

TEBUGHNA FIREWEED

2023 Design Challenge Division: New Housing

MEET OUR TEAM

Addison

Besedic

Sydney Cherrington Student Lead

Joshua

Clark

Hannah Concepcion

Denaro

Abigail Duffey

Frank LaPuma

Valeria Lobo Colmenares

Juan Miri

Erica Morrissey

Joyce Ng

Thomas Slay

Courtney Smith

Design Partners:

College of Design, Construction and Planning

Hayley Gillette

Caitlin Jennings

Mahtab Kouhi Rostamkolaei Constr Mgmt

Benjamin Spears

Mark McGlothlin Faculty Architecture

Robert Ries, PhD Faculty Constr Mgmt

Bradley Walters Faculty Architecture

Industry Partners:

Cook Inlet Housing Authority

TYONEK, ALASKA

PRELUDE

College of Design, Construction and Planning

THE TEBUGHNA PEOPLE

WHO ARE THE BEACH PEOPLE?

PRELUDE

FIREWEED: RESILIENT AND **TENACIOUS**

OUR MISSION

Design and prepare future-ready homes for the people of Tyonek, AK to exhibit how high performance low carbon buildings are attainable and affordable in cold climates. The design of the home is intertwined with Athabascan values of environmental justice and respect for their traditions as well as Alaska's climate.

College of Design, Construction and Planning

Occupied vs. Vacant Units

Ownership of Occupied Units

• Village population decrease in past 3 years:

• Lack of economic opportunities • Lack of access to decent housing

MARKET ANALYSIS

College of Design, Construction and Planning

DEMOGRAPHICS

MARKET ANALYSIS

College of Design, Construction and Planning

Median Household Income: \$38,125

Around half of Alaska's (\$80,827)

Primarily Native Alaskan population

AVERAGE RAINFALL / SNOWFALL

MARKET ANALYSIS

ANCHORAGE INTL AP (AK) Wind Rose

Jan. 1, 2022 – Feb. 20, 2023 Sub-Interval: Jan. 1 – Dec. 31, 0 – 23

Wind Speed (mph)

1.3 - 4

4 - 8

8 - 13

13 – 19 19 – 25

25 - 32

32 - 39 39 - 47

47 -

SUNLIGHT

AVERAGE HIGH AND LOW TEMPERATURES

DAYLIGHT HOURS / SUNLIGHT HOURS

Winter Sun - 5° altitude

Fall/Autumn Sun - 29° altitude

MARKET ANALYSIS

Summer Sun - 53° altitude

EXPLORING THE POSSIBILITIES

Existing Conditions

Code Compliant

ARCHITECTURE

Our Proposal

Level 2

ARCHITECTURE

PASSIVE DAYLIGHTING DIAGRAMS

Summer 12pm

Winter 12pm

COMFORT & ENVIRONMENTAL QUALITY

College of Design, Construction and Planning

MATERIALS

Shou Sugi Ban Charred Wood Siding

Weather resistant. Recyclable. Strong insulator. Sustainably compliant. Bug resistant.

Interior Wood Finishes and Trim

Adaptable. Durable. Pleasant material. Recyclable. Warm.

College of Design, Construction and Planning

Aluminum

Highly durable. Resists snow loads.

INTERIOR ATMOSPHERE

Interior Perspective from Living Space

OCCUPANT EXPERIENCE

INTERIOR ATMOSPHERE

Main Arctic Entry

Kitchen Space

OCCUPANT EXPERIENCE

College of Design, Construction and Planning

Dining Area from Main Entry

SPATIAL ITINERARIES

OCCUPANT EXPERIENCE

a. primary entrance

- public / community usage
- straight arctic entry for large items

b. secondary entranceprivate / resident usagearctic entry with built-in storage

c. organization of program

transitional spaces (entry/exit)

community / family spaces

private bedroom/bathroom spaces

ARCHITECTURE

SECTION PERSPECTIVE

ENGINEERING

DETAILS

6'-2" -2X6 TRUSSES (2'-0") O.C. -LOOSE CELLULOSE **BLOWN IN INSULATION** -METAL ROOF - GABLE FLASHING -METAL FASCIA $-\frac{1}{2}$ " PLY CASING -DOUBLE PANED GLAZING 2'-6" WINDOW SILL -2X6 BLOCKING 1'-6" -³/₄" PLY SHEATHING DENSE PACK BLOWN IN INSULATION 1X6 CHARRED WOOD FACADE 2X4 STRAPPING (1'-6") O.C. SOLARIA 5.2 kW (POWER XT 400R-PM) TYVEK DRAIN WRAP 6 MIL POLY VAPOR RETARDER SEALED TO SUBFLOOR WOOD FINISHED FLOOR 2'-6" LOOSE CELLULOSE **BLOWN IN INSULATION** -1¹/₈" PLY SHEAR PANEL $-5\frac{1}{2}$ "X24" LAMINATED BEAM -ELLIS BJ-12 JACK -2X6 BLOCKING FOOTERS

8

ENGINEERING

WALL SECTION

PHYSICAL MODEL

ARCHITECTURE

MARKET READY MATERIALS

MARKET ANALYSIS

Alaska Cargo:

- Screening Fee = \$0.05/lb
- General Air Freight rate = \$1.02/lb
- Priority Freight = \$1.62/lb

Lynden Air Cargo:

- General Freight rate:
 - \$60.00 (0-137lb)
 - \$0.44/lb (138+lb)

Alaska Tug & Barge:

- 19,915,500 lbs
- \$30,000 per load

INTEGRATED SYSTEMS

INTEGRATED PERFORMANCE

College of Design, Construction and Planning

roof

wooden facade

pv array

second floor first floor entry stairs

footings

site boundary

ELEVATIONS

South Face

West Face

East Face

North Face

ARCHITECTURE

College of Design, Construction and Planning

1/8" = 1' Scale Model

HERS INDEX SCORE COMPARISON

Earliest Houses

Earliest Houses w/ Improvement

COMFORT & ENVIRONMENTAL QUALITY

Suburb Houses

HERS INDEX SCORE COMPARISON

Teacher's Housing: Code Compliant Baseline

HERS score: 61

Our Proposal:

MARKET ANALYSIS

HERS score: 22*

*w/ pv array

Residential Production

337 MWh annual production

Annual Demand - 1,020,000 kWh needed per year **Residential Production -** 335,000 kWh per year; Distributed Along 92 Lots - 3,641.4 kWh per year

12 Solaria PowerXT 430R-PL will produce 5,160 W in perfect conditions. Taking climate into consideration, our 5W DC System will produce **3,696 kWh per year per home**

PV ENERGY GENERATION

*Based off a 5W DC System Data Calculated using NREL Solar Calculator

TIMELINE & BUDGET

MARKET ANALYSIS

College of Design, Construction and Planning

CONSTRUCTION COST COMPARISON

Code Compliant

\$270/sf

Our Proposal

MARKET ANALYSIS

College of Design, Construction and Planning

\$251/sf

LIFE CYCLE COST COMPARISON

HOUSE

<image/>	Fireweed Proposal	INITIAL \$494,909
		OPERATIONAL \$295,677
<image/>	Existing Teacher Housing	INITIAL \$672,896
		OPERATIONAL \$727,253

(*) 50 yr study period, 2% Discount rate as per NIST Handbook 135

MARKET ANALYSIS

LIFE CYCLE COST

Life Cycle Cost Includes:

- Initial Costs:
 - All Material Costs
 - All Shipping Costs
 - Construction Costs
- Operational Costs:

(over 50 year study period)

- Maintenance Costs
- Replacement Costs
- Energy Costs

\$1,400,149

HEATING ENERGY COST COMPARISON

	HOUSE	Heating Energy*
<image/>	Fireweed Proposal	\$78,570*
<image/>	Existing Teacher Housing	\$207,750*

(*) 50 yr study period, 2% Discount rate as per NIST Handbook 135

MARKET ANALYSIS

College of Design, Construction and Planning

** Anticipated equivalent cost
of energy for the house over a
50 year period, assuming
\$0.26/kWh for power from the
community solar farm.

When accounting for on-site and off-site solar generation, the cost over 50 years is \$0.

*** Based on Current Utility Bills

(*) 50 yr study period, 2% Discount rate as per NIST Handbook 135

MARKET ANALYSIS

College of Design, Construction and Planning

Burnt Fir Siding:

- Initial Costs:
 - \$86,157

• Operational Costs: (over 50 year study period) · \$743

Vinyl Siding:

- Initial Costs:
 - \$31,132
- Operational Costs: (over 50 year study period) \$138,288

EMBODIED ENVIRONMENTAL IMPACT

(*) EN 15643:2021 DIN Deutsches Institut für Normung e. V. DIN EN 15643:2021-12, Sustainability of construction works - Framework for assessment of buildings and civil engineering works 91.040.01. Beuth Verlag GmbH, Berlin 91.040.01

MARKET ANALYSIS

College of Design, Construction and Planning

Embodied Carbon: Reduced by 45%

EMBODIED ENVIRONMENTAL IMPACT

(*) EN 15643:2021 DIN Deutsches Institut für Normung e. V. DIN EN 15643:2021-12, Sustainability of construction works - Framework for assessment of buildings and civil engineering works 91.040.01. Beuth Verlag GmbH, Berlin 91.040.01

MARKET ANALYSIS

Embodied Carbon: Reduced by 45%

Green House Gas Emissions: Reduced by 22%

1 . .

