Solis House

- Urban Single Family -
Co-Captains

Dr. Adam Rysanek
Dr. Sheryl Staub-French
Dr. Susan Nesbit
Third Quadrant Design UBC

Structural
Mandi Unick
Jade Lissel
Savanna Li
Kylie Ip
Senthu Selva

Architecture
Jasmine Lee
Grace Quan
Lily Wang

Mechanical
Milan Jaan
Ryan Cui
Tierra Parminter

Water
Alicia Hobmaier
Elena Thompson Hayes

Energy & Electrical
Quinn Klassen
Wenoa Teves
Tara Virginillo
Anika Jang
Matthew Toebes
Harishankar Krishan

Civil / Geo
Shea Mills
Eric Hebbard
Lauren Lee
Ben Wahl
Vancouver, BC, Canada
- Climate zone 4 (mild, temperate)
- High precipitation
- Low solar insolation

Figure 1: Annual average precipitation in Vancouver (weather-and-climate.com)

Figure 2: Location of Vancouver on an ASHRAE climate zone map

Figure 3: Sun-path on shortest day of the year (January 21st)
LOCATION & CLIMATE
<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Household Size</td>
<td>2.7</td>
</tr>
<tr>
<td>Average Income</td>
<td>$86,000</td>
</tr>
<tr>
<td>Census Population</td>
<td>34,575</td>
</tr>
<tr>
<td>Population in Low Income Households</td>
<td>19%</td>
</tr>
</tbody>
</table>

Language

- English
- Chinese
- Vietnamese
- Italian
- Tagalog (Pilipino, Filipino)
- Spanish

Mode of Travel to Work

- Vehicle driver: 28.5%
- Vehicle passenger: 56.8%
- Public transit: 8.0%
- Walking: 1.5%
- Bicycle: 0.6%
- Other: 6.6%

Age Groups

- 19 <: 20.2%
- 20-39: 27.1%
- 40-64: 30.4%
- 65 +: 12.3%
VANCOUVER’S HASTINGS-SUNRISE NEIGHBOURHOOD

- Reduce reliance on cars
- Encourage two-suite homes
- Improve community safety
- Protect the Environment
- Increase access to shopping
- Retain & enhance character areas

COMMUNITY VISION
MARKET POTENTIAL

1. Market Driven Design
 - Community centered & competitively priced
 - Flawless integration with landscape & community character

2. Constructable
 - Modular construction
 - Mass-timber design

3. Self Sufficient & Sustaining
 - On-site food & energy production
 - Smart-home controls
RISK ASSESSMENT

Earthquakes
Flooding
Climate Change

Grid Connectivity
Moisture Balance
Income Crisis
create a dwelling that addresses all levels of sustainability: low embodied and operational emissions and long-term resilience. The design will be approached with a passive systems-first mentality, and utilising transdisciplinary communication to ensure seamless integration of active systems.
RESILIENT DESIGN GOALS

- High-performance envelope & fenestrations
- On-site renewable energy
- Modularity
- Rainwater collection
- Alternative income source
- Mass-timber approach to seismic resilience
- Overheating control
- Passive principles
- Local, low-carbon intensive materials
ARCHITECTURE
| Building form | Simplify building form
| | Minimize surface to volume ratio
| | Maximize south-facing roof area |
| Internal space | Maximize natural ventilation & lighting
| | Minimize piping heat losses
| | Make use of internal heat gains |
| Materials | Introduce thermal mass |
Space considerations for current and future systems
Minimize pipe heat loss
Bedrooms in quiet and low-traffic spaces
High-levels of natural lighting & ventilation

Open-plan living spaces
ARCHITECTURAL DESIGN: NATURAL VENTILATION

outlet area: 0.75 m²
ACH: 6

inlet area: 0.4 m²
ACH: 7

inlet area: 0.25 m²
ACH: 6

outlet area: 0.75 m²
ACH: 5

inlet area: 0.3 m²
ACH: 6

inlet area: 0.3 m²
ACH: 5
Figure 18: Summer Solstice natural lighting (left to right: floor plans 1-3, N direction top of page)
Local, natural & healthy materials.

- Cross-laminated Timber
- Wood Fibre insulation
- Recycled Oyster Shell Countertops
LANDSCAPE
- Vertical Garden
- Optimized Water Consumption
- Recycled Plastic Base
- Permeable for Drainage
- On-Site Food Production
- Rain-Water Irrigated
- Vertical Garden
- Optimized Water Consumption
- Recycled Plastic Base
- Permeable for Drainage
- On-Site Food Production
- Rain-Water Irrigated
STRUCTURE
Earthquake Resilience

CLT
- Improved performance given its strength, flexibility, and lightweightedness

Bubbledeck slab on grade
- Reduces earthquake loads

Tie downs
- Resist lateral seismic loads
CONSTRUCTION
BUILDING ENVELOPE
- Vancouver's biome is classified as a temperate rainforest
 - High levels of rainfall
 - High relative humidity
 - Below 0°C (32°F) temperatures in the winter

- This biome poses challenges regarding:
 - Condensation
 - Mold
 - Wetting
 - Freeze-Thaw

- Used Passive House Canada for thermal minimums

- Conducted humidity analyses to assure mold free enclosure

<table>
<thead>
<tr>
<th>Section</th>
<th>Passive House Min</th>
<th>Solis House R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Slab/Ground Floor</td>
<td>30</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 1: Passive House Canada R-Values VS Our Calculated R-Values
Relative Humidity and Temperature Models

Figure 1: Ubakus temperature gradient model through our exterior wall section. -18°C exterior and 19°C interior temperatures

Figure 2: Ubakus Relative Humidity model through our exterior wall section. 100%RH exterior and 50%RH interior conditions

Figure 3: Therm temperature gradient model of a typical triple glazed, fiberglass framed window
ACOUSTICS
Natural, carbon sequestering materials used for acoustic insulation

Acoustic Performance of Partitioning Elements
- Int Wall: 58STC
- Ext Wall: 52STC
- Floor: 55STC and 51IIC

Honeycomb sound attenuators used for ventilation openings
MECHANICAL
SYSTEMS
Occupant comfort

Energy use & simplicity

100% electrification
- 6.75 kW Ground Source Heat Pump sized for peak future cooling load
- 120m vertical borehole sized for peak future heat rejection
Figure 1: Ideal temperature profile

16°C 20°C 24°C

Figure 2: Profile for underfloor heating

16°C 20°C 24°C

Figure 4: Profile for convector heating

16°C 20°C 24°C
Ventilation

<table>
<thead>
<tr>
<th>Tag</th>
<th>Location</th>
<th>Service</th>
<th>Flow Rate (L/s)</th>
<th>Standard</th>
<th>Boost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERV</td>
<td>Main House Mech Room</td>
<td>Whole Home</td>
<td>115.50</td>
<td>149.99</td>
<td></td>
</tr>
</tbody>
</table>
WATER SYSTEMS
REDUCE

water power materials
ELECTRICAL
SYSTEMS
Lighting power density (LPD): 1.57 W/sqm

Lighting Controls:
- Manual control
- Daylight harvesting
- Vacancy sensing

Lighting Control Zones:

- **Zone 1:**
 - Primary ON/OFF: Manual Switch

- **Zone 2:**
 - Primary ON/OFF: Manual Switch
 - Secondary OFF: Daylight (Photocell) Sensor

- **Zone 3:**
 - Primary ON/OFF: Manual Switch
 - Secondary OFF: Occupancy Sensor
ENERGY PERFORMANCE
Energy Performance Metrics

- Est. Energy Consumption: **8,000 kWh/yr**
- EUI: **48.34 kWh/m²**
- Est. Utility Bill: **$240 CAD/yr**

![Energy Performance Metrics diagram]

Estimated Annual Energy Consumption

- Heating
- Cooling
- Water Heating
- Light & Appliances
- Total

![HERS® Index chart]
Energy System Metrics

Nameplate Capacity: 8.8 kW

Expected Yearly Output: 8,600 kWh

Battery Size: 13.2 kWh

<table>
<thead>
<tr>
<th>Index</th>
<th>Item</th>
<th>Brand Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solar Panel</td>
<td>Canadian Solar CS3K-315MS > 315 Watt</td>
</tr>
<tr>
<td>2</td>
<td>Combiner Box</td>
<td>Midnite Solar MNPV12-250</td>
</tr>
<tr>
<td>3</td>
<td>Inverter/Charge Controller</td>
<td>FLEXpower Radian 8 kW with 2x flexmax 100 charge</td>
</tr>
<tr>
<td>4</td>
<td>Shutdown Switch</td>
<td>IMO FireRaptor Shutdown Switch for FRS-01</td>
</tr>
<tr>
<td>5</td>
<td>48V Battery Lithium Ion Battery</td>
<td>Discover Battery 260AH 48VDC w/ Xanbus 13,200 Wh (2)</td>
</tr>
</tbody>
</table>
FINANCIAL FEASIBILITY
Vancouver Housing Market

- 2nd least affordable
 - Avg 2 storey: $2.3million
- Sunrise-Hastings: Land Cost - $150-200/sqft
- Average home debt to income ratio
 - Canada: 177%
 - Vancouver: 208%

Rental Unit = Passive Income
- Offsets homeownership costs
- Provides increased density low volume market

Solis House

Construction Costs
- Total Cost $1,739,012.47
- Land Value at Market Rate $1,350,000.00
- Land Cost $389,012.47

Mortgage
- 20% down payment $347,802.49
- Remaining Capital $1,391,209.98
- Average mortgage payment (25 yr - 5 yr 2.44% fixed IR) $6,191.00
- Homeowner Debt to Income Ratio 47.93%
EMBODIED CARBON
LCA Scope: 100 years

Trade-offs
High levels of insulation balance low operational emissions

Global Warming, kg CO2e - Resource Types

- Insulation
- Concrete
- Wood
- Metals
- Doors & windows
- Utilities
- Gypsum, plaster & cement
- Plastics, membranes & roofing
- Glass

[kg CO2e]
0 20000 40000 60000
Embodied Carbon Impacts

- 169 Tons CO₂e
- 8 kg CO₂e / m² / yr
- $12,868.85 CAD social cost of carbon

Global Warming (kg CO2e) - Life-cycle stages:
- A1-A3 Materials
- A4 Transportation
- B1-B5 Maintenance and replacement
- B6 Energy
- C1-C4 End of life
INNOVATION
MATERIAL SELECTION
- Recycled Plastic Honeycomb
- BubbleDeck Slab on Grade
- Oyster Shell Composite
- Cross-laminated Timber
- Wood Fibre Insulation

SELF SUFFICIENCY
- On-site Energy Production
- Rainwater Harvesting

ONSITE FOOD PRODUCTION
- CityBeets Community Garden Partnership
- Indoor Vertical Greenhouse
Thank you.

- Solis House -