Project Team

Ben Brown
Hons. BSc., CPHD

Mohammad Kassem
BEng. (Mech.), PMP, LEED GA

Robin Macpherson
MA

Yash P. Vyas
Technical Advisor
BASc, MASc, CPHC

Stanley Francispillai
BEng. (Civil), P.Eng.

Zarifeh Zare-Moayed
Hons. BSc.

Sacha Klein
Hons. BSc., REA

Kevin Stelzer
Sustainability Advisor
BES, BArch, OAA, MRAIC, LEED AP BD+C, BSSO, CPHD
A Trip Down Memory Lane... to the 1970s
Tinbury Place, Toronto
Overall Floor Plan

Existing

Proposed

Building Area
4,812 ft²

Gross Floor Area
11,670 ft²
Unit Gross Area
1,945 ft²

Unit Density
4 people
(486 ft²/person)
Design Drivers

- Housing
- Energy
- Climate Change

Projected $ / MWh

Canadian sentiment on Climate Change
- Extremely Serious Problem: 82%
- Not Serious Problem: 18%
Design Goals
Design Goals

Scalable Design

Net-Zero Energy Performance
Design Goals

Scalable Design

Net-Zero Energy Performance

Occupant Wellbeing
Energy Model

Verified energy model to within 8% of actual use
Energy Model

Verified energy model to within 8% of actual use
Existing Energy Data

Energy Use by Category
- Space Conditioning: 60%
- Lighting: 14%
- Equipment: 12%
- DHW System: 7%
- Cooking (Gas): 7%

Energy Use by Fuel Type
- Natural Gas: 73%
- Electricity: 27%
Energy Budget

Monthly Solar Production (kWh) / Unit

- January: 200 kWh
- February: 400 kWh
- March: 600 kWh
- April: 800 kWh
- May: 1000 kWh
- June: 1200 kWh
- July: 1400 kWh
- August: 1600 kWh
- September: 800 kWh
- October: 600 kWh
- November: 400 kWh
- December: 200 kWh

- 10.3 kW Module Size / Unit
- 11,530 kWh Annual Production / Unit
EXISTING

REMOVE & REPAIR

IMPROVE

ARCHITECTURE ENGINEERING MARKET ANALYSIS DURABILITY & RESILIENCY EMBODIED ENVIRONMENTAL IMPACT INTEGRATED PERFORMANCE COMFORT & ENVIRONMENTAL QUALITY OCCUPANT EXPERIENCE ENERGY PERFORMANCE
Ψ-Value
0.116 BTU/h·ft·°F

Ψ-Value
0.008 BTU/h·ft·°F
R-62 Effective
Roof

R-8 Effective
Windows

R-20 Effective
Below Grade Slab

R-38 Effective
Above Grade Walls

R-42 Effective
Below Grade Walls

R-20 Effective
Below Grade Slab
54% Reduction in Fresh Water Consumption
Typical Retrofit
$156 / ft²

30 Year Operation & Maintenance Cost / Unit
$147,603

Solar Row Retrofit
$51 / ft²

Solar Row Retrofit Cost / Unit
$99,354

30 Year Savings with Solar Row
$48,249
29 lbm CO₂e/ft²
Original 1975 Build

+

6 lbm CO₂e/ft²
Only 2022 Retrofit

35 lbm CO₂e/ft²
Total post-retrofit embodied carbon
Potential For Changes

Cost to Change

Potential synergies and savings

Time

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Potential synergies and savings

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Potential synergies and savings

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Potential synergies and savings

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Potential synergies and savings

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Potential synergies and savings

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Potential synergies and savings

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Potential synergies and savings

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Potential synergies and savings

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings

Pre-Design Schematic Development Design Development Construction Occupancy

Ability to Impact Design

Cost of Making Changes

Potential synergies and savings

Optimal Zone

Optimal Zone

Cost of Making Changes

Potential synergies and savings
72°F
Temperature

42%
Humidity

550 ppm
Carbon Dioxide

95%
Current Energy Demand Met by Solar Generation

2%
Energy Demand On This Day 2022 vs. 2023

Carbon Dioxide

2%
Energy Consumption by Category (kBtu / Year) for 6 Units

- **Baseline**
- **Solar Row Retrofit**

Categories
- **Space Conditioning (Heating and Cooling)**: 81%
- **Lighting**: 86%
- **Equipment**: 35%
- **Domestic Hot Water System**: 36%
- **Cooking (By Natural Gas)**: 100%
- **Heat Recovery**: 100%

Energy Consumption
- **0** to **450,000 kBtu / Year**
EUI (kBtu / ft² / year)

Baseline

54.5

60
50
40
30
20
10
0
-10
EUI (kBtu / ft² / year)

Baseline
Solar Row (Excluding PV Generation)

54.5
18.2

66% Reduction

Baseline
-10
0
10
20
30
40
50
60

Solar Row
54.5
18.2

66% Reduction
EUI (kBtu / ft² / year)

- Baseline: 54.5
- Solar Row (Excluding PV Generation): 18.2 (66% Reduction)
- Solar Row (Including PV Generation): -2

Net-Zero Energy
Solar Row is

a **Scalable, Net-Zero Energy** design template ensuring **Occupant Wellbeing** using proven techniques for meaningful change.
Thank You!
References

Slide 3:

Slide 25:

Slide 26: