BUILT FOR THE NORTH

BU,

BU

THE TEAM

Maggie Turmel

Specialized in project management and building structure.

Hannah del Rosario

Specialized in building energy and environment. Previous degree in Architectural Design and Environmental Studies.

Mihail Mihaylov

Specialization in building structure. Previous experience in the construction industry.

Youssef El Ouarat

Specialized in building structure and project management. Previous Computer science degree and IT professional experience.

Kishan Gandhi

Specialization in energy and environment with previous experience in mechanical and structural design.

Bruno Lee

Department supervisor at Concordia University.

Specialist in Building Energy Performance.

DESIGN PARTNERS

Dr. Bruno Lee

Molly Wheelock

Dr. Zaheeruddin

William Semple

Dr. Ge

Alejandro Cisnero

Sarmad Al-Mashta

Daniel Baril

Dr. Athienitis

Samuel Dwore-Palmer

Nunavut Housing Corporation

DESIGN GOALS

Design with respect of the local and historical culture of the Inuit community. Design in accordance with Iqaluit's arctic climate

All natural or recycled materials. Zero synthetic Insultation materials.

SITE AND WEATHER

Annual Temperature Precipitation

Iqaluit, Nunavut Lat. : 63° 44' 54.9996'' N Long. : 68° 31' 10.9992'' W

>18

- 15 - 18 - 12 - 15

0.3

- 3 - 6

9 - 12

Joamie Court,

Temperature: -40°C – 12°C [-40°F - 54°F] Daylight Hours: 4-21hrs Average Winds: 6m/s [19. 7ft/s]

DEMOGRAPHICS AND HISTORICAL CONTEXT

DEMOGRAPHICS

۲∪₀۳

Housing Issue	Inuit Single Identity	Non-Aboriginal Identity Population
		Percent %
Crowding	39.2	4.3
Home in need of major repairs	35.4	13.7

60% of Nunavummiut live in public housing

98% of which are Inuit

HISTORICAL CONTEXT

structure covered in hydes

Igloo - used in winter while hunting along ice flows. Lined igloo in hydes to block air.

Pre-1940s

The igloo, the Inuit's most permanent housing, was in a state of imperenance, on ice.

"Eskimo mother and baby standing in front of crude shack at Igloolik, April 1958. The baby has nothing on below the waist yet the temperature is 10° below zero. Does this mother appreciate the effect of this temperature on the baby?"

1950s

High incidence of respiratory desiease, post-WWII, from exposure to new illnesses.

The "Eskimo Mortality and Housing" report balmed mortality on housing conditions which ignited the housing policies imposed on Inuit communities.

Rigid-Digit House

1960s-Present

Implementation of government housing. Imported design from the South, inadequate for climate and culture.

Northern Housing Corporation, 2019 model

Peeling paint

Interior damage

Housing Crisis

Housing shortage of 3800 units and 35% of existing houses in need of repair.

To properly addess housing issues necessary to consider traditional Inuit practices.

Windows won't

close

- Cold Space
- Outerwear storage
- Entrance

Cool Space, 5°C (41F)

- Mechanical room
- Sewing room
- Hide preparation
- Meat processing

Warm Space, 21°C (70F)

- Kitchen •
- Flexible Living Space .

Prefrabricated Envelope

Reduced Timeline

- 10-20% Reduction in Site Time
- Construction Year Round
- Reduced Skilled Labour on Site

Controlled Environment

- Reduce Built in Moisture
- Ensure Precision

High Quality

• Ensure Precision of Continuous Envelope Layers

Waste Optimization

Cost Certainty

Construction Process

Step 5 - Roof Panel • I-Joist Roof Panels

Step 4 - Attach Wall Panels To Structure • C-Joist Wall Panels

Step 3 - Structure

10ft Shipping Containers
Timber

Step 2 - Floor Panels

I-Joist Floor Panels

Step 1 - Place Foundation

Multipoint Frame

15

Multipoint Foundation

 \mathbf{X}

Ideal for unstable soil such as permafrost ground

10ft x 8ft containers can support 900kN.

13 containers in the assembly

Reduced assembly time.

No skilled worker or heavy equipment required

16

- 30% Less Wind Load Than a Typical Building
- Anchorage System to Prevent Structure Tilting

Envelope Composition

R-Value Wall: 52.68 [9.29 W/m²] R-Value Roof: 61.83 [10.89 W/m²] R- Value Floor: 46.06 [8.11 W/m²]

Architecture | Engineering | Durability & Resilience | Embodied Carbon | Comfort & Environmental Quality | Occupant Experience | Integrated Performance | Energy Performance | Market Analysis

19

Color Legend

-25.6° -19.8° -14.0° -8.3° -2.5° 3.3° 9.1° 14.9° 20.7°

EMBODIED CARBON

EMBODIED CARBON

Material Sources

Material Embodied Carbon

tion as solar centre

Nind

Solar PU Natural Sas

OH COA

52

Mechanical Ventilation: DualCore ERV

- Exceeds ASHRAE 62.2 recommendation for ventilation
- Operates below -35°C without reducing thermal performance based on Nunavut Case Study
- Demand Controlled Ventilation to increase energy efficiency
- Connected to CO2 sensors
- Preheat Coil for outdoor air

Plumbing & Hydronic In-Floor Heating

Design information

Piping Span	0.3 m (11.8in or 12in)
Pipes diameter	0.5 in
Fluid	50% Propylene Glycol
Best material	Schedule 80 PVC or PEX

Traditional Central Heating

Hydronic In-Floor Heating

Thermal Zones	Temperature °C [°F]	Relative Humidity (%)
West Bedroom Office 1	22.2 [72.0]	42.7
West Bedroom Office 2	21.8 [71.3]	43.4
West Bathroom 1	21.4 [70.4]	44.3
West Kitchen and Living Space	21.9 [71.3]	55.5
East Bedroom Office 1	22.2 [71.9]	42.2
East Bedroom Office 2	21.8 [71.2]	42.9
East Bathroom 1	21.3 [70.4]	44.4
East Kitchen and Living Space	21.8 [71.3]	55.8

Architecture | Engineering | Durability & Resilience | Embodied Carbon | Comfort & Environmental Quality | Occupant Experience | Integrated Performance | Energy Performance | Market Analysis

Conservation of water:

E Touchless Electronic Faucet

With Temperature Control Lever

Daylight and Lighting

(Lux) Sept. 21 7:00

(Lux) June 21 7:00

Copper Lighting Solutions

- Array of High Lumen LEDS, 100W
- Luminaire Efficiency Rating (LER) 100
- Max 513.3 Candela at OH OV
 - 1000 Lumen
- 3000K CCT
- **90CRI**

Architecture | Engineering | Durability & Resilience | Embodied Carbon | Comfort & Environmental Quality | Occupant Experience | Integrated Performance | Energy Performance | Market Analysis 27

(Lux) June 21 19:00

29

Relative humidity and air quality challenges

DualCore ERV Tempeff RGSP 450 150-300 cfm

> Hemp Plaster Interior Finish and Thermal Mass

13

12.5

12

11.5

11

10.5

10

9.5

Indoor Air Temperature (C)

Thermal Mass

Hempcrete and Plaster Effect on Indoor Air Temperature Summer

Case	South WWR	E & W WWR	North WWR	Peak Heating Load (kW)	Design Heating Load (1.25) {kW)
1	20	20	12	21.07	26.34
	25	20	8	21.01	26.26
3	35	20	12	21.15	26.44
4	25	25	12	21.04	26.30

Optimal Window-to-Wall Ratio Simulation Summer

Window to Wall Ratio

Architecture | Engineering | Durability & Resilience | Embodied Carbon | Comfort & Environmental Quality | Occupant Experience | Integrated Performance | Energy Performance | Market Analysis

SD3 Small Wind Turbine

- Continuous energy generation + storage during winter
- Northwest independently mounted (6m)
- Self-regulating blades to improve efficiency
- Withstand up to 70m/s wind speeds
- High performance in all weather conditions.
- SD6 used in Antarctica
- Designed for northern Canadian climates

CanadianSolar HiKu7 Mono PERC

- Monocrystalline solar cells to maximize efficiency per area on south wall/roof
- Capture up to 24hrs of sunlight during peak summer
- Heavy snow load up to 5400 Pa + wind load up to
 2400 Pa
- Up to 20.5 % module efficiency
- Designed for northern Canadian climates

CanadianSolar EP CUBE Energy Storage

- Smart Gateway + Hybrid Inverter + Battery Storage
- Prioritize and manage energy without interruption
- Battery storage provides up to 30 hrs of power.
- Stable overall performance and longer service life lithium batteries

The second The

Var. Em To

Waste Vegetable Oil for mCHP

Source of Waste c	ooking oil	Qua	ntity	
Annual use of can oil per restaur	ola cooking ant	1200 (145	00lb 8gal/5520L)	
15 Iqaluit restaura	ints	83 0 (219	00L 26 gal)	
A single family of	4	1.5L/ (0.4g	/month gal/month)	
Canola oil/person		4.5L/ (1.2g	/year gal/year)	
Waste cooking oil from Iqaluit population of 8000		36 0 (951	36 000L/year (9510gal/yr)	
Total estimated re waste cooking Iqaluit	ecovered oil from	119, (314	000L/yr 37gal/yr)	
			ZØ	
T LEAST 17 BUILT FOR THE NORTH HOUSING UNITS	REDUCE THE OF EXPOR FUEL	COST LO TED	OCAL USED CO OIL RECYCLI	

EUI COMPARISON TO CANADIAN NATIONAL AVERAGE

TYPICAL IQALUIT HOME ANNUAL ENERGY SOURCE COMPARISON

BASELINE ANNUAL ENERGY CONSUMPTION COMPARISON FOR IQALUIT NEW HOMES

Detached two-storeys house (120m2) [Diesel] Built For North House - Duplex Unit (144m2) [Vegetable oil]

AVERAGE ANNUAL COST IF CONNECTED TO GRID

MONTHLY ELECTRICAL DEMAND AND PV+WIND+MCHP GENERATION

Architecture | Engineering | Durability & Resilience | Embodied Carbon | Comfort & Environmental Quality | Occupant Experience | Integrated Performance | Energy Performance | Market Analysis 43

MARKET ANALYSIS

0

MARKET ANALYSIS

MARKET ANALYSIS

Total Construction Cost: \$632,250

	Annual Grid Savings (\$)	Payback Period for \$36,225 Renewable Energy Investment (Years)
Government Residential (\$0.9339/kWh)	8814.15	4.1
Non-Government Residential (\$0.6152/kWh)	5422.46	6.7

THE DESIGNATION

A A LOUGH

J.

Any Questions?