU/ft²yr Annual Cooling Demand: 10.3 kBTU/ft²yr Peak Heat Load: 5.7 BTU/ft²hr 				
ENGINEERING	 Peak Cool Load: 5.2 BTU/ft²hr Annual Primary Energy: 3,840 kWh/p/yr Air Tightness: 0.06 CFM/ft² @ 50 Pa 				
FINANCIAL FEASIBILITY AND	TECHNICAL SPECIFICATIONS				
AFFORDABILITY	 Wall Insulation: R-34 Foundation Insulation: R-20 				
RESILIENCE	 Roof Insulation: R-43 Window Performance: Klearwall AluClad Passiv triple pane window units, 0.125 U-value, SHGC: 0.6 Deer Performance: Algen Clear Performance Turgle 				
ARCHITECTURE	 Door Performance: Alpen Clear Performance Tyrol Series Wall System: BuildSMART Multi-Story System w/ Rainscreen 				
OPERATIONS	Roof System: Wood Raised-Heel Truss MEP SYSTEMS				
MARKET POTENTIAL	 Ventilation System: Ultimate Air ERV Cooling and Heating: Mitsubishi Electric Horizontal ducted Mini-Split 				
COMFORT AND ENVIRONMENTAL QUALITY	 Water Heater: Rheem (30 - 50 gal.) Electric Water Heater Electrical System: LED Fixtures Photovoltaics: Sunflower 4kW - 6kW system 				
INNOVATION	 Appliances: Samsung Energy Star, High Efficient Appliances Plumbing: Low flow, WaterSense certified fixtures 				

TECHNICAL HIGHLIGHTS

EUI ESTIMATE AT PH STANDARD

- 1-Bed: 17.29 kBTU/ft²/yr •
- 1-Bed Accessible: 16.32 kBTU/ft²/yr •
- 2-Bed: 12.86 kBTU/ft²/yr •
- 2-Bed Accessible: 11.09 kBTU/ft²/yr •
- 3 Bed: 14.63 kBTU/ft²/yr •

HERS SCORES

- 1-Bed: 67 before PV, 0 after PV ٠
- 1-Bed Accessible: 49 before PV, -6 after PV •
- 2-Bed: 64 before PV, -1 after PV ٠
- 2-Bed Accessible: 58 before PV, -14 after PV ٠
 - 3 Bed: 61 before PV, -6 after PV

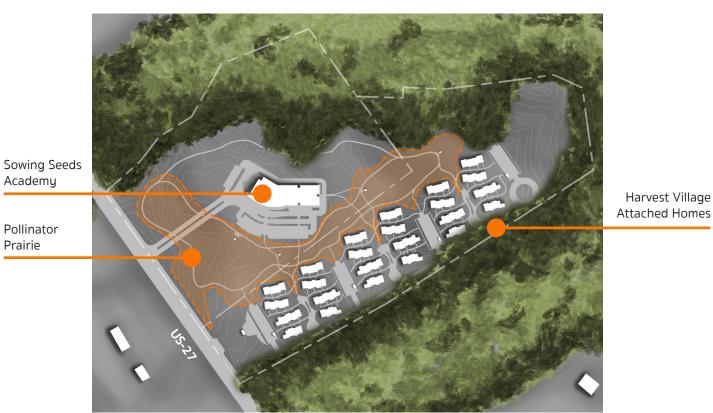
.

CONSTRUCTION TIMELINE

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

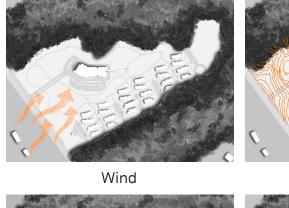

RESILIENCE

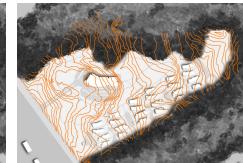
ARCHITECTURE

OPERATIONS

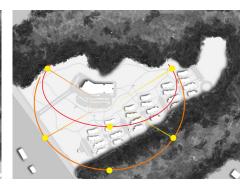
MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

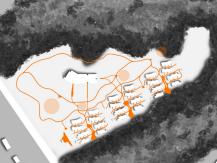



SITE

SITE ANALYSIS


PROJECT INTRODUCTION

OPERATIONS



Topography

Sun Path

Paths and Nodes

Parking and Hardscapes

Community Spaces

PROJECT INTRODUCTION

NARRATIVES

STACY AND REBECCA UNIT TYPE "A": 2 BEDROOM

LAWRENCE AND ETHEL UNIT TYPE "B": 1 BEDROOM

RICARDO UNIT TYPE "C": 1 BEDROOM THE MITCHELL FAMILY UNIT TYPE "D": 3 BEDROOM

PROJECT GOALS

SYMBIOSIS BETWEEN EDUCATION AND LIVING

EFFICIENT, MARKET-READY HOUSING

DYNAMIC AND UNIVERSAL DESIGN

PASSIVE HOUSE

ECOLOGICAL

REGENERATION

1 👖 🕨

PERSONAL ENERGY USE

MONITORING

♠ ▲¥

ENERGY PERFORMANCE

PROJECT INTRODUCTION

ENGINEERING

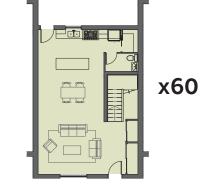
FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL


COMFORT AND ENVIRONMENTAL OUALITY

UNIT PLANS

UNIT TYPE "2" 2 BEDROOM, 2 1/2 BATH

1,632 SF

First Floor Plan

UNIT TYPE "2A"

2 BEDROOM, 2 1/2 BATH ACCESSIBLE 1,394 SF

Second Floor Plan


٦C

Second Floor Plan

First Floor Plan

UNIT TYPE "1" 1 BEDROOM, 1 1/2 BATH 722 SF

Second Floor Plan

x12

UNIT TYPE "1A" 1 BEDROOM, 1 BATH ACCESSIBLE 839 SF

First Floor Plan

First Floor Plan

PROJECT INTRODUCTION

OPERATIONS

x12

PROJECT INTRODUCTION

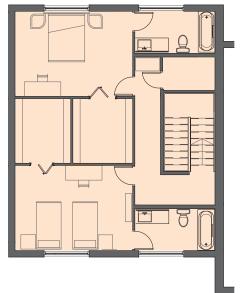
ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE


OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY UNIT TYPE "3" 3 BEDROOM, 3 1/2 BATH ACCESSIBLE 1,726 SF

First Floor Plan

Second Floor Plan

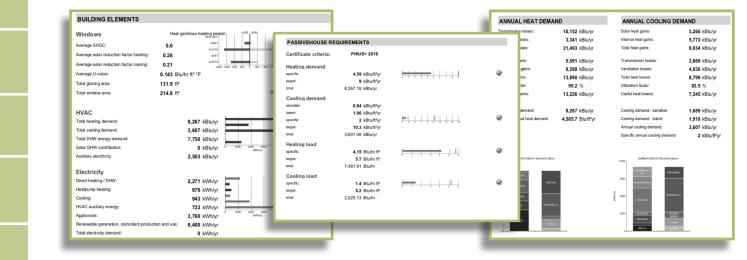
INNOVATION

UNIT PLANS

PROJECT INTRODUCT

SEFAIRA

.


. . .

WUFI PASSIVE

. . .

.

.

ENERGY PERFORMANCE

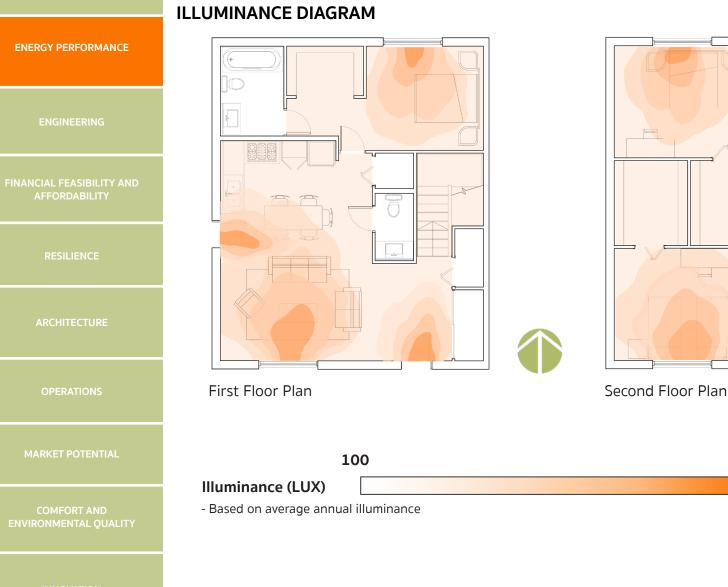
ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

.

ARCHITECTURE


OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

DAYLIGHTING

10,000

REM/RATE AND HERS ANALYSIS

ROW	UNIT TYPE	HERS BEFORE PV	HERS AFTER PV	COOLING LOAD (MMBtu)	HEATING LOAD (MMBtu)	ANNUAL COST (\$)
Α	3	61	-6	8.7	5.1	-39
	2	64	-1	7.1	4.2	53
В	1	67	0	4.7	3.2	62
	2	64	-1	7.1	4.2	53
	2A	58	-14	6.9	5.3	-146
С	1A	49	-6	3.1	2.6	-11
	2	64	-1	7.1	4.2	53
D	1	67	0	4.7	3.2	62
	1A	49	-6	3.1	2.6	-11
	2	64	-1	7.1	4.2	53

General Building Information Conditioned Floor Area (sq f):

Infiltration Volume (culf)

Year Built:

Hig Ell Cig

Above-Grade Wall Propertie

IT TYPE ARRANGEMENTS:

3 3 2 2 2 2 2 2 **1**A

ENERGY PERFORMANCE

OPERATIONS

Name Type

Exterior ... AH Builds

I Exterior ... AH Builds

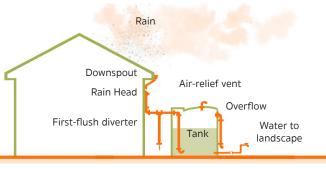
AH Builds Place Setting Capacity: 14 Convection Oven Housing Type ¥ New Level Type (Ap nents Only) Сору New Number of Units (Multi-Family Whole Buildings only) Elec Rate: 0.1065 • Gas Rate: 0.00 Number of Floors Above Grade (incl walkout bsm nnual Gas Cost Number of Bed Name Performance Adj. (%): 100.0 Slab Fourman Type System-W Roperties Туре -(at Med. speed) Gro Enclosed Crawl Space Tvp 30.0 Setucint Terrostature (F): 3 RESNET Defaults 97.0 Programmable Thermostat Number of Stories Including Conditioned B Capacity Weight % of Load Serv Served (must total 1 Thermal Boundary Locatio **HERS Index** Standard Net Zero Energy PH - Existing Homes -ZERO New Home Home **ENERGY STAF** N SA SKIMAN KA HARVEST VILLAGE 150 140 130 120 70 110 100 90 80 60 50 40 30 20 10

1804

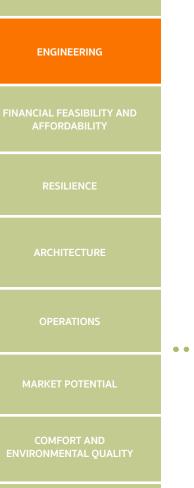
17138

2019

ion: Conditioned •

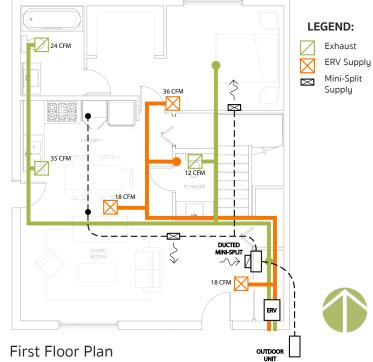

Our homes with PV

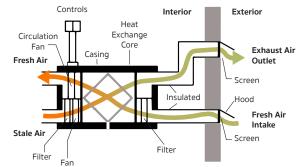
PLUMBING AND WATER USAGE


First Floor Plan

Second Floor Plan

LEGEND: Hot Cold


SCHEMATIC HOT WATER PLAN

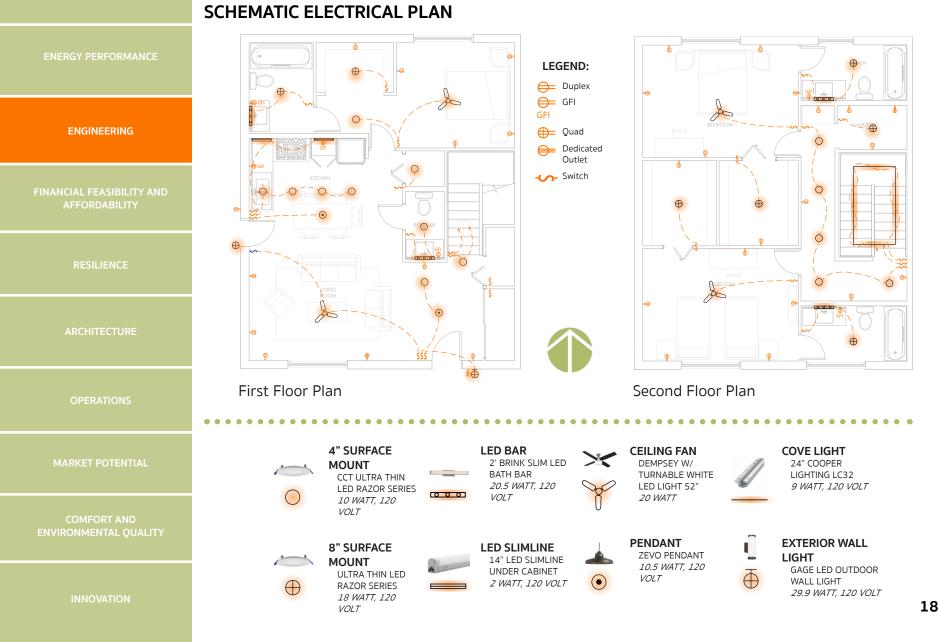


ERV AND VENTILATION

SCHEMATIC MECHANICAL PLAN

Second Floor Plan

UltimateAir[®]



17

ELECTRICAL

FINANCIAL SUMMARIES

CONSTRUCTION COST SUMMARY

Construction Element	Baseline	Harvest Village
Site Work	\$ 9,890	\$ 9,349
Foundations	\$ 15,966	\$ 14,173
Framing	\$ 25,562	\$ 32,830
Exterior Finishes	\$ 20,367	\$ 26,465
Major Systems Rough-Ins	\$ 20,367	\$ 18,897
Interior Finishes	\$ 42,235	\$ 43,822
Final Steps	\$ 10,321	\$ 3,749
Other	\$ 2,934	\$ 20,650
Total 3 Bed Constr. Cost	\$ 147,642	\$ 169,935
1 Bed	\$ 61,760	\$ 98, 835
1 Bed Accessible	\$ 70,998	\$ 112,974
2 Bed	\$ 139,601	\$ 139,976
2 Bed Accessible	\$ 119,243	\$ 132,659

SALES PRICE SUMMARY

	Baseline	Harvest Village
Finished Lot Cost	\$ 44,636	\$ 28,292
Financing Costs	\$ 3,282	\$ 3,559
Overhead and General Expenses	\$ 10,388	\$ 11,264
Marketing Cost	\$2,552	\$ 2,767
Sales Commission	\$ 8,528	\$ 9,247
Profit	\$ 22,318	\$ 21,210
Total 3 Bed Constr. Sales Price	\$ 239,346	\$ 253,094

ENERGY PERFORMANCE

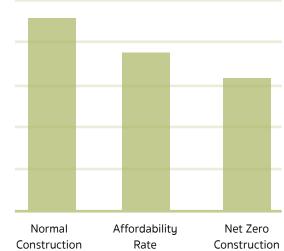
ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

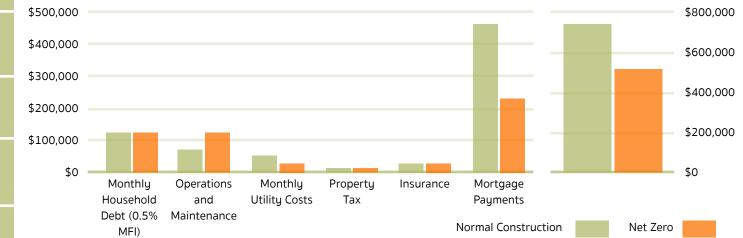
RESILIENCE

ARCHITECTURE

OPERATIONS


MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY


AFFORDABILITY

MONTHLY COST OF LIVING SUMMARY Baseline Harvest Village Total Sales Price \$ 239,346 \$ 253,094 Monthly Household Debt \$ 315 \$ 315 **Operations and Maintenance** \$196 \$ 300 Monthly Utility Costs \$ 160 \$ 88 **Property Taxes** \$ 332 \$ 316 Insurance \$79 \$ 80 FINANCIAL FEASIBILITY AND Mortgage \$ 624 \$ 1,283 AFFORDABILITY **Total Monthly Cost** \$ 2.365 \$ 1.724 Estimate Target Family Income \$ 63,000 \$63,000 Debt to Income Ratio 45% 31% Normal **30-YEAR COST TO OWN AND OPERATE** \$500,000 \$400,000

OWNERSHIP AFFORDABILITY COMPARISON

30-YEAR COST SUMMARY

MARKET POTENTIA

COMFORT AND ENVIRONMENTAL QUALITY

FINANCIAL ANALYSIS

PROJECT INTRODUCTION

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

PV ARRAY AND MICRO-GRID

COMMUNITY PV ARRAY SUMMARY

Unit	Angle	Effective EUI	Load (kWh/yr)	System Size for year 1 (Panels)	System Size for Year 25 (Panels)
1B	30	17.29	4525	3.45 kW (10)	3.725 kW (11)
1BA	30	16.32	4825	3.725 kW (11)	3.81 kW (11)
2B	30	12.86	6500	4.83 kW (14)	5.175 kW (15)
2BA	30	11.09	8150	6.21 kW (18)	6.555 kW (19)
3B	30	14.63	8400	6.21 kW (18)	6.55 kW (19)

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

PV ARRAY AND MICRO-GRID

3-BEDROOM PV ARRAY

8,407 kWh/Year

System output range from 7,702 to 8,332 kWh per year this location.

Month	Solar Radiation (kWh/m²/day)	AC Energy	Value
January	3.02	482	40
February	4.18	593	49
March	4.48	694	58
April	5.64	802	66
Мау	5.89	843	70
June	6.22	846	70
July	6.26	875	73
August	6.29	873	72
September	5.59	767	64
October	4.61	670	56
November	3.47	524	43
December	2.72	438	36
ANNUAL	4.86	8,407	\$697

LOCATION:

Weather Data Source: Lat, Lon: 39.49, -84.7 (1.4mi) Latitude: 39.49 N Longitude: 84.7 W

PV SYSTEM SPECIFICATIONS:

DC System Size: 6 kW Module Type: Standard Array Type: Fixed (Open Rack) Array Tilt: 30° Array Azimuth: 180° System Losses: 12.74% Inverter Efficiency: 96% DC to AC Size Ratio: 1.2

ECONOMICS:

Average Retail Electricity Rate: 0.083 \$/kWh

PERFORMANCE METRICS:

Capacity Factor: 16.0%

PANEL:

Sunflower X21 345 Size: 41.2" x 61.3", 19.11 W/ft² Efficiency: 91.75% after 25 years

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

POLLINATOR PRAIRIE

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

INNOVATION

NATIVE AND POLLINATOR-FRIENDLY VEGETATION

Ohio

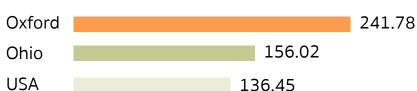
Spiderwort

Black-eyed Susan

Milkweed

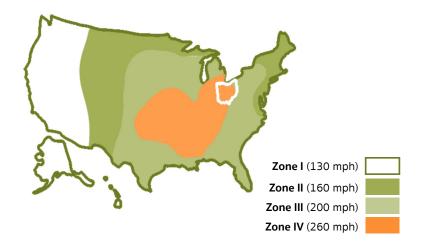
Lavender

Sunflower



Ohio Goldenrod

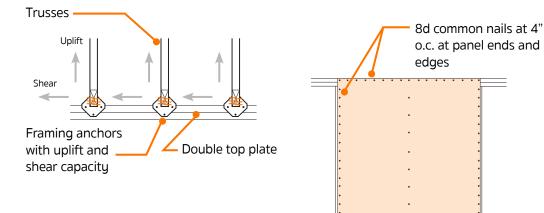
Flowering Dogwood


STORM MITIGATION

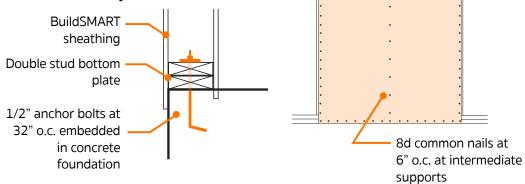
	TORNADO INDEX VALUE
ENERGY PERFORMANCE	Oxford
ENGINEERING	Ohio USA
FINANCIAL FEASIBILITY AND AFFORDABILITY	The tornad tornado da of the torr
RESILIENCE	value trans
ARCHITECTURE	WIND ZONE MAP
OPERATIONS	
MARKET POTENTIAL	
COMFORT AND ENVIRONMENTAL QUALITY	Se
INNOVATION	

he tornado index value is calculated base on historical ornado data using **USA.com** algorithms. It is an indicator the tornado level in a region. A higher tornado index lue translates to a higher risk of a catastrophic event.

D



DDO	ECT	NTD	ODU	ICTION
PRUJ	EUL	INTR	UDU	


STORM MITIGATION

TORNADO-RESISTIVE CONSTRUCTION

Rafters to top plates
 Sheathing to studs

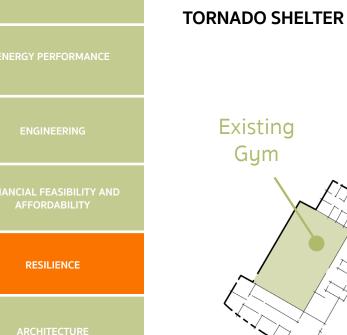
• Bottom plates to found.

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

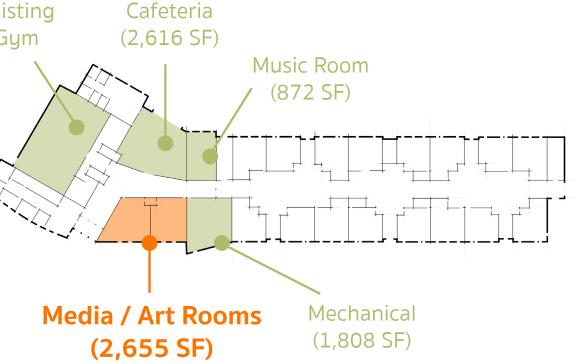
ARCHITECTURE


OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

PROJECT INTRODUCTION


STORM MITIGATION

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

SOWING SEEDS ELEMENTARY FIRST FLOOR PLAN

ENERGY PERFORMANCE

ENGINEERIN

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

Sowing Seeds Academy

Pollinator Prairie

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

Harvest Village Attached Homes

BUILDING ELEVATIONS

SOUTH ELEVATION

NORTH ELEVATION

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

BUILDING ELEVATIONS

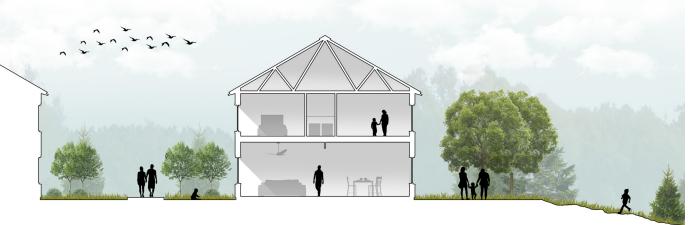
ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

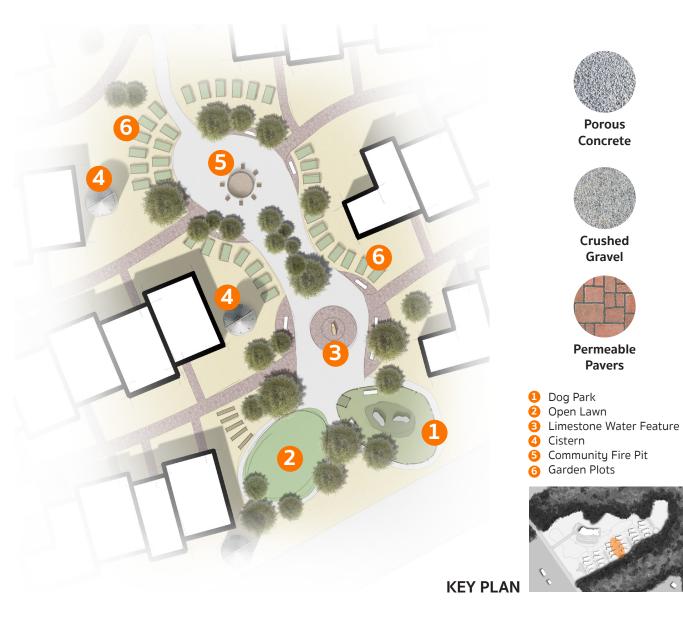
OPERATIONS


MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

INNOVATION

WEST ELEVATION


TRANSVERSE SECTION (NORTH - SOUTH)

COMMUNITY GREENWAY

Porous Concrete

Crushed Gravel

Permeable Pavers

ARCHITECTURE

OPERATIONS

COMMUNITY GREENWAY

PROJECT INTRODUCTIC

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

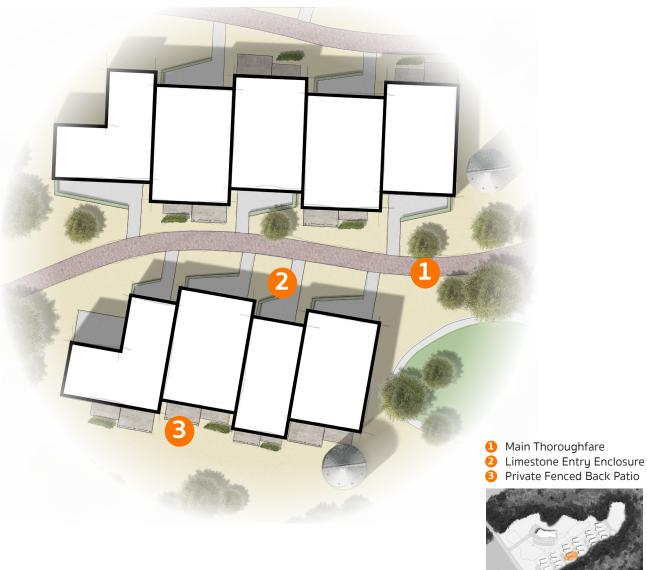
ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

INNOVATION



KEY PLAN

COMMUNITY ALLEY

KEY PLAN

ENERGY PERFORMANCE

ENGINEERIN

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

COMMUNITY ALLEY

ENERGY PERFORMANCE

ENGINEERIN

FINANCIAL FEASIBILITY AND AFFORDABILITY

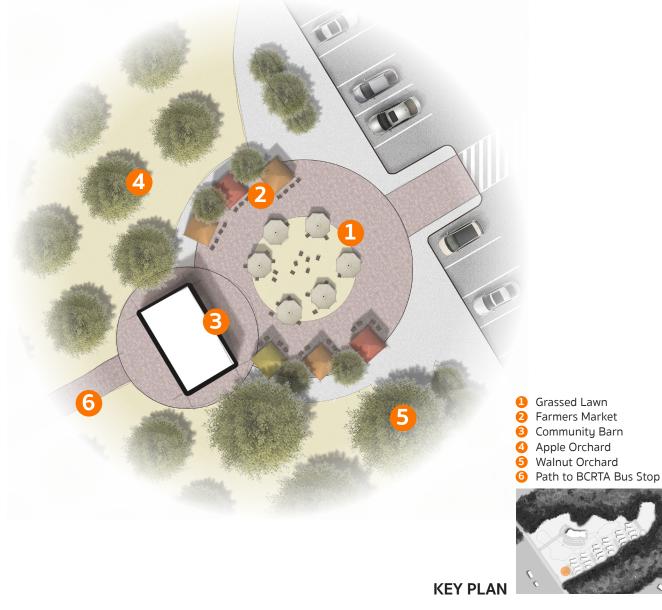
RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY


INNOVATION

KEY PLAN

COMMUNITY BARN

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

COMMUNITY BARN

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

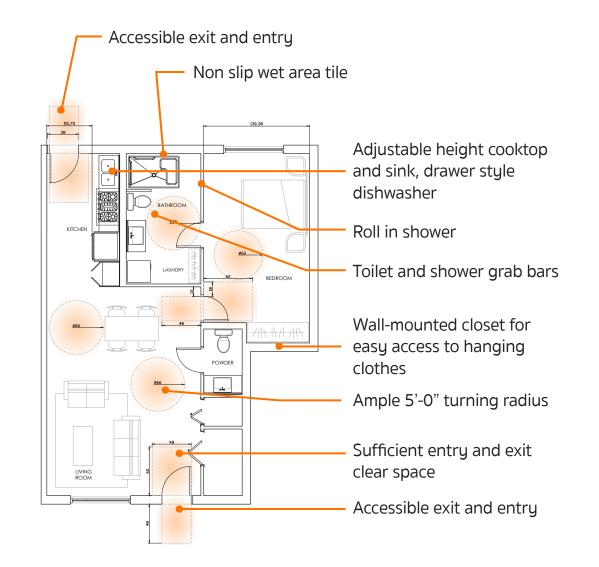
ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

INNOVATION



KEY PLAN

UNIVERSAL DESIGN

ACCESSIBILITY PLAN

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

HARVEST VILLAGE COMMUNITY APP

PROJECT INTRODUCTION

ENERGY PERFORMANCE

ENGINEERIN

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCI

ARCHITECTURE

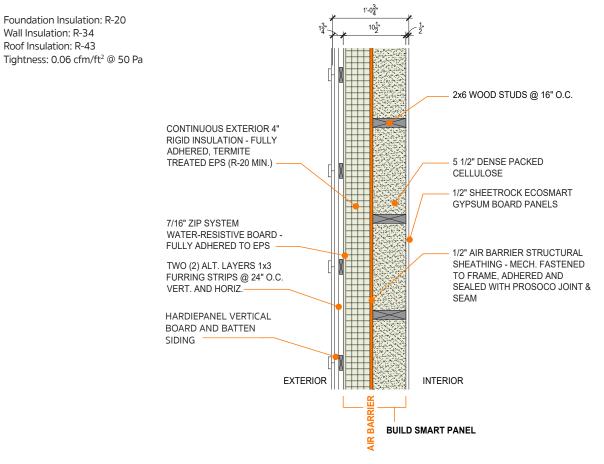
OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

ENVELOPE AIR SEALING STRATEGY

TYPICAL WALL TYPE DETAIL


ENERGY PERFORMANCE

BuildSMART wall panel

- BuildSMART component
 - Air Barrier

LEGEND:

PASSIVE HOUSE CRITERIA:

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

ENVELOPE AIR SEALING STRATEGY

STANDING SEAM METAL ROO

WATER-RESISTIVE BARRIER 5/8" OSB

1" INSULATION VENT BAFFLE AT EACH BAY

ENGINEERED RAISEDHEEL WOOD TRUSS WITH BLOWN-IN CELLULOSE

LEGEND:

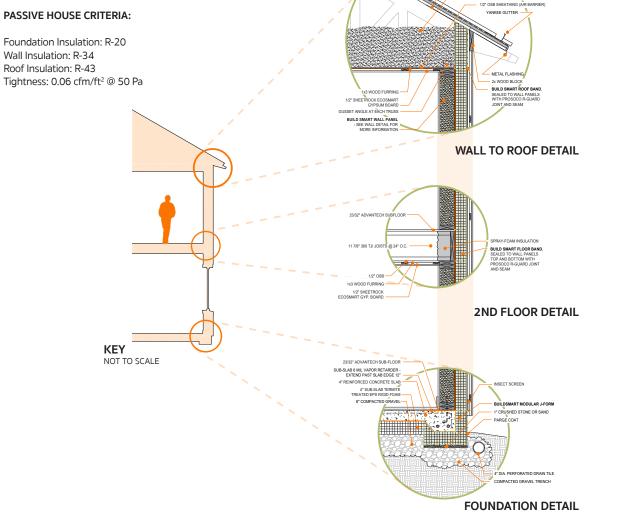
BuildSMART wall panel

BuildSMART component

Air Barrier

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY


RESILIENCE

ARCHITECTURE

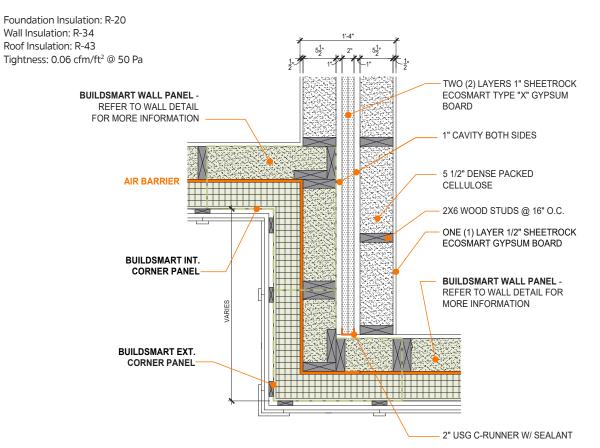
OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

UNIT SEPARATION AIR SEALING STRATEGY

CORNER PLAN DETAIL


ENERGY PERFORMANCE

BuildSMART wall panel

- ---- BuildSMART component
- Air Barrier

LEGEND:

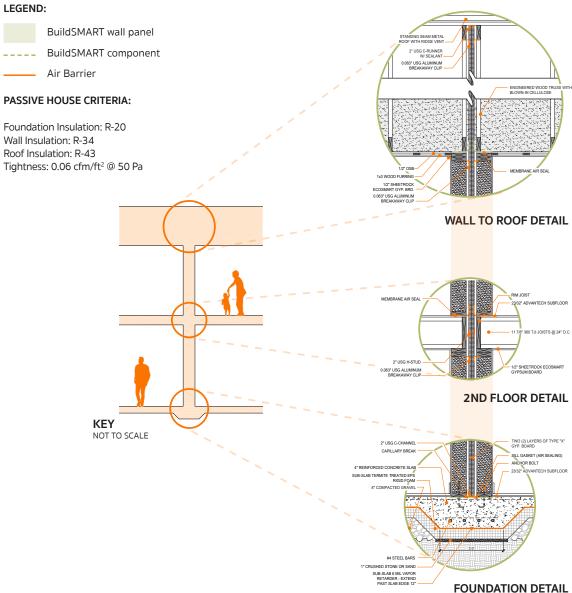
PASSIVE HOUSE CRITERIA:

RESILIENCE

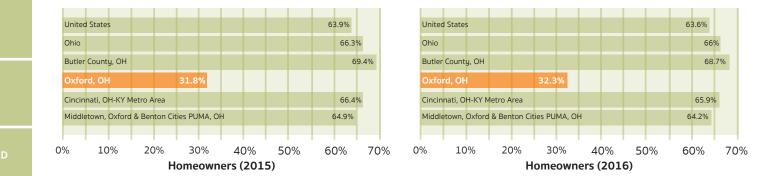
ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

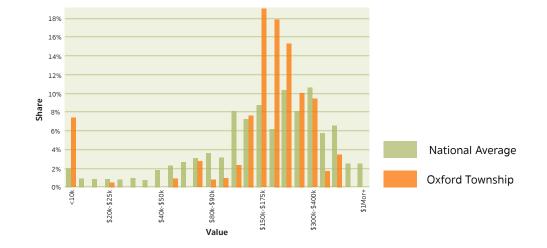

COMFORT AND ENVIRONMENTAL OUALITY

UNIT SEPARATION AIR SEALING STRATEGY


LEGEND:

OPERATIONS

MARKET ANALYSIS



COMMUTER ANALYSIS

RENT VS OWN ANALYSIS

Vehicles	Greenhouse Gas	Fuel	Recycled Waste	Annual Electricity
	Reduction	Conserved	Equivalent	Consumption Equivalent
1	12,000 lbs	500 gal	2 tons	1 Household
4	48,000 lbs	2,000 gal	8 tons	3 Households
8	96,000 lbs	4,000 gal	16 tons	6 Households

PROPERTY VALUE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

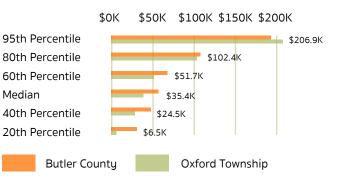
INCOME

ENERGY PERFORMANCE

ENGINEERING

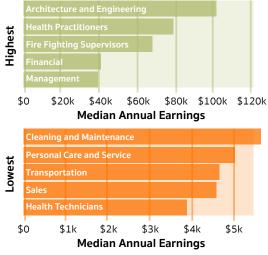
FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

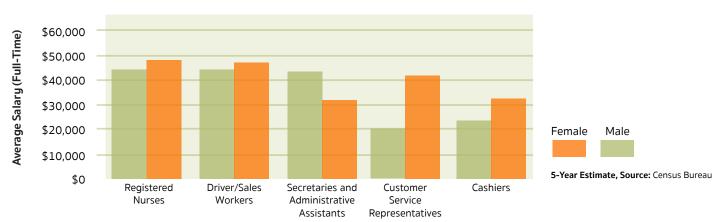

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL


COMFORT AND ENVIRONMENTAL QUALITY

HOUSEHOLD INCOME PERCENTILES



Source: Statistical Atlas

MEDIAN HOUSEHOLD INCOME

5-Year Estimate, Source: Census Bureau

WAGE BY GENDER

DEMOGRAPHICS

Fem.

8,579

2,253

516

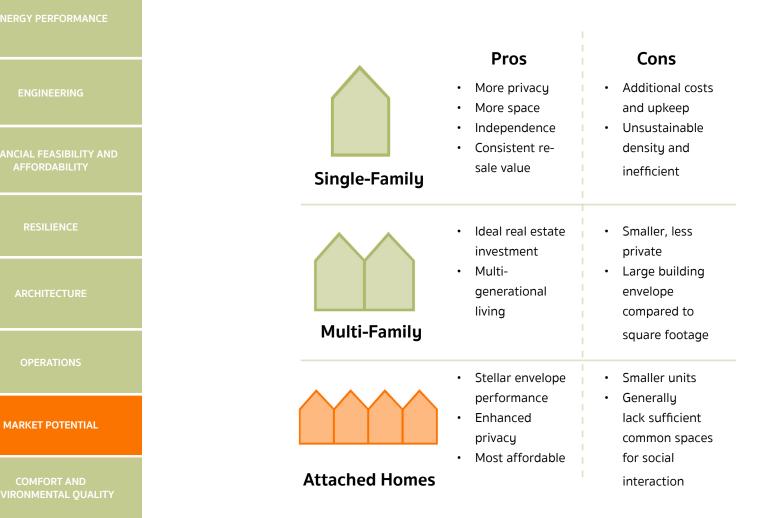
315

Male

8,363

2,305

423


70

Oxford, Ohio

MARITAL STATUS AGE STRUCTURE 50% 0% 50% 0% 2% 4% 6% 8% 10% 12% Never Married 74% 75% 75+ 19% 21% Married 61 - 75 Separate/Divorced 4% 4% 46 - 60 Widowed 1% 3% 31 - 45 Female 16 - 30 Male Oxford Township 0 - 15 Source: Statistical Atlas Butler County Source: Statistical Atlas HOUSEHOLD TYPE HOUSE TYPE MAP 30% 0% 10% 20% 40% 50% Married 31.6% Single Female 6.4% Single Male 1.5% **One-Person** 35.0% **OPERATIONS** Other Non-Family 22.6% Butler County Oxford Township MARKET POTENTIAL Source: Statistical Atlas Two-Family Single-Family Multi-Family Source: ACP Visioning + Planning

45

DEMOGRAPHICS

EXTERIOR MATERIALS

DETAIL ELEVATION

STANDING SEAM METAL ROOF

Cool Colored Roof 95% Recycled Aluminum Cans Locally Sourced

HARDIEPANEL VERTICAL SIDING

Moisture and Rot-Resistant Enhanced Durability Locally Sourced

TRIPLE PANE WINDOW

Increased Insulation Value Low-Emissivity

LIMESTONE ENTRY ENCLOSURE

Low Carbon Footprint Durable Locally Sourced

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

LIVING ROOM

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

Berber Carpets

Forbo Marmoleum Tiles

Lisbon Cork Flooring

INTERIOR DESIGN

LIVING ROOM

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

Sherwin Williams Interior Latex Paint

"Carmine" Polyfiber Fabric

Walnut

Minimo Peel and Stick Backsplash

Paperstone Gun Metal Countertop

APPLIANCES

PROJECT INTRODUCTION

ENERGY PERFORMANCE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL QUALITY

REFRIGERATOR

SAMSUNG RS22HDHPNSR *22 cu. ft. Counter Depth Side-By-Side Refrigerator* Price: \$1800

- ENERGY STAR compliant (646 kWh/yr)
- ADA compliant
- LED Tower Lighting
- Six Temperature Sensors

WASHER

SAMSUNG WW6800 *2.2 cu. ft. 24" Front Load Washer with Super Speed* Price: **\$800**

- ENERGY STAR rated (90 kWh/yr)
- CEE Tier 1
- IMEF 2.25, IWF = 4.0

RANGE

•

SAMSUNG NE58F9710WS *Flex Duo™ Slidein Electric Range* Price: **\$1800**

- Auto Shut-Off Option
- Slide-In Universal Design
 Large Capacity Oven

DISHWASHER

ADA - compliant

Price: \$ 480

•

•

•

Large Capacity Oven Hidden Bake Element: 3,000 W Convection Element/Heater: 1,250 W

SAMSUNG DW80M2020US Dishwasher

ENERGY STAR - rated (249 kWh/yr)

Digital Water Leakage Sensor

DRYER

SAMSUNG DV6800H 4.0 cu. ft. 24" Heat Pump Dryer with Smart Care Price: \$800

- Ventless Heat-Pump Dryer
- ENERGY STAR rated (148 kWh/yr)
- Smart Care Mobile Device
 Synchronization

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

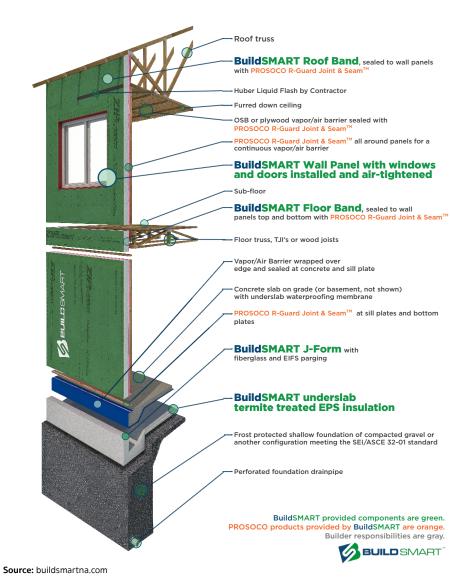
MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

<u>COMFORT</u>

The sound of a train horn outside would be the equivalent of a dishwasher running inside!

THE HOME ENERGY RATING SYSTEM


BuildSMART as the primary build solution with a HERS Index standard significantly lower than the average national home.

QUANTIFIABLE AND RIGOROUS

BuildSMART system, coupled with Passive building principles, significantly reduces overall energy usage.

> 70% Less Energy Usage

MODULARITY

ENERGY PERFORMANCE

ENGINEERING

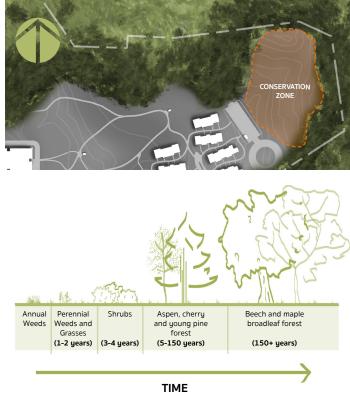
FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAI


COMFORT AND ENVIRONMENTAL OUALITY

SITE IMAGE

CONSERVATION ZONE

SITE LOCATION

POLLINATOR PRAIRIE

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAL

COMFORT AND ENVIRONMENTAL OUALITY

Monarchs

Butterflies

Bees

BEE GARDEN

POLLINATOR PRAIRIE

PROJECT INTRODUCTION

ENERGY PERFORMANCE

MONARCH GARDEN

ENGINEERING

FINANCIAL FEASIBILITY AND AFFORDABILITY

RESILIENCE

ARCHITECTURE

OPERATIONS

MARKET POTENTIAI

COMFORT AND ENVIRONMENTAL QUALITY

