TEAM: INDOAMÉRICA
STUDENT TEAM LEADER
Jheanpire Sánchez
Architecture

FACULTY LEADER
Arq. Sebastián Alvarado
Architecture

STUDENTS TEAM
Christian Darquea
Architecture
Javier Maigua
Architecture
Wendy Moya
Architecture
Fernando Pazmiño
Architecture

Daniel Poaño
Architecture
Viviana Sinailin
Architecture
Claudia Toledo
Architecture
Rodrigo Erazo
Industrial Engineering
TEAM INFORMATION

FACULTY ADVISORS

FACULTY LEADER
- Arq. Sebastián Alvarado

ARCHITECTURE
- Arq. Teresa Pascual
- Arq. Daniela Ortiz
- Arq. Jóse Leyva

INDUSTRIAL INGENIERING
- Ing. Wilson Chancusig
- Ing. Pablo Ron
- Ing. Paúl Remache

LANGUAGE CENTER
- MSc. Roilys Suarez
- MSc. Lorena Espinosa
- MSc. Samary Guillén
- MSc. Rocío Patiño

BUSINESS MANAGEMENT
- Ing. Alcibar Pila

PARTNERSHIPS

INSTITUTO DE INVESTIGACIÓN GEOLÓGICO Y ENERGÉTICO

UNIVERSIDAD TECNOLOGICA INDOAMERICA

SPEAKER: CLAUDIA TOLEDO
COST-TARGET MARKET
TENA CANTON: 7 PARISHES

- INHABITANTS: 60,880
- POPULATION DENSITY: 234 hab / sq mi
- SURFACE: 1507 sq mi

POPULATION SETTLEMENT
- SCATTERED

HOUSING TYPOLOGY
- OWN HOUSING

ECONOMIC DEVELOPMENT
- AGRICULTURE
POTENTIAL CLIENT

Young population between 15 and 35 years of age, with medium-high economic potential.

KICHWA FAMILIES

Residence is patrilocal: the wife moves to live in the house of the parents of the husband and is considered part of that family.
HOUSING

57% Owned house market potential

NUMBER OF PEOPLE PER HOUSE

53% 3-4 inhabitants market potential
AVERAGE HOUSING IN PANO

AVERAGE MATERIALS
- Zinc = 81%
- Wood = 78%

AVERAGE PRICE
- $30 - $40 per square feet
- House Price - 1200 sq ft
 - $36 000 - $48 000

UNIVERSIDAD TECNOLOGICA INDOAMERICA

SPEAKER: CLAUDIA TOLEDO
FUNNEL HOUSE $62,811 / $37,2 PER SQ FEET

01 LOT-SITE
Lot size of 10,000.00 m²
Cost: $20,000

02 LABOR
Corresponds to 25% of the budget
Cost: $16,968

03 MACHINERY
Corresponds to 11.5% of the budget
Cost: $7,000

04 HOME APPLIANCES
Corresponds to 3.95.6% of the budget
Cost: $2,484

05 MATERIALS
Corresponds to 58% of the budget
Cost: $38,832

06 TOTAL COST OF THE DWELLING
Cost: $62,811

A MAINTENANCE COST
Corresponding to 3% of the total cost
Cost: $1,804

B CONSTRUCTION TIME
The time to carry out the project is 51 days.

TOPIC: CONSTRUCTION COST

UNIVERSIDAD TECNOLOGICA INDOAMERICA

SPEAKER: ASDASDFAS DFSDDFDGFDFGDF
ENVIRONMENTAL CONDITIONS

Maximum temperature: 89.60°F
Minimum temperature: 57.20°F
Humidity: 81%-92%
Maximum precipitation: 38553.1 mm
Months with high cloudiness: February and July.
Months with the most hours of sunshine per day: tropical: July and August.

"The building needs to be cooled down, and the relative humidity needs be lowered."
DESIGN PROCESS

Analyzes the environmental and user's conditions

Passive strategies

Technologies

Design

UNIVERSIDAD TECNOLOGICA INDOAMERICA

SPEAKER: CLAUDIA TOLEDO
Elongated form: Minimize solar exposure, Maximize South ventilation

Open-social spaces: Natural ventilation
Closed-private spaces: Improved comfort

Modularity = Progressive growth
4. 23.4° wall inclination to avoid the Sun

5. Unify, separate and ventilate hot spots
 - Dining room
 - Kitchen - Bathroom - cellars.
 - Bedrooms.

6. The building is raised from the ground, to:
 - Allow air circulation under it.
ARCHITECTURE
Settlers Residence

Vernacular Residence
Vernacular Housing

Funnel House

- **1.** Living room, dinning room
- **2.** Kitchen
- **3.** Bathroom
- **4.** Cellars, ducts
- **5.** Bedrooms
- **6.** Hammock room

“Ekent”
Private Space

“Tankamash”
Social Space
MATERIALITY IN INTERIOR DESIGN

- OSB Or Oriented Fiber Boards
- Bamboo
- Ecological stucco of cal
- Narrow Slatted toasted bamboo board -VT

SPEAKER: CLAUDIA TOLEDO

UNIVERSIDAD TECNOLOGICA INDOAMERICA
CONFORT
Air quality, water, Thermal comfort, Physical health, Acoustic comfort, food nourishment, Community, Materials, illumination, Innovation
Natural Light Analysis
Natural Light Best Orientation Best Radiation
PASSIVE – ACTIVE STRATEGIES

NATURAL VENTILATION - MECHANICAL VENTILATION

1. House
2. Trees
3. Sun
4. Wind
5. Airflow
ENERGY PLUS HOUSE
FV energy production: 5807 kWh/year
House’s energy consumption: 4338 kWh/year
Excess returned to grid: 1469 kWh/year

Latitude 0°
High solar irradiation
Fuel Breakdown - TENA- ECUADOR, FUNNEL HOUSE
1 Jan - 31 Dec, Run period

- Room Electricity
- Mechanical Ventilation
- DHW (ELECTRICITY)

<table>
<thead>
<tr>
<th>Year</th>
<th>Room Electricity (kWh)</th>
<th>Lighting (kWh)</th>
<th>DHW (Electricity) (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1225.89</td>
<td>741.43</td>
<td>1673.76</td>
</tr>
</tbody>
</table>

TOPIC: THERMAL COMFORT

SPEAKER: CLAUDIA TOLEDO
THERMAL COMFORT

Operative Temperature

Relative Humidity

Discomfort hrs

<table>
<thead>
<tr>
<th>Year</th>
<th>Air Temperature (°C)</th>
<th>Radiant Temperature (°C)</th>
<th>Operative Temperature (°C)</th>
<th>Outside Dry-Bulb Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24,51</td>
<td>26,26</td>
<td>25,39</td>
<td>23,11</td>
</tr>
<tr>
<td></td>
<td>67,04</td>
<td>2783,07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPEAKER: CLAUDIA TOLEDO
Lighting Analysis

Interior Light
Natural Light

<table>
<thead>
<tr>
<th>Housing area</th>
<th>lux min</th>
<th>lux recom.</th>
<th>lux optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Living Room</td>
<td>200</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Kitchen</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Bedroom</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Studying room</td>
<td>300</td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>Circulation</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Badroom</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>
Lighting Analysis

VIDEO DAYLIGHT

VIDEO AFTERNOONLIGHT

SPEAKER: CLAUDIA TOLEDO
RESILIENCE
RESILIENCE

Earthquake

Structure

Isolation

Recreational Spaces
+ Local food production
+ Internet Connection

TOPIC: RESILIENCE

UNIVERSIDAD TECNOLOGICA INDOAMERICA

SPEAKER: CLAUDIA TOLEDO
TOPIC: RESILIENCE

- Floods
- Raise a term
- Land Sliding
- Soil Improvement
RESILIENCE

Insects → AntiBug Layer → Material

Deforestation → Certified Wood → Sustainable Material
STRUCTURE
Exo - Structure

Concrete Foundation
Bamboo Structure
BAMBOO - GUADUA ANGUSTIFOLIA

<table>
<thead>
<tr>
<th>Lifetime</th>
<th>Stem Height</th>
<th>Diameter Radius</th>
<th>Compressive strength</th>
<th>Compression elasticity module</th>
<th>Flexural modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 years</td>
<td>91.86 ft</td>
<td>0.49 ft</td>
<td>37.76</td>
<td>14.35 Gpa</td>
<td>12.16 Gpa</td>
</tr>
</tbody>
</table>

CLAUDIA TOLEDO
ENGINEERING SYSTEMS
MECHANICAL DESIGN

IDE02
HIGH FLOW BACKFLOW
HEAT RECOVERY

DRIVE PLENUM

EXTRACTION PLENUM

BARJ / BARP SELF-REGULATING
EXTRACTION NOZZLE

PVC OR RECTANGULAR PLASTIC
DUCTS.

OUTSIDE FRESH AIR INLET
INTAKE DUCT
EXTRACTION DUCT
EXHAUST VENTILATION OUTLET
• BST THERMOSIPHON

CAPTURE ➔ TRANSFORMATION ➔ EXCHANGE ➔ ACCUMULATE ➔ HOT WATER

DRINKING WATER GRID INTAKE

COLD WATER

HOT WATER

UNIVERSIDAD TECNOLOGICA INDOAMERICA

SPEAKER: CLAUDIA TOLEDO
LOCAL MATERIAL, LABOR AND RESEARCH

- **Stuco**
- **OSB panels**
- **Vapor resistant foam**
- **Certified wood**
- **Palm fiber insulation research**

ESPE University
Universidad de las Fuerzas Armadas de Ecuador

FUNNEL HOUSE
UNIVERSIDAD TECNOLÓGICA INDOAMÉRICA

SPEAKER: CLAUDIA TOLEDO
PALM FIBER

Natural fiber used as insulation for temperature, research by ESPE University

<table>
<thead>
<tr>
<th>FIBER</th>
<th>Density (g/m3)</th>
<th>(W/K.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Wool</td>
<td>0.011</td>
<td>0.045</td>
</tr>
<tr>
<td>NATURAL FIBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palm Fiber</td>
<td>0.078</td>
<td>0.032</td>
</tr>
</tbody>
</table>
SMART BUILDING
SAAS (Software as a service) integrates with all devices.
MAINTENANCE
MAINTENANCE

LOCAL MATERIALS
Facilitate maintenance

SMART BUILDING
Automated monitoring

TOPIC: OPERATION (USE AND MAINTENANCE)

UNIVERSIDAD TECNOLOGICA INDOAMERICA

SPEAKER: CLAUDIA TOLEDO
TREATED BAMBOO

Palm oil + Zinc or Titanium + Wax finish

- Water proofing
- UV protection
- Dust protection
WATER RESISTANT STUCCO

3mm (0.1 inch) layer

Maintenance every 2 years

40 years lifetime
ROOF PROTECTION

Protective Paint
- Reflects radiation
- Improves thermal and acoustic insulation
- Moisture control

Service ladder

Gutter net

UNIVERSIDAD TECNOLOGICA INDOAMERICA

SPEAKER: CLAUDIA TOLEDO
<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>USE</th>
<th>LIFETIME</th>
<th>MAINTENANCE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAMBOO</td>
<td>STRUCTURE</td>
<td>50 YEARS</td>
<td>EVERY 2 YEARS</td>
</tr>
<tr>
<td>PANLES OSB</td>
<td>WALLS - FLOORS</td>
<td>40 YEARS</td>
<td>EVERY 2 YEARS</td>
</tr>
<tr>
<td>SANWICH TYPE METALLIC PANEL</td>
<td>ROOF</td>
<td>25 YEARS</td>
<td>EVERY 2 YEARS</td>
</tr>
</tbody>
</table>
LIFE CYCLE ASSESSMENT
Building Circularity

- Material Recovered: 202.2%
 - Virgin: 0%
 - Renewable: 67.8%
 - Recycled: 67.2%
 - Reused: 67.2%

- Material Returned: 100%
 - Reuse as material: 94.5%
 - Recycling: 5.5%
 - Downcycling 1/2*: 0%
 - Use as energy 1/2*: 0%
 - Disposal: 0%

151%

Renew / Reuse / Process for new material
EMBODIED CARBON BENCHMARK

EMBODIED CARBON BY LIFE-CYCLE STAGE

EMBODIED CARBON BY STRUCTURE - A1-A3

Cradle to grave (A1-A4, B4-B5, C1-C4) kg CO2e/m²

<table>
<thead>
<tr>
<th>Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< 140)</td>
<td>A</td>
</tr>
<tr>
<td>(140-270)</td>
<td>B</td>
</tr>
<tr>
<td>(270-400)</td>
<td>C</td>
</tr>
<tr>
<td>(400-530)</td>
<td>D</td>
</tr>
<tr>
<td>(530-660)</td>
<td>E</td>
</tr>
<tr>
<td>(660-790)</td>
<td>F</td>
</tr>
<tr>
<td>(> 790)</td>
<td>G</td>
</tr>
</tbody>
</table>

- A1-A3 Materials: 52%
- A4 Transportation: 1%
- B4-B5 Replacement: 47%

Vertical structures and facade: 18%
Horizontal structures: beams, floors and roofs: 77%
Other structures and materials: 4%