Project Manual

U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2011

Team Massachusetts

University of Massachusetts at Lowell

Massachusetts College of Art and Design

Primary Student Contact

Walter Thomas – walter_thomas@student.uml.edu

As-Built Deliverable

August 11, 2011

Team Massachusetts	1
Summary of Changes	6
Rules Compliance Checklist	9
Structural Calculations	12
Structural Narrative	
Structural Design Loads	
Lateral Wind Load Analysis	
Typical Floor Joist	
Typical Floor Beam	Error! Bookmark not defined.
Typical Roof Framing Rafter	Error! Bookmark not defined.
Truss Analysis	Error! Bookmark not defined.
Roof Rafter with Trellis Load	Error! Bookmark not defined.
Typical Footing Load	Error! Bookmark not defined.
Appendix	Error! Bookmark not defined.
Nordic I-Joist Beam-Collumn Calculations	Error! Bookmark not defined.
Gravity Load Takedown	Error! Bookmark not defined.
Truss Calculations - Complete	Error! Bookmark not defined.
Detailed Water Budget	79
Summary of Unlisted Electrical Components	80
Summary of Reconfigurable Features	81
Storage Wall	
Operable External Blinds	
Interconnection Application Form	Error! Bookmark not defined.
One-Line Electrical Schematic	Error! Bookmark not defined.
Calculations of service/feeder net computed load and neutral load (NCE 220)	Error! Bookmark not defined.
Plan view of the lot showing the house, decks, ramps, tour paths and the service point	Error! Bookmark not defined.
Elevation view(s) showing the terminal box (contains the service point), meter, and other service e defined.	quipment Error! Bookmark not
Energy Analysis Results and Discussion	82
1.Introduction	Error! Bookmark not defined.

2. Energy Efficient Design Error! Bookmark not defined.

2.1. PHPP as Design Tool	Error! Bookmark not defined.
2.2. Thermal Bridge Analysis and PHPP	Error! Bookmark not defined.
2.3. PHPP Results for Boston	Error! Bookmark not defined.
2.4. PHPP Results for Washington	Error! Bookmark not defined.
3. HVAC	Error! Bookmark not defined.
3.1. Heating/cooling	Error! Bookmark not defined.
3.2. Dehumidification	Error! Bookmark not defined.
3.3. Ventilatation	Error! Bookmark not defined.
3.4. Indoor Air Quality	Error! Bookmark not defined.
4. Solar Thermal System	Error! Bookmark not defined.
4.1. Sizing the System	Error! Bookmark not defined.
4.2. The SunDrum Collector	Error! Bookmark not defined.
5. Solar Electric System	Error! Bookmark not defined.
5.1. The Modules	Error! Bookmark not defined.
5.2. The Array	Error! Bookmark not defined.
5.3. Optimal Tilt Angle	Error! Bookmark not defined.
5.4. Electrical Load	Error! Bookmark not defined.
6. Dynamic Model in Simulink	Error! Bookmark not defined.
6. Dynamic Model in Simulink	-
•	Error! Bookmark not defined.
6.1. Description	Error! Bookmark not defined. Error! Bookmark not defined.
6.1. Description 6.2. Modeling Philosophy	Error! Bookmark not defined. Error! Bookmark not defined. Error! Bookmark not defined.
6.1. Description 6.2. Modeling Philosophy 6.3. Modeling The Building Envelope	Error! Bookmark not defined. Error! Bookmark not defined. Error! Bookmark not defined. Error! Bookmark not defined.
6.1. Description 6.2. Modeling Philosophy 6.3. Modeling The Building Envelope 6.4. Modeling Moisture and CO2	Error! Bookmark not defined. Error! Bookmark not defined. Error! Bookmark not defined. Error! Bookmark not defined. Error! Bookmark not defined.
 6.1. Description 6.2. Modeling Philosophy 6.3. Modeling The Building Envelope 6.4. Modeling Moisture and CO2 6.5. Modeling DHW 6.6. Modeling Solar 6.7. Modeling HVAC 	Error! Bookmark not defined. Error! Bookmark not defined.
 6.1. Description 6.2. Modeling Philosophy 6.3. Modeling The Building Envelope 6.4. Modeling Moisture and CO2 6.5. Modeling DHW 6.6. Modeling Solar 	Error! Bookmark not defined. Error! Bookmark not defined.
 6.1. Description 6.2. Modeling Philosophy 6.3. Modeling The Building Envelope 6.4. Modeling Moisture and CO2 6.5. Modeling DHW 6.6. Modeling Solar 6.7. Modeling HVAC 	Error! Bookmark not defined. Error! Bookmark not defined.
 6.1. Description 6.2. Modeling Philosophy 6.3. Modeling The Building Envelope 6.4. Modeling Moisture and CO2 6.5. Modeling DHW 6.6. Modeling Solar 6.7. Modeling HVAC 6.8. Inputs 	Error! Bookmark not defined. Error! Bookmark not defined.
 6.1. Description 6.2. Modeling Philosophy 6.3. Modeling The Building Envelope 6.4. Modeling Moisture and CO2 6.5. Modeling DHW 6.6. Modeling Solar 6.7. Modeling HVAC 6.8. Inputs 6.9. Initial Conditions 	Error! Bookmark not defined. Error! Bookmark not defined.
 6.1. Description 6.2. Modeling Philosophy 6.3. Modeling The Building Envelope 6.4. Modeling Moisture and CO2 6.5. Modeling DHW 6.6. Modeling Solar 6.7. Modeling Solar 6.7. Modeling HVAC 6.8. Inputs 6.9. Initial Conditions 7. Dynamic Model Results 8. 4D Home Energy Monitoring	Error! Bookmark not defined. Error! Bookmark not defined.
 6.1. Description 6.2. Modeling Philosophy 6.3. Modeling The Building Envelope	Error! Bookmark not defined. Error! Bookmark not defined.
 6.1. Description 6.2. Modeling Philosophy	Error! Bookmark not defined. Error! Bookmark not defined.

Construction Sp	pecifications	
Division 01 -	General Requirements	
01 10 00	Summary	
01 54 00	Construction Aids	
01 74 19	Construction Waste Management and Dsiposal	
Division 02 –	Existing Conditions	
02 05 19.1	3 Geotextiles for Existing Conditions	
Division 05 –	Metals	
05 14 13	Architecturally Exposed Structural Aluminum Framing	
05 50 00	Metal Fabrications	

Division 06 – W	/ood, Plastics, and Composites	
06 05 23	Wood, Plastic and Composite Fastenings	
06 10 00	Rough Carpentry	
06 16 00	Sheathing	
06 20 00	Finish Carpentry	
06 41 16	Architectural Woodwork	
06 46 00	Wood Trim	
06 82 00	Glass-Fiber Reinforced Plastic	
	nermal and Moisture Protection	
07 21 00	Thermal Insulation	
07 41 13	Metal Roof Panels	
07 46 46	Mineral Fiber Cement Siding	
07 61 13	Corrugated Sheet Metal Roofing	
07 71 23	Manufactured Gutters and Downspouts	
07 91 00	Preformed Joint Seals	
	penings	
08 14 00	Wood Doors and Frames	
08 52 00	Wood Windows	
08 61 00	Roof Windows	
Division 09 — Fii	nishes	
09 29 00	Gypsum Board	
09 30 33	Stone Tiling	
09 64 29	Wood Strip and Plank Flooring	
09 91 23	Interior Painting	
Division 10 – Sp	pecialties	
10 06 10	Schedules for Information Specialties	
10 06 20	Interior Specialties	
10 22 26.43	Operable Partitions	
10 44 16	Fire Extinguisher	
10 71 13.13	Exterior Shutters	
Division 11 – Eq	quipment	
11 31 00	Residential Appliances	
Division 12 – Fu	ırnishings	
12 36 00	Countertops	
12 58 00	Residential Furniture	
12 58 29	Beds	
12 58 36	Nightstands	
Division 21 – Fii	re Suppression	
21 13 13	Wet-Pipe Sprinkler System	
Division 22 – Pl	umbing	
22 05 00	Common Work Results for Plumbing	
22 11 16	Domestic Water Piping	
22 11 19	Domestic Water Piping Specialties	
22 12 19	Facility Potable Water Storage Tanks	
22 13 16	Sanitary Waste Piping and Vent Piping	
22 13 53	Facility Spetic Tanks	
22 33 30.16	Residential, Storage Electric Domestic Water Heaters	
2011 US DOE So	lar Decathlon Team Massachusetts Published 08/11/11	4

22 33 30.26	Residential, Collector-to-Tank, Heat Exchanger Coil, Solar Electric Domestic Water He	eaters114
Division 23 – H	eating, Ventilating, and Air-Conditioning (HVAC)	
23 31 13.16		
23 33 13	Back Draft Dampers	
23 37 13	Diffusers, Registers and Grilles	
23 40 00	Super Ultra-Low Penetration Filtration	
23 72 00	Air to Air Recovery Equipment	
23 81 26	Split System Air Conditioner	
23 84 16	Dehumidifiers	
Division 26 – E	lectrical	
26 05 19	Low-Voltage Electrical Power Conductors and Cables	
26 05 33	Raceway and Boxes for Electrical Systems	
26 24 16	Panelboards	
26 27 13	Electricity Metering	
26 28 16	Enclosed Switches and Circuit Breakers	
26 31 00	Photovoltaic Collector System	
26 51 00	Interior Lighting	
26 56 00	Exterior Lighting	
Division 27 – C	ommunications	
27 21 00	Data Communication Network Equipment	
27 21 33	Data Communication Wireless Access Points	
27 22 26	Data Communications Laptop	
Division 28 – E	lectronic Safety and Security	
28 31 46	Smoke Detection Sensors Err	or! Bookmark not defined.
28 31 49	Carbon-Monoxide Detection Sensors Err	or! Bookmark not defined.
Divisions 31 –	Earthwork	
31 05 00	Soils for Earthwork	
Division 32 – E	xterior Improvements	
32 90 00	Planting	
Division 48 – E	lectrical Power Generation	
48 19 16	Electrical Power Generation Inverters	

Summary of Changes March 22, 2011 Revisions

The Project Manual has been updated from the previous issue. Revisions include:

- Rules compliance checklist: Rule 9-2 reference to Manual page 22 33 30.26 1 Deleted
- Interconnection form reflects new inverter and PV panel Changed
- One-Line Electrical Schematic Diagram Added
- Three-Line Electrical Schematic Diagram Removed
- Calculations of Service / Feeder Net Computed Load and Neutral Load Diagram Added
- Load Center Schematic Diagram Added
- 05 14 13 Architecturally Exposed Structural Aluminum Framing Changed
- 05 50 00 Wire Rope Decorative Metal Railings Removed
- 06 16 00 Sheathing Changed
- 06 41 16 Plastic-Laminate-Clad Architectural Cabinets Changed
- 06 46 00 Wood Trim Changed
- 07 21 00 Thermal Insulation Changed
- 07 46 46 Mineral-Fiber Cement Siding Changed
- 08 14 00 Wood Doors and Frames Changed
- 08 52 00 Wood Windows Changed
- 08 61 00 Roof Windows Changed
- 09 22 16.13 Non-Structural Metal Stud Framing Removed
- 09 29 00 Gypsum Board Panels Changed
- 09 30 13 Ceramic Tiling Removed
- 09 30 33 Stone Tiling Added
- 09 93 13.53 Exterior Finishing Removed
- 10 06 20 Interior Specialties Changed
- 10 22 26.43 Operable Partitions Changed
- 12 17 13 Etched Glass Removed
- 12 36 00 Countertops Changed
- 22 12 19 Facility Potable Water Storage Tanks Changed
- 26 31 00 Photovoltaic Collector System Changed
- 48 19 16 Electrical Power Generation Inverters Changed

May 5, 2011 Revisions

The Project Manual has been updated from the previous issue. Revisions include:

- Detailed Water Budget Changed
- One-Line Electrical Diagram Changed
- Calculations of Service/Feeder Net Computed Load & Neutral Load (NCE220) Changed
- Load Center Schematic Changed
- 01 54 00 Construction Aids Changed
- 06 41 16 Architectural Woodwork Removed
- 06 82 00 Glass-Fiber Reinforced Plastic Added
- 07 13 13 Bituminous Sheet Waterproofing Added
- 11 31 00 Residential Appliances Changed
- 12 30 00 Casework Added
- 21 13 13 Wet-Pipe Sprinkler Systems Changed
- 26 05 19 Low-Voltage Electrical Power Conductors and Cables Changed
- 26 05 26 Grounding & Bonding for Electrical Systems Added
- 26 05 33 Raceways and Boxes for Electrical Systems Changed
- 26 24 16 Panelboards Changed
- 26 27 00 Low-Voltage Distribution Equipment Added
- 26 27 13 Electricity Metering Changed
- 26 28 16 Enclosed Switches and Circuit Breakers Changed
- 26 31 00 Photovoltaic Collector System Changed
- 26 51 00 Interior Lighting Changed
- 26 56 00 Exterior Lighting Changed

August 11, 2011 Revisions

The Project Manual has been updated from the previous issue. Revisions include:

- Interconnection Application Form Changed
- One-Line Electrical Schematic Changed
- Calculations of Service / Feeder Net Computed Load and Neutral Load (NCE 220) Changed
- Plan View of Lot Showing House, Decks, Ramps, Tour Path and Service Point Changed
- Elevation View Showing Terminal Box with Service Point, meter and Service Equipment Changed
- 01 54 00 Construction Aids Changed
- 01 74 19 Construction Waste Management and Disposal Added
- 05 14 13 Architecturally Exposed Structural Aluminum Changed
- 05 50 00 Metal Fabrications Changed
- 06 05 23 Wood, Plastic and Composite Fasteners Changed
- 06 10 00 Rough Carpentry Changed
- 06 82 00 Glass-Fiber Reinforced Plastic Added
- 07 13 13 Bituminous Sheet Waterproofing Removed
- 07 91 00 Prefromed Joint Seals changed
- 09 91 23 Interior Paint Changed
- 11 31 00 Residential Appliances Changed
- 12 21 13.23 Horizontal Louver Blinds Removed
- 21 13 13 Wet-Pipe Sprinkler Systems Changed
- 22 07 19 Plumbing Piping Insulation Removed
- 22 11 16 Domestic Water Piping Changed
- 22 12 19 Facility Potable Water Storage Tanks Changed
- 22 13 53 Facility Septic Tanks Added
- 22 33 30.16 Residential, Storage Electric Domestic Water Heaters Changed
- 22 33 30.26 Residential, Collector-to-Tank, Heat-Exchanger-Coil, Solar-Electric Domestic Water Heaters Changed
- 23 21 13 Hydronic Pumps Removed
- 23 31 13.16 Round and Flat-Oval Spiral Ducts Changed
- 23 33 13 Dampers Changed
- 23 37 13 Diffusers, Registers and Grilles Changed
- 23 72 00 Air-to-Air Energy Recovery Equipment Changed
- 23 81 26 Split-System Air Conditioners Changed
- 23 84 16 Dehumidifiers Changed
- 26 05 19 Low-Voltage Electrical Power Conductors and Cables Changed
- 26 05 26 Grounding and Bonding for Electrical Systems Changed
- 26 05 33 Raceway and Boxes for Electrical Systems Changed
- 26 24 16 Panelboards Changed
- 26 27 00 Low-Voltage Distribution Equipment Changed
- 26 27 13 Electricity Metering Changed
- 26 31 00 Photovoltaic Collectors Changed
- 26 51 00 Interior Lighting Changed
- 26 56 00 Exterior Lighting Changed
- 27 05 13 Communications Services Removed
- 27 21 00 Data Communications Network Equipment Changed
- 27 21 33 Data Communications Wireless Access Points Changed
- 27 22 26 Data Communications Laptops Changed

- 27 24 13 Printers Removed
- 27 26 16 Database Development Removed
- 27 26 19 Application Development Removed
- 28 31 00 Fire Detection and Alarm Removed
- 28 31 46 Smoke Detection Sensors Added
- 28 31 49 Carbon-Monoxide Detection Sensors Added

Rules Compliance Checklist

	RULE DESCRIPTION	LOCATION DESCRIPTION	Drawing #	Project Manual Page #
Rule 4-2	Construction Equipment	Drawing(s) showing the assembly and disassembly sequences and the movement of heavy machinery on the competition site	0-101,102	
Rule 4-2	Construction Equipment	Specifications for heavy machinery	0-101,102	01 54 00 - 1
Rule 4-2	Ground Penetration	Drawing(s) showing the locations and depths of all ground penetrations on the competition site	S-101,102	015400 1
Rule 4-4	Impact on the Turf	Drawing(s) showing the location, contact area, and soil-bearing pressure of every component resting directly on the turf	S-101	
Rule 4-5	Generators	Specifications for generators	O-101,102	01 54 00 - 1
Rule 4-6	Spill Containment	Drawing(s) showing the locations of all equipment, containers, and pipes that will contain liquids at any point during the event	P- 101,102,103,104	22 05 00 - 1 22 11 16 - 1 22 12 19 - 1 22 33 30.16 - 1 22 33 30.26 - 3 23 21 13 - 2
		Specifications for all equipment, containers, and pipes that will contain	P-	01 54 00 -1
Rule 4-6 Rule 4-7	Spill Containment	fluids at any point during the event Calculations showing that the structural design remains compliant even if 18 in. (45.7 cm) of vertical elevation change exists	101,102,103,104 G-201,202	
Rule 4-7	Lot Conditions	Drawing(s) showing shimming methods and materials to be used if 18 in. (45.7 cm) of vertical elevation change exists on the lot	S-101	
Rule 5-2	Solar Envelope Dimensions	Drawing(s) showing the location of all house and site components relative to the solar envelope	G-201,202	

		List of solar envelope exemption		
		requests accompanied by justifications		
Rule 5-2	Solar Envelope Dimensions	and drawing references	NA	
Nule J-Z	Solar Envelope Dimensions	List of, or marking on, all drawing and		Structural
		project manual sheets that have been		Calculations,
		or will be stamped by the qualified,		11-24
		licensed design professional in the		11 27
		stamped structural submission; the		
		stamped submission shall consist		
		entirely of sheets that also appear in		
Rule 6-1	Structural Design Approval	the drawings and project manual	S-611	
		Drawing(s) showing all information	• • • • •	
		needed by the rules officials to		
		measure the finished square footage		
Rule 6-2	Finished Square Footage	electronically	G-101	
		Drawing(s) showing all movable		
		components that may increase the		
		finished square footage if operated		
Rule 6-2	Finished Square Footage	during contest week	NA	
	,	Drawing(s) showing the accessible		
		public tour route and the ground		
		surface area that will be covered by		
Rule 6-3	Entrance and Exit Routes	organizer-provided walkway material	G-103	
		Drawing(s) showing the location of all		
		vegetation and, if applicable, the		
		movement of vegetation designed as		
Rule 7-1	Placement	part of an integrated mobile system	L-101	
		Drawing(s) showing the layout and		
		operation of greywater irrigation		
Rule 7-2	Watering Restrictions	systems	L-102	
		Specifications for photovoltaic		26 31 00 - 1
Rule 8-1	PV Technology Limitations	components	E-102,602	
		Drawing(s) showing the location(s) and		
		quantity of all primary and secondary		
		batteries and stand-alone, PV-powered		
Rule 8-3	Batteries	devices	NA	
		Specifications for all primary and		NA
	Detteries	secondary batteries and stand-alone,		
Rule 8-3	Batteries	PV-powered devices	NA	
		Drawing(s) describing the operation of		
Rule 8-4	Desiccant Systems	the desiccant system	M-602	
		Specifications for desiccant system		23 84 16 - 1
Rule 8-4	Desiccant Systems	components	M-602	
		Completed interconnection application		
Rule 8-5	Village Grid	form.	E-101,102	
		Drawing(s) showing the locations of the		
		photovoltaics, inverter(s), terminal box,		
		meter housing, service equipment, and	E 404 400	
Rule 8-5	Village Grid	grounding means	E-101,102	

				26 31 00 - 2
		Specifications for the photovoltaics,		48 19 16 - 2
		inverter(s), terminal box, meter		26 05 33 - 2
		housing, service equipment, and		26 27 13 - 1
Rule 8-5	Village Grid	grounding means	E-101,102,603	26 28 16 - 2
Rule 8-5	Village Grid	One-line electrical diagram	E-601	
Rule 8-5	Village Grid	Calculation of service/feeder net computed load per NEC 220	E-603	
		Site plan showing the house, decks,		
Rule 8-5	Village Grid	ramps, tour paths, and terminal box	A-101	
		Elevation(s) showing the meter		
Rule 8-5	Village Grid	housing, main utility disconnect, and other service equipment	E-201	
Rule 8-5	Village Grid	Drawing(s) showing the location of all	E-201	
		liquid containers relative to the finished		
Rule 9-1	Container Locations	square footage	P-101	
		Drawing(s) demonstrating that the		
		primary supply water tank(s) is fully		
		shaded from direct solar radiation		
		between 9 a.m. and 5 p.m. EDT or		
Rule 9-1	Container Locations	between 8 a.m. and 4 p.m. solar time on October 1	P-101	
Nule 9-1		Quantity, specifications, and delivery	F-101	
		date(s) of all team-provided liquids for		
		irrigation, thermal mass, hydronic		
		system pressure testing, and	5.604	
Rule 9-2	Team-Provided Liquids	thermodynamic system operation	P-601	
		Drawing(s) showing the layout and		
Rule 9-3	Greywater Reuse	operation of greywater reuse systems Drawing(s) showing the layout and	NA	
		operation of rainwater collection		
Rule 9-4	Rainwater Collection	systems	P-101,L-102	
		Drawing(s) showing the locations of	,	
Rule 9-6	Thermal Mass	liquid-based thermal mass systems	NA	
		Specifications for components of liquid-		NA
Rule 9-6	Thermal Mass	based thermal mass systems	NA	
		Drawing(s) showing the layout and		
		operation of greywater heat recovery		
Rule 9-7	Greywater Heat Recovery	systems	NA	
		Drawing(s) showing the complete		
Rule 9-8	Water Delivery	sequence of water delivery and distribution events	O-603	
Nule 5-0	water Derivery		0-003	23 21 13 - 2
				22 12 19 - 1
				22 33 30.16 -
				1
		Specifications for the containers to		22 33 30.26 -
Rule 9-8	Water Delivery	which water will be delivered	P-601	3
		Drawing(s) showing the complete		
Rule 9-9	Water Removal	sequence of water consolidation and	O-603	
2011 US DOE	Solar Decathlon Tean	n Massachusetts Published 08/11	./11	11

		removal events		
Rule 9-9	Water Removal	Specifications for the containers from which water will be removed	P-601	datasheets
Rule 11-4	Public Exhibit	Interior and exterior plans showing entire accessible tour route	G-103	

Structural Calculations

Structural Narrative

The unusual stresses of shipping and craning the 4dhome have become dominant factors in the design of our house's structural system. The house will be divided into four modules which are each designed to be independently structurally sound to withstand the rigors of shipping and craning. The Modules will also need to perform in concert as a sound two bedroom home which will be displayed and demonstrated to tens of thousands of visitors during the 2011 Solar Decathlon.

These varied forces have all been taken into account in the design of our 4Dhome. Central Trusses in the roof structure have been designed to handle the dynamic shipping and craning stresses the modules will endure on their journey and during their assembly on the National Mall. The unique stresses on the main modules will be addressed by the insertion of a series of smaller temporary trusses which will stabilize the open sides during delivery and craning and then will be adapted to serve a second purpose as railings for our decks. These horizontal stresses of braking and acceleration while on the trucks as well as the vertical lifting and racking stresses of craning and the eventual live and dead loads while in use have all been addressed and are continuing to be refined.

The use of these trusses in the roof has allowed us to disperse loads evenly throughout the building, and because we are using them in combination with sheathed TJI construction in the walls, floor and roof we have been able to enhance the thermal efficiency of our design by minimizing the costly effects of thermal bridging. We have also managed to keep the central trusses in our design thin enough to remain elegant and maintain a feeling of openness which will be enhanced by a large skylight and gable roof.

This efficient, robust construction has allowed us to address the rigorous structural stresses placed on our design while meeting Passive House insulation and energy use standards in the creation of a pleasant, structurally sound and comfortable home.

Calculation Results

Project Overview

This project manual provided structural calculations and evaluation of atypical construction methods and loading conditions not covered in applicable building codes.

The objective of the structures group is to create a safe and sensible structural design that maximizes efficiency and minimizes thermal bridging.

The shipping aspect is a dominant factor in the design of the house's structural system. The house will be built in four separate modules for shipping. These modules will be craned together for the competition.

Load Summary

The structural design must accommodate multiple phases of loading. Construction is done in a modular building facility. The modules must be able to ship on U.S. highways. The service loads include the three week duration on the National Mall with elevated load criteria and a possible permanent location in Maine, using conservative values. A change in final geographic location will require re-evaluation.

HOME TEAM MASSACHUSETTS HOME STRUCTURAL CALCULATIONS

ENGINEERING CONSULTANTS LeMessurier Consultants 6.30.11

OV/AI

Team Massachusetts

U.S. Department of Energy Solar Decathlon 2011 Date 6/30/2011

Structural Calculations

Submitted By:

LeMessurier Consultants

675 Massachusetts Avenue, Cambridge, MA 02139 Tel: (617)868-1200 Fax: (617)661-7520

Index

Structural Design Loads1	L
ateral Wind Load Analysis2	
Typical Floor Joist	5
Typical Floor Beam1	1
Typical Roof Framing Rafter1	7
Truss Analysis	9
Roof Rafter with Trellis Load28	3
Typical Footing Calculation34	ļ
Appendix	
Nordic I-Joist Beam-Column CalculationA1	
Gravity Load TakedownA6	

LeM File No.: 31079

U.S. Department of Energy Solar Decathlon 2011 Date 6/30/2011

Structural Design Loads

Submitted By:

LeMessurier Consultants

675 Massachusetts Avenue, Cambridge, MA 02139 Tel: (617)868-1200 Fax: (617)661-7520

Structural Design Loads – In accordance with ASCE 7-05; Minimum Design Loads for Buildings and Other Structures

	1.	Dead L	bads	
×		a.	Weight of Permanent Building ComponentsAs	Required
	2.	Live Lo	ads	
		a.	First Floor	100psf
	3.	Snow L	oads	
			Ground Snow Load	
		b.	Flat Roof Snow Load, Pf	50psf
		с.	Sloped Roof Snow Load, Ps	50psf
		d.	Snow Exposure Factor, C _e	1.0
		e.	Roof Slope Factor, C _s	1.0
		f.	Snow Load Importance Factor, I	1.0
		g.	Thermal Factor, Ct	1.1
	4.	Wind L	pads	
		a.	Basic Wind Speed (Boston, MA)	.105mph
		b.	Importance Factor, I	1.0
		с.	Surface Roughness Category	В
		d.	Exposure Category	В
		e.	Analysis MethodMethod 1 (Simplified N	lethod)
		f.	Main Wind Force-Resisting System Design Pressures	
			i. Wall Corner	19.6psf
			ii. Wall Field	15.7psf
			iii. Roof Corner	13.5psf
			iv. Roof Field	10.8psf
		g.	Components and Cladding Pressures (based on effective wind ar	
			i. Interior Roof Zone(+)17.6psf/(-)18.8psf
			ii. Roof End/Ridge Zone(+)17.6psf/{	-)22.2psf
			iii. Roof Corner and Ridge End Zone(+)17.6psf/(-)22.2psf
			iv. Wall Interior Zone(+)18.9psf/(-	
			v. Wall End Zone(+)18.9psf/(-)24.8psf

LeM File No.: 31079

Team Massachusetts

Sheet No. Date File No. PLCG Subject 6/30/11 31079 2 LeMessurier Consultants Structural Engineers LATEMAZ WIND LOADS APPLY pressures Nonma TO VERTICAL PLANE. a = 0.1(22'-B'') = 2.27' + 41'-5'' + 201-8'2' + 201-8a= 3'0" 20,26'-0 NONTH-SONTH 7-7" TO TOL VU / MCH SHONT WAN) FB= 6"(05 X7-7")(13.5psf) 1000 ELEYATTON [20'-0'2"]-(6'-0"] [0.5×31-3")(10.0 pit) 0.602 = 0.912 $F_{O} = \frac{6'(7'-7'')(0.5)(13.5)}{1000} + \frac{114'.8''')(7'-7'')(0.5)(15.7)}{1000}$ $\frac{3}{6'(7'-7'')(0.5)(19.6)} = 0.310'' + 0.446' + 0.602'' + 0.875}$ = 2.23''(1+182")(7-7")(0.5)(10.8) $F_{0}=0.446^{2}+0.875^{2}=1.32^{K}$ VT = FO+FO+FO = 0.912 + 2.23 + 1.32 + 11500 30 by 38 blocks at .25 inches

2011 US DOE Solar Decathlon

Team Massachusetts

Published 08/11/11

Nordic Lam[™] columns shall be in accordance with the recommendations provided by the manufacturer.

5. Fire-rated assemblies:

Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer (see link above).

- Limitations:
 - a) Nordic Lam[™] beams and columns shall be designed in accordance with the code using the design properties specified in this report.
 - b) The dimensions of Nordic Lam[™] beams and columns shall follow those specified in Table 1.
 - c) Nordic Lam[™] beams and columns shall be manufactured in accordance with layup combinations specified in APA *Glulam Layup Combinations*, Form Y117 SUP (www.apawood.org/publications) or proprietary Nordic Lam[™] manufacturing specifications documented in the in-plant manufacturing standard approved by APA.
 - d) Nordic Lam[™] is produced at the Nordic Engineered Wood, Chibougamau, Quebec facilities under a quality assurance program audited by APA.
 - e) This report is subject to re-examination in one year.
- 7. Identification:

Nordic Lam[™] described in this report is identified by a label bearing the manufacturer's name (Nordic Engineered Wood) and/or trademark, the APA assigned plant number (1057), the product standard (ANSI/AITC A190.1), the APA logo, the combination symbol, the report number PR-L294, and a means of identifying the date of manufacture.

Layup	Minimum width, Maximum width, Minimum depth, I			Maximum depth,
	b (in.)	b (in.)	Н	h (in.)
20F-E8M1	1-1/2	7-1/2	4 lams	18
20F-ES/CPG	3-1/8 ⁽¹⁾	3-1/2	4 lams	18
24F-E/ES1M1	1-1/2	7-1/2	4 lams	36 ⁽²⁾
24F-ES/NPG	1-1/2	12	4 lams	54 ⁽²⁾
ES11	1-1/2	7-1/2	2 lams	15
ES11/NPG	1-1/2	7-1/2	2 lams	15
ES12	1-1/2	7-1/2	2 lams	15
ES12/NPG	1-1/2	12	2. lams	54 ⁽²⁾

Table 1. Dimensions for Nordic Lam™ layups.

(1) The minimum width shall be permitted to be 1-1/2 inches when 24F-ES/NPG is trademarked as 20F-ES/CPG.

⁽²⁾ The maximum depth shall not exceed the tabulated depth or a depth-to-width ratio of 12:1, whichever is smaller.

Nordic Lam[™] Nordic Engineered Wood

PR-L294 Revised April 12, 2011

Products: Nordic Lam[™] Nordic Engineered Wood, 1100 Avenue des Canadiens-de-Montréal, Suite 504 Montreal, Québec, Canada H3B 2S2 (514) 871-8526 www.nordicewp.com

- 1. Basis of the product report:
 - 2009 and 2006 International Building Code (IBC): Sections 104.11 Alternative Materials and 2303.1.3 Structural glued laminated timber
 - 2009 and 2006 International Residential Code (IRC): Sections R104.11 Alternative Materials, and R502.1.5, R602.1.2, and R802.1.4 Structural glued-laminated timber
 - ASTM D 3737-07 and D 3737-03 recognized by the 2009 IBC and IRC, and 2006 IBC and IRC, respectively
 - ANSI/AITC A190.1-07 and A190.1-02 recognized by the 2009 IBC and IRC, and 2006 IBC and IRC, respectively
 - APA Reports T2001P-85, T2003P-21, T2003P-85, T2004P-43, T2006P-45, T2008P-91, and T2009P-39, FPInnovations Reports 201003404 and 201003409, and other qualification data

2. Product description:

Nordic Lam[™] is a Black Spruce structural glued laminated timber manufactured in accordance with 20F-E8M1, 20F-ES/CPG, 24F-E/ES1M1, 24F-ES/NPG, ES11, ES11/NPG, ES12, and ES12/NPG layup combinations developed in accordance with the principle of ASTM D 3737. Nordic Lam[™] is used as beams, headers, rafters, purlins, columns, studs, and decking, and is manufactured in nominal widths ranging from 1-1/2 to 12 inches, depths up to 54 inches, and lengths up to 80 feet, in accordance with Table 1.

3. Design properties:

Table 2 lists the design properties for Nordic Lam[™] beams. The allowable spans for Nordic Lam[™] beams shall be in accordance with the recommendations provided by the manufacturer (<u>www.nordicewp.com/literatures/N-U121NordicLam.pdf</u>), and with EWS Data File: *Glued Laminated Beam Design Tables*, Form S475 (<u>www.apawood.org/publications</u>), as applicable.

Table 3 lists the design properties for Nordic Lam[™] columns. The allowable loads for Nordic Lam[™] columns shall be in accordance with the recommendations provided by the manufacturer (<u>www.nordicewp.com/literatures/N-U231Columns.pdf</u>), and with EWS Data File: *Design of Structural Glued Laminated Timber Columns*, Form Y240 (<u>www.apawood.org/publications</u>), as applicable.

4. Product installation:

Nordic Lam[™] beams and columns shall be installed in accordance with the recommendations provided by the manufacturer (<u>www.nordicewp.com/literatures/N-U121NordicLam.pdf</u>) and EWS Technical Note: *Glulam Connection Details*, Form T300 (<u>www.apawood.org/publications</u>). Permissible field notching and drilling of Nordic Lam[™] beams shall be in accordance with the recommendations provided by the manufacturer and with EWS Technical Note: *Field Notching and Drilling of Glued Laminated Timber Beams*, Form S560 (<u>www.apawood.org/publications</u>). Permissible field notching and drilling of

Date File No. Sheet No., By M, LeMessurier Consultants Subject Structural Engineers NONDIC BERAM 3/2"× 1130" NONDIC LAM BERAM KHELL BEYONIG STRESS I: 312"(113) = 400" 5x - 3/2" (113) - 92" 17 = 115 pst (10'-3") 16'-10") - 7 104" Jb = <u>85,247</u> = 1040 psi SIMPLE BEYDING For 2000psillower House) > for 1040.psi i. oh Ay From TABLE OF DEGISA YOLLES CHER DESCENTA W= 100psf (10'-7") = 1058#1 $\Delta = \frac{5(105^{6})(6'-10'' \times 12'')}{389(0.8 \times 10^{6} 1^{5})(988)} = 0.133''(\frac{1}{616}) = 0.133''(\frac{1}{616}) = 0.697$ CHERA STRAAL R = 115ps+(10'.7")(6'-10")(0.5) = 4150# Jy- 4158 - 100. psi < Fy=175ps) in sitern (31/2"×113") - 100. psi < Fy=175ps) in sitern (conser boundo) ohar

APA Product Report[®] PR-L274 Revised May 2, 2011

Page 4 of 4

APA – The Engineered Wood Association is an accredited certification body under ISO 65 by Standards Council of Canada (SCC) and an accredited inspection agency by the International Code Council (ICC) International Accreditation Service (IAS) under ISO/IEC 17020. APA is also an accredited testing organization recognized by IAS and SCC under ISO/IEC 17025. APA is a recognized testing laboratory by Miami-Dade County, and a Product Testing Laboratory, Product Quality Assurance Entity, and Product Validation Entity by the Florida Department of Community Affairs (DCA).

APA – THE ENGINEERED WOOD ASSOCIATION HEADQUARTERS

7011 So. 19th St. • Tacoma, Washington 98466 Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: <u>www.apawood.org</u>

PRODUCT SUPPORT HELP DESK

(253) 620-7400 · E-mail Address: help@apawood.org

DISCLAIMER

APA Product Report[®] is a trademark of *APA* – *The Engineered Wood Association*, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility of product performance or designs as actually constructed.

APA Product Report[®] PR-L274 Revised May 2, 2011

^(a) The tabulated values are design values for normal duration of load. All values, except for El and K, shall be permitted to be adjusted for other load durations as permitted by the code.

- (b) The maximum vertical load capacity for Nordic Joist without bearing stiffeners is 2,000 lbf/ft for joists up to 16inch deep, 1,850 lbf/ft for 18-inch NI-60 and 1,275 lbf/ft for 18-inch NI-80x to 24-inch NI-80x.
 (c) Dediag of the state is in the state of the s
- (c) Bending stiffness (EI) of the I-joist
- ^(d) Moment capacity (M) of the I-joist, which shall not be increased by any repetitive member use factor.
- (e) Shear capacity (V) of the I-joist
- ^(f) Intermediate reaction (IR) of the I-joist for a bearing length of 3-1/2 or 5-1/2 inches with or without web stiffeners in accordance with the bearing stiffener recommendations listed in Table 2.
- ^{g)} End reaction (ER) of the I-joist for a bearing length of 1-3/4 and 3-1/2 inches with and without web stiffeners. Higher end reactions are permitted. For a bearing length of 4 inches, the end reaction may be set equal to the tabulated shear value. Interpolation of the end reaction between 1-3/4 and 4-inch bearing length is permitted. For joists up to 16-inch deep with end reaction values greater than 1,550 lbf, web stiffeners are required with the exception of NI-90x, which requires bearing stiffeners when end reaction values exceed 1,885 lbf. For 18-inch NI-60 and 18-inch NI-80x to 24-inch NI-80x with end reactions greater than 1,850 lbf, web stiffeners are required.
- ¹⁾ Coefficient of shear deflection (K). For calculating uniform load and center-point load deflections of the I-joist in a simple-span application, use Equations 1 and 2.

 $\delta = \frac{P\ell^3}{48EI} + \frac{2P\ell}{K}$

Uniform Load:
$$\delta = \frac{5\omega\ell^4}{384\text{El}} + \frac{\omega\ell^2}{K}$$
[1]

Center-Point Load:

Where:

δ

ω P

l

K

= calculated deflection (in.)

uniform load (lbf/in.)

- concentrated load (lbf)
- design span (in.)
- EI = bending stiffness of the I-joist (lbf-in.²)
 - = coefficient of shear deflection (lbf)

Table 2. Minimum Dimensions for Web Stiffeners (a)

Joist	Web Stif	feners	Flange width (in.)
Series	Thickness (in.)	Width (in.)	
NI-20	1	2-5/16	2-1/2
NI-40	1	2-5/16	2-1/2
NI-40x	1	2-5/16	2-1/2
NI-60	1	2-5/16	2-1/2
NI-70	1-1/2	2-5/16	3-1/2
NI-80	1-1/2	2-5/16	3-1/2
NI-80x	1-1/2	2-5/16	3-1/2
NI-90x	1-1/2	2-5/16	3-1/2

Web stiffener length is 1/8 to 1/4 inch less than the clear distance between flanges. Stiffeners 1-inch thick are wood structural panels and stiffeners 1-1/2-inch thick are SPF lumber (specific gravity of 0.42) or denser lumber.

© 2011 APA – The Engineered Wood Association

04-16

Page 3 of 4

[2]

APA Product Report[®] PR-L274 Revised May 2, 2011

7. Identification:

The Nordic Joist described in this report is identified by a label bearing the manufacturer's name (Nordic Engineered Wood) and/or trademark, the APA assigned plant number (1052), the I-joist depth and series, the APA logo, the report number PR-L274, and a means of identifying the date of manufacture.

Table 1.	Design Properties	(Allowable Stress	Design) for Nordic Joist ^{TM (a,b)}	
----------	-------------------	-------------------	--	--

Joist	Joist	El(c)	M ^(d)	V ^(e)		(1	2 ^(f) Df)			(18	2 ^(g) of)		K ^(h)
Depth (in.)	Series	(10 ⁶ lbf- in. ²)	(lbf-ft)	(lbf)	3-1/2	! (in.)	5-1/2	! (in.)	1-3/4	(in.)	3-1/2	! (in.)	(10 ⁶ lbf)
(11.)	,	ш. <u>у</u>			w/o WS	w/WS	w/o WS	w/WS	w/o WS	w/WS	w/o WS	w/WS	1
	NI-40x	138	2,310	880	1,890	NA	NA	NA	880	NA	NA	NA	4.10
7-7/8	NI-60	147	3,030	880	1,890	NA	NA	NA	880	NA	NA	NA	4.10
	NI-80	204	4,285	880	1,890	NA	NA	NA	880	NA	NA	NA	4.10
	NI-20	138	2,510	1,080	1,700	NA	NA	NA	900	NA	NA	NA	4.81
9-1/4	NI-40x	198	2,810	1,170	2,240	NA	NA	NA	1,120	NA	NA	NA	4.81
9-1/4	NI-60	217	3,680	1,170	2,240	NA	NA	NA	1,120	NA	NA	NA	4.81
	NI-80	304	5,215	1,170	2,240	NA	NA	NA	1,120	NA	NA	NA	4.81
	NI-20	145	2,590	1,120	1,700	NA	NA	NA	900	NA	NA	NA	4.94
	NI-40	193	2,735	1,120	2,160	NA	NA	NA	1,080	NA	NA	NA	4.94
0 1/0	NI-40x	218	2,900	1,200	2,240	2,620	NA	NA	1,120	NA	NA	NA	4.94
9-1/2	NI-60	231	3,810	1,200	2,240	2,620	NA	NA	1,120	NA	NA	NA	4.94
	NI-70	304	5,120	1,200	2,240	2,620	NA	NA	1,120	NA	NA	NA	4.94
	NI-80	324	5,385	1,200	2,380	2,790	NA	NA	1,190	NA	NA	NA	4.94
	NI-20	222	3,155	1,340	1,800	NA	NA	NA	900	NA	NA	NA	5.85
44 4/4	NI-40x	313	3,535	1,410	2,750	NA	NA	NA	1,250	NA	NA	NÀ	5.85
11-1/4	NI-60	347	4,630	1,410	2,750	NA	NA	NA	1,250	NA	NA	NA	5.85
	NI-80	484	6,560	1,410	2,750	NA	NA	NA	1,330	NA	NA	NA	5.85
	NI-20	253	3,355	1,420	1,800	NA	NA	NA	900	NA	NA	NA	6.18
	NI-40	330	3,545	1,420	2,500	NA	NA	NA	1,200	NA	NA	NA	6.18
	NI-40x	371	3,760	1,480	2,750	2,930	NA	NA	1,250	NA	NA	NA	6.18
11-7/8	NI-60	396	4,935	1,480	2,750	2,930	NA	NA	1,250	NA	NA	NA	6.18
	NI-70	515	6,635	1,480	2,750	2,930	NA	NA	1,250	NA	NA	NA	6.18
	NI-80	547	6,980	1,480	2,900	3,120	NA	NA	1,330	NA	NA	NA	6.18
	NI-90x	615	9,465	2,055	4,170	NA	NA	NA	1,765	NA	NA	NA	6.18
	NI-40	482	4,270	1,710	2,500	NA	NA	NA	1,200	NA	NA	NA	7.28
	NI-40x	540	4,530	1,730	2,750	3,240	NA	NA	1,250	NA	NA	NA	7.28
4.4	NI-60	584	5,945	1,730	2,750	3,240	NA	NA	1,250	NA	NA	NA	7.28
14	NI-70	749	7,990	1,730	2,750	3,240	NA	NA	1,250	NA	NA	NA	7.28
	NI-80	802	8,405	1,730	3,310	3,840	NA	NA	1,330	NA	NA	NA	7.28
	NI-90x	910	11,415	2,210	4,170	NA	NA	NA	1,765	NA	NA	NA	7.28
	NI-40	657	4,950	1,970	2,500	NA	NA	NA	1,200	NA	NA	NA	8.32
	NI-40x	734	5,250	1,970	2,750	3,240	NA	NA	1,250	NA	NA	NA	8.32
10	NI-60	799	6,895	1,970	2,750	3,240	NA	NA	1,250	NA	NA	NA	8.32
16	NI-70	1,015	9,265	1,970	2,750	3,240	NA	NA	1,250	NA	NA	NA	8.32
	NI-80	1,092	9,745	1,970	3,310	3,840	NA	NA	1,330	NA	NA	NA	8.32
			13,100		4,170	NA	NA	NA	1,765	NA	NA	NA	8.32
10	NI-60	1,019	7,800	2,000	2,800	3,500	3,150	4,100	1,300	1,700	1,520	1,860	9.36
18	NI-80x		10,990		3,100	3,700	3,250	4,250	1,300	1,900	1,520	2,150	9.36
20 .	NI-80x		12,315		3,100	3,700	3,250	4,250	1,300	2,010	1,520	2,250	10.40
22			13,645		3,100	3,700		4,250	1,300	2,130	1,520	2,350	11.44
24			14,975		3,100	3,700		4,250	1,300	2,250	1,520	2,440	12.48

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 lbf-ft = 1.356 N-m, 1 lbf-in² = 0.000287 N-m²

Page 2 of 4

200,

ROO,

Nordic Joist[™] Nordic Engineered Wood

PR-L274 Revised May 2, 2011

Products: NI-20, 40, 40x, 60, 70, 80, 80x, and 90x Prefabricated Wood I-Joists Nordic Engineered Wood, 1100 Avenue des Canadiens-de-Montréal, Suite 504 Montreal, Québec, Canada H3B 2S2 (514) 871-8526 www.nordicewp.com

- 1. Basis of the product report:
 - 2009 and 2006 International Building Code (IBC): Sections 104.11 Alternative Materials and 2303.1.2 Prefabricated wood I-joists
 - 2009 and 2006 International Residential Code (IRC): Sections R104.11 Alternative Materials and R502.1.4 Prefabricated wood I-joists
 - ASTM D 5055-05 recognized by the 2009 IBC and IRC, and ASTM D 5055-04 recognized by the 2006 IBC and IRC
 - APA Reports T2004P-3, T2004P-21, T2004P-74, T2004P-76, T2005P-30, T2005P-31, T2006P-12, T2006P-13, T2007P-14A, T2007P-76, T2007P-79A, T2007P-81, T2007P-91, T2008P-17, T2010P-20 and other qualification data

2. Product description:

Nordic Joist[™] is made with lumber flanges and OSB webs in accordance with the in-plant manufacturing standard approved by APA.

Design properties:

Table 1 lists the design properties for Nordic Joist. The allowable spans shall be in accordance with the recommendations provided by the manufacturer (www.nordicewp.com/literature/residential-united-states/).

Product installation:

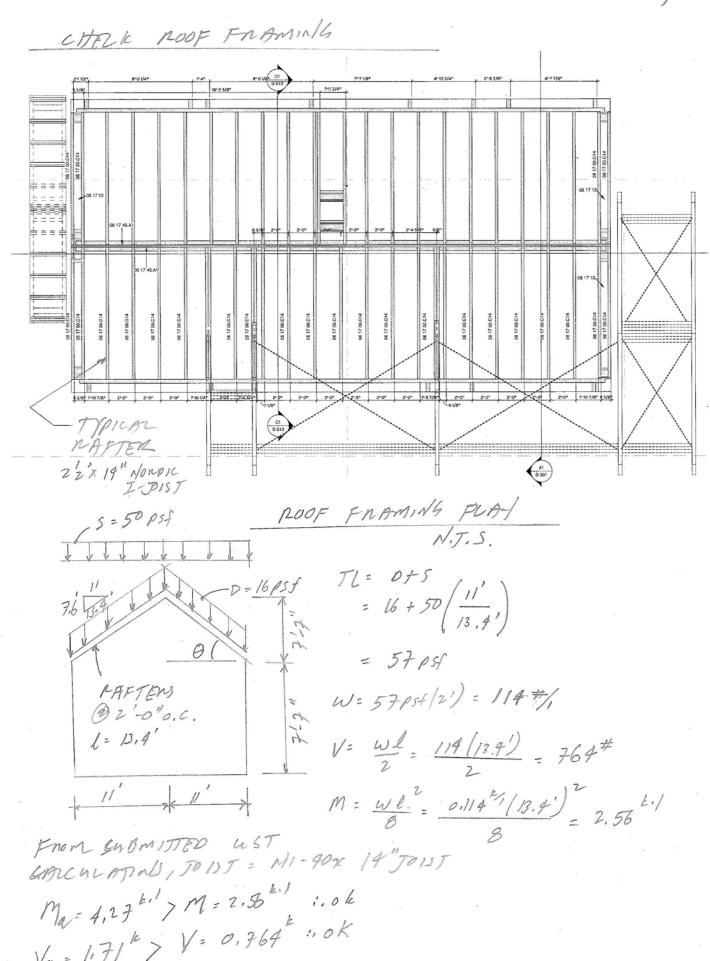
Nordic Joist shall be installed in accordance with the recommendations provided by the manufacturer (see link above). Permissible web holes, web stiffeners and cantilever reinforcements shall be in accordance with the recommendations provided by the manufacturer.

5. Fire-rated assemblies:

Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer (see link above), and with APA Design/Construction Guide: Fire-Rated Systems, Form W305 (www.apawood.org/publications).

- 6. Limitations:
 - a) Nordic Joist shall be designed in accordance with the code using the design properties specified in this report.
 - b) Nordic Joist is limited to dry service conditions where the average equilibrium moisture content of sawn lumber is less than 16 percent.
 - c) Nordic Joist is produced at the Nordic Engineered Wood, Chibougamau, Québec facilities under a quality assurance program audited by APA.
 - d) This report is subject to re-examination in one year.

04-16


A1 S-201 CHECK JOIST STYES. 3 MAX WIDTH US 2'O'Z SAY MIBUTARY WIDTH 2'0" IS DESIGN LIVE = 100pst 2'-0 1/2" DEBO WAD = 15 pst DJL= 115 PSF W= 115/2'0") = 0.230 k. M: 0. 230 4/ 10- 7")2 B 06 17 00 C13 06 17 00.C13 00.C13 3,22 4.1 6-10" ASD OF NI-60 113 p Ma: q. q 4 "> M= 3, 22" C4 06 18 16 1. TOIST STRESS Oh. S-704 06 17 00.013 Fre, CHERK DEFLECTION 06 17 00.C13 06 17 00.C13 06 17 00.C13 26 1/ UU.CT3 06 17 00.C13 101-7" $D = \frac{5\omega l^4}{20457} + \frac{\omega l^2}{2}$ A4 S-104 W= 100 (0,230 ") (12") = 0,0167 × 11 × 1000 1/k = 1-10/1/4" 1-4 1/8" 1 CHECK JUIST STEAN 91 From TABLE 5] = 396 × 10 € \$/1,2 R= 0,2304/ (10'-7") 10.5)= 1,224 K = 6.18×106 # Va = 1.48">R=V=1.224 △=<u>5(-16,7^kn)(10-3"×12")</u> 3 89(396×10⁶) 1. SHEAN ount 16.7 (10+7"×12")2 6, 18 ×106 10 201 - 0.

Sheet No. Subject 6/30/11 31079 5 LeMessurier Consultants Structural Engineers MONTH - SONTH WAR SHEAR 1⁵⁵IDE Li = 22'-9"- 15'+5'-4") = 12,33" & FUL HELGHT 12.33 = 54% Co=0.67 VWAN = 0.67/240)(12.83)(x251003) = 4.63 × V-4.46 × upuFT, R= 4.46 K/7'-7") = 2.74 K 2" SIRE L' = 22'-0" - (3'-11"+ 3'-6") = 15.25' 20 FUIL HERLIHT 15.25 = 67% Co = 0.63 Vugu: 0.63/260) 115.25) (x 251205) = 5.38 × 1000 = 1/:4.40 Иринт, R = 4146 (2'-2") = 2.22k

File No. Sheet No. Date 6 / 20/11 PVCG Subject 31079 LeMessurier Consultants Structural Engineers CHECK LATENAL SITEM ON WAN PANEL VEBST-WEST SHERR (TO I LONG WARN) = 5.30 K VNONTH-SONTH SHOP (TO MACH WAR): 4.46 " EAST-WEST WAN SHEAR Vwor = (NCO) Zi Li Li= 41-8"-3.(4'0") = 29.67" % FULL HELGHT = 29.67 . 0.71 716 6 = 1.00 V 5g"Stranth = 280 PUF - IBC MABLE For 15/32 /wm = 1.0(280 pup)(29.67') x 2 5105 = 16.6 × > V = 5.38 × 1000# ". Strenge WPUIFT R= 5.38 (7-7") = 1.39 k 29.67

Date File No. Sheet No. By 6/30/11 1966 31079 3 **LeMessurier Consultants** Subject Structural Engineers EAST-WEST $F_0 = \frac{19.6(12.1)(6')}{1000}$ = 1.42" 4'-6" For = 15.7(15.2')(5.33) 7'-7" = 1.27 " VI (AUL TO ISIDE) 6-0" Vy= 2/1.42")+2/1.27")=5.38" CITETA SUDING 48E 0.6 DEAD TO TAL DEGO 19.9 L PROOF = 15 15+ (1.41) (22'-6") (41'-5") = D proor = 15pst / 22'8")(41'-5") = 14.1K D whis = 15ps+[(22'8)(2)+41'-5"/2)](7'-7") = 19.6" DT= 98.6" $14.5^{k} = 0.6(D) = 29.2^{K} = 1000 = 5.38$ F3=2 1. Scipinty

Date File No. Sheet No. MCG Subject 18 LeMessurier Consultants **Structural Engineers** CHECK TIPLOR NOOF NAFTER DEFLECTION S = 50 psf (11') = 41 psf Ws= +115\$ (21)=: 82#1 FROM TABLE EI: 482 × 10° #/12 $\Delta_{S} = \frac{5(82^{\frac{1}{2}})[1/2]}{384(482\times10^{6})} \frac{13.4(\times12^{\frac{1}{2}})}{1307} = 0.123''\left(\frac{L}{1307}\right) :: A_{S} o.k.$ ADD WIND TO ROOF RAFTER USE D+ 0.75W + 0,755 TL=16.+ 0,75(13.5) (7.6') +0,75(50) 11' USE CONVER NAFIEN = 16 + 5,7 + 30.8 5=50051 = 52.5 8AY 53pSF BY INSPRJION 53pst 6 57pst From GRAVITY ANDLYSIS. AND WIND O.K. WIND

17/

APA Product Report[®] PR-L294 Revised April 12, 2011

Page 5 of 5

APA – The Engineered Wood Association is an accredited certification body under ISO 65 by Standards Council of Canada (SCC) and an accredited inspection agency by the International Code Council (ICC) International Accreditation Service (IAS) under ISO/IEC 17020. APA is also an accredited testing organization recognized by IAS and SCC under ISO/IEC 17025. APA is also an accredited testing laboratory by Miami-Dade County, and a Product Testing Laboratory, Product Quality Assurance Entity, and Product Validation Entity by the Florida Department of Community Affairs (DCA).

APA – THE ENGINEERED WOOD ASSOCIATION HEADQUARTERS

7011 So. 19th St. • Tacoma, Washington 98466 Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: <u>www.apawood.org</u>

PRODUCT SUPPORT HELP DESK

(253) 620-7400 · E-mail Address: help@apawood.org

DISCLAIMER

APA Product Report[®] is a trademark of *APA* – *The Engineered Wood Association*, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility of product performance or designs as actually constructed.

APA Product Report[®] PR-L294 Revised April 12, 2011

Page 4 of 5

.

Table 3. Design Values Nordic LamTM Columns for Normal Duration of Load⁽¹⁾

			4	All Loading	5		Axially Loaded			Bending about Y-Y Axis	out Y-Y Axis		Bending about X-X Axis	ut X-X Axis
					Compression Par-	Ten	Compression Parallel to Grain	arallel to Grain	Loadec	Loaded Parallel to Wide Faces of Laminations	e Faces of Lamin	lations	Loaded Perpendicular to V Faces of Laminations	Loaded Perpendicular to Wide Faces of Laminations
Combination	Snarlae ⁽²⁾	Grade	Modulus o	Modulus of Elasticity ⁽³⁾	pendicular to	to Grain				Bending ⁽⁴⁾		Shear Darallal	Bending ⁽⁷⁾	Shear Darallel
Symbol	222				Grain	2 or More Lams	2 or More Lams 4 or More Lams	2 or 3 Lams	4 or More Lams	3 Lams	2 Lams		2 Lams to 15 in. Deep	to Grain ⁽⁵⁾
			E (10 ⁶ psi)	Emin (10 ⁶ psi)	F _{et} (psi)	F ₁ (psi)	F _c (psi)	F _e (psi)	F _{by} (psi)	F _{by} (psi)	F _{by} (psi)	Fw (psi)	F _{bx} (psi)	F _{vx} (psi)
ES 11	ES	5	1.5	0.79	450	975	1,550	1,350	1,750	1,600	1,400	175	1,350 ^(B)	250
ES 11/NPG	. ES	NPG	1.5	0.79	450	975	1,550	1,350	1,750	1,600	1,400	175	1,350	250
ES 12	ES	1.9E6	1.8	0.95	560	1,600	2,300	1,700	2,400	2,400	2,300	175	1,950 ⁽⁸⁾	250
ES 12/NPG	ES	DdN	1.8	0.95	560	1,600	2,300	1,700	2,400	2,400	2,300	250	2,400	250
5	Wet-use factors		0	0.833	0.53	0.8	0.73	3		0.8	-	0.875	0.8	0.875
(1) The tabula	ated design va	lues are for r	normal duration	n of loading. Fo	The tabulated design values are for normal durations of loading, see applicable building code. The tabulated design values are for dry conditions of use, multiply the tabulated values	of loading, see appl	licable building cot	de. The tabulat	ed design values a	ire for dry condition	ons of use. For	wet conditions of	use, multiply the	tabulated values

by the factors shown at the bottom of the table. ES = Eastern spuce. The tabulated is a 5% shear deflection (also known as "apparent E"). The axial modulus of elasticity (E_{wall} and E_{wall win}) shall be permitted to be calculated by multiplying the tabulated E and E_{wall} by 1.05. The values of F_{by} are based on members 12 inches in depth. For depths less than 12 inches, F_{by} shall be permitted to be circulated by multiplying by the size factor, (12/d)^{1/6}, where d is the beam depth in inches. When d is less than 3 £ 3 3

inches, use the size adjustment factor for 3 inches.

For non-primatic members, monthers, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the tabulated F_w and F_w values shall be multiplied by 0.72. The tabulated F_w values are for members, notiched members, notiched members at a subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the tabulated F_w values shall be multiplied by 0.72. The tabulated F_w values are for members in values are for members in values in width by 12 inches in depth by 21 feet in length. For members with a targer volume, F_w shall be multiplied by a volume factor, C_w determined in accordance with applicable building. When the member depth is greater than 15 inches, the tabulated F_w values shall be multiplied by a volume factor, C_w determined in accordance with applicable building. When the member depth is greater than 15 inches, the tabulated F_w values shall be multiplied by a volume factor, C_w determined in accordance with applicable building. When the member depth is greater than 15 inches, the tabulated F_w values shall be multiplied by a factor of 0.88. 3 3 3

(8)

15

12-17

Page 3 of 5

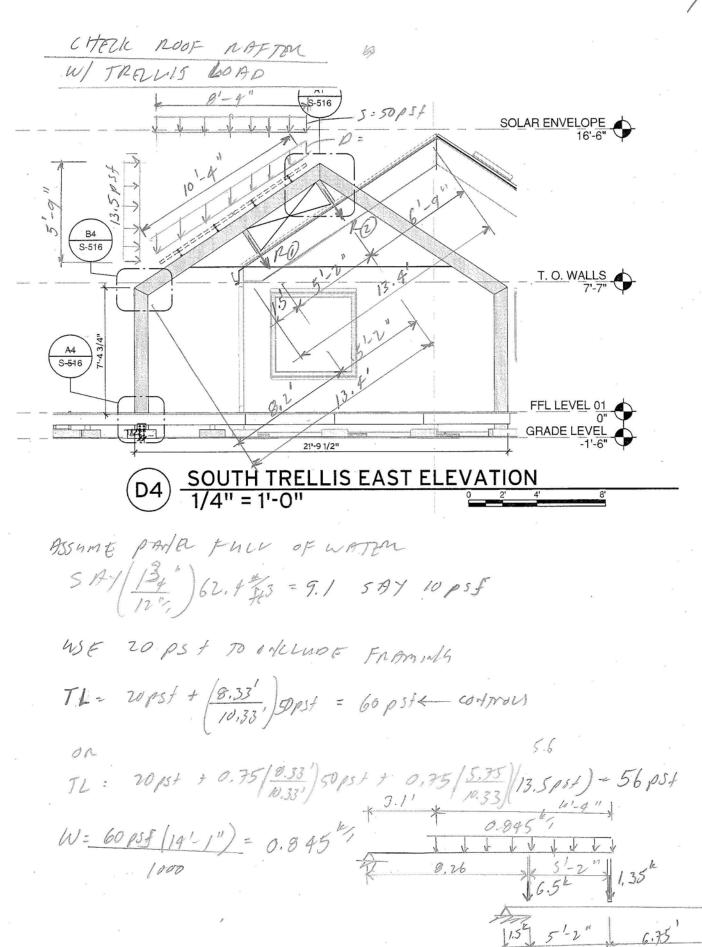
APA Product Report[®] PR-L294 Revised April 12, 2011

.

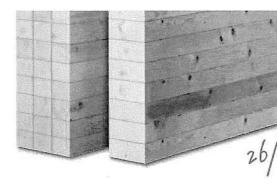
Table 2. Design Values for Nordic LamTM Beams for Normal Duration of Load⁽¹⁾

			(Loaded I	Bending (Loaded Perpendicular	g About X-X Axis to Wide Faces of	About X-X Axis o Wide Faces of Laminations)	tions)		(1.06	Bending About Y-Y Axis (Loaded Parallel to Wide Faces of Laminations)	Bending About Y-Y Axis arallel to Wide Faces of La	Axis of Lamination	ns)	Axially Loaded	Loaded	Fasteners	ners
		Extrem Ben	Extreme Fiber in Bending ⁽³⁾	Compression Perpendicular to Grain	ssion cular to											Specific Gravity for Dowel-Type Fastener Design	ravity for e Fastener ign
Symbol	Species ⁽²⁾ Outer/ Core	Bottom of Beam Stressed in Tension (Positive Bendina)	Top of Beam Stressed in Tension (Negative Bending)	Tension Face	Compr. Face	Shear Parallel to Grain ⁽⁴⁾	Modulus of Elasticity ⁽⁶⁾	Elasticity ⁽⁶⁾	Extreme Fiber in Bending ⁽⁶⁾	Compr. Perpen- dicular to Grain	Shear Parallel to Grain ⁽⁴⁾	Modulus of	Modulus of Elasticity ⁽⁶⁾	Tension Parallel to Grain	Compr. Parallel to Grain	Top or Bottom Face	Side Face
		F _{bx} ⁺ (psi)	F _{bx} (psi)	F _{cLx} (psi)	×	F _{vx} (psi)	(10 ⁶ psi)	Exmin (10 ⁶ psi)	F _{by} (psi)	F _{c1y} (psi)	F _{vy} (psi)	Ev (10 ⁶ psi)	E _{vmin} (10 ⁶ psi)	F _t (psi)	F₅ (psi)	SG	9
20F-E8M1	ES/ES	2,000	2,000	450	450	250	1.5	0.79	1050	315	175	1.4	0.74	800	1,000	0.41	0.41
20F- ES/CPG	ES/ES	2,000	2,000	450	450	250	1.8	0.95	2,000	450	250	1.8	0.95	800	1,000	0.41	0.41
24F- E/ES1M1	ES/ES	2,400	2,400	560	560	250	1.8	0.95	1,100	300	175	1.5	0.79	1,050	1,150	0.41	0.41
24F- ES/NPG	ES/ES	2,400	2,400	560	560	250	1.8	0.95	2,400	560	250	1.8	0.95	1,600	2,300	0.46	0.46
Wet-us	Wet-use factor		0.8	0.53	3	0.875	0.833	33	0.8	0.53	0.875	0.8	0.833	0.8	0.73	see NDS	SON
(1) The table	The tabulated design values are for normal duration of loading. For	alues are for n	hormal duration c	of loading. Fo	r other dura	tions of loadir	to see the ap	plicable build	other durations of loading see the applicable building code. The tabulated design values are for dry conditions of use. For wet conditions of use, multiply the tabulated	tabulated desi	ion values are	for dry condit	tions of use F	or wet conditi	ions of use m	initiniv the tabl	ulated

(3)


The laborated design varies are for normal unranous or normally. For unranous or normality are approared unranous or use, normally represented unranous or use, normally represented unranous or use, normally are represented unranous or use, normally are represented unranous or use, normally use represented unranous or use, normally are represented are provided and are normally are represented or members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, Fax shall be multiplied by a volume factor, C., determined in accordance with applicable building

(† (2)


code using 1/10 as the exponent. For non-prismatic members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the F_w and F_w values shall be multiplied by a factor of 0.72. The axial modulus of elasticity, E_{wall} and E_{wall min}, shall be calculated by multiplying E_y and E_{main} by 1.05. The axial modulus of elasticity, E_{wall} and E_{wall min}, shall be calculated by multiplying E_y and E_{main} by 1.05. The axial be permitted to be increased by multiplying E_y are based on members 12 increas in depth. For depths less than 12 increas, F_{by} shall be pactor (12/0)¹⁰, where d is the beam depth in increas. When d is less than 3 increased by multiplying by the size factor, (12/0)¹⁰, where d is the beam depth in increas. When d is less than 3 inches, use the size adjustment factor for 3 inches.

12-17

14/

Job No Sheet No Rev 1 27 Part oftware licensed to Ref Job Title By Date16-Dec-08 Chd Date/Time 02-Aug-2011 09 Client File ridge truss.std ENSTRESS NATTOS 0.06 0.222 0.203 129.0 °.5 0.650 0800 0.931 0.415 0.588 0.239 0,521 0.345 Y Z-X NOTE STRES 1. THEN GEONE MUSS OLA MMBMS Load 3

DESIGN VALUES FOR NORDIC LAM™

DESIGN STRESSES (1)(2)

NORDIC LAM		BEAMS
STRESS GRADE		24F-1.9E
EWS LAYUP COMBINATION		24F-E/ES1M1
Bending About X-X Axis (Loaded Perpendicular to Wide Face of Laminations) Extreme Fiber in Bending ⁽⁹⁾⁽⁴⁾ Shear Parallel to Grain ⁽⁹⁾ Compression Perpendicular to Grain Shear-Free Modulus of Elasticity Apparent Modulus of Elasticity ⁽⁹⁾	Fbx Fvx Fopx Ex Ex, app.	2400 psi 250 psi 560 psi 1.9 x 10 ⁶ psi 1.8 x 10 ⁶ psi
Bending About Y-Y Axis (Loaded Parallel to Wide Face of Laminations) Extreme Fiber in Bending ⁽⁷⁾ Shear Parallel to Grain ⁽⁹⁾ Compression Perpendicular to Grain Shear-Free Modulus of Elasticity Apparent Modulus of Elasticity ⁽⁹⁾	F _{by} F _{vy} F _{opy} E _y E _y , app.	1100 psi 175 psi 300 psi 1.6 x 10 ⁶ psi 1.5 x 10 ⁶ psi
Axially Loaded Compression Parallel to Grain Tension Parallel to Grain Modulus of Elasticity	F. F. E.	1150 psi 1050 psi 1.6 x 10º psi

(1) The tabulated design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the wet service factors, C_{u} (NDS-05, 5.3.3).

(2) The tabulated design values are for normal duration of loading. For other durations of loading, see applicable building code.

(3) Nordic Lam bending members are symmetrical throughout the depth of the member (balanced layups).

- (4) The tabulated design values in bending (F_{tr}) shall be multiplied by a volume effect factor, C_r . The volume factor formula is: $C_r = (12/d)^{1/10} \times (5.125/b)^{1/10} \times (21/L)^{1/10} \le 1.0$, where d = beam depth (in.), b = beam width (in.), and L = beam length (ft).
- (5) For notched members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS-05 3.4.3.3), the design value for shear (F_v) shall be multiplied by a factor of 0.72.
- (6) The tabulated "apparent E" values already include a 5% shear deflection.
- (7) The values of F_{be} shall be permitted to be increased by multiplying by the size factor, (12/d)¹⁰, where d is the beam depth in inches.
- (8) Design of glulam members shall be in accordance to National Design Specification, 2005 Edition.
- (9) The specific gravity for dowel-type fastener design is 0.41. Member weight shall be based on density of 35 pcf.

Refer to the Nordic Lam Design/Construction Guide for more information.

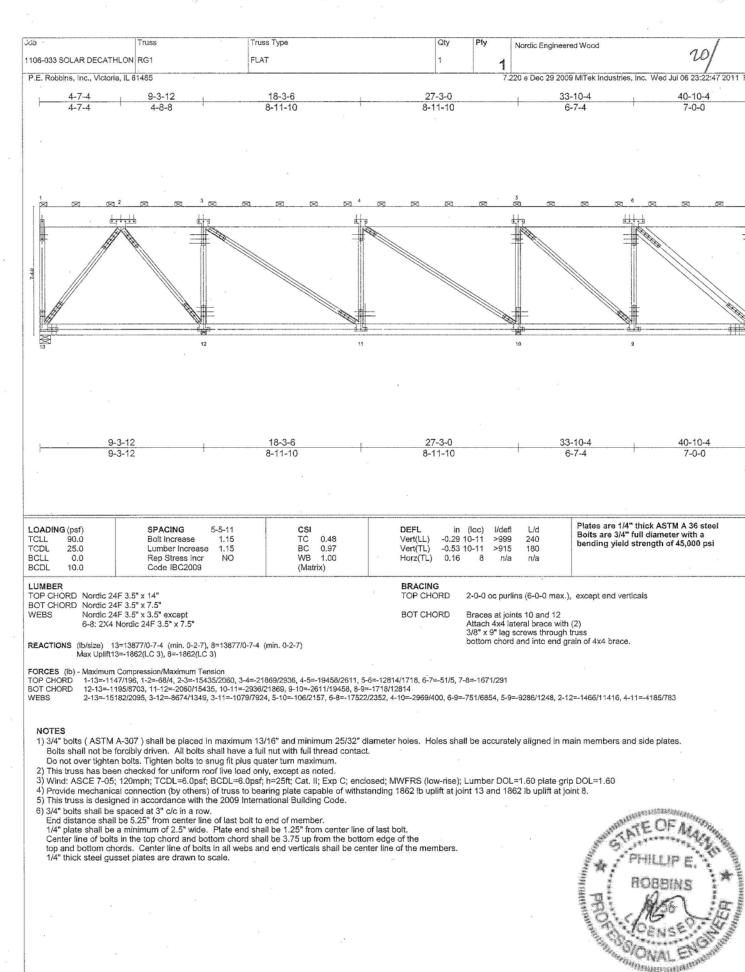
Nordic Sustainable Wood Solutions

HEAD OFFICE AND TECHNICAL SERVICES info@nordicewp.com • www.nordicewp.com T. 514.633.9661 • F. 514.633.0833

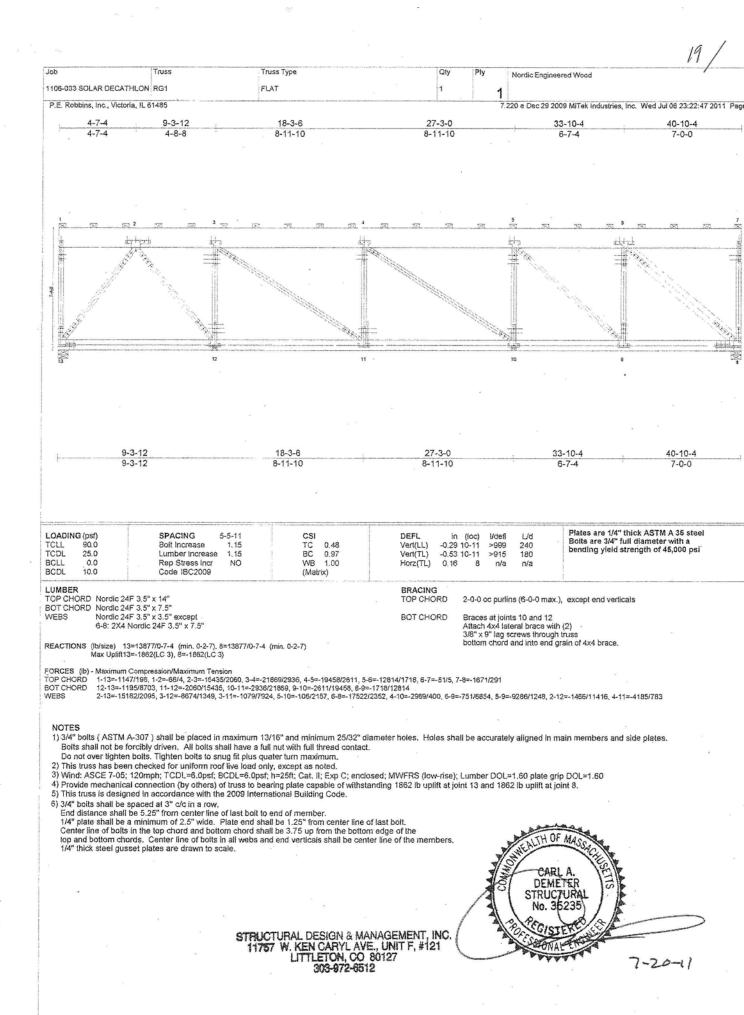
1 1	Зу	Date	File No.	Sheet No.
LeMessurier Consultants Structural Engineers	Subject			<i>V3 </i>
]			-
h. /				
FC = FCCmCFCp	= 1150(0	-9)(1,1),	(1,0) = 10,	12 ps.
$f_c = \frac{P}{P} = \frac{13, 32}{149/3}$	- floa	Z71ps.	C F'C =	- 1012pst
A (H)(3	3.5")	1	- L - L - L	\$ \$.
P				
$\frac{f_{c}}{p_{c}'} = \frac{271}{1012} = 0.1$	268 < 1	0	an di bara An tarba bara	
Fe POR				n ann an a' Ran a' Ran a'
ADD BENDING	TENM			
	,			
M= 36,200 /bf.				
S= <u>3.5 (14)</u> ² .	114.3 "3			
6				
For = 76,200 = = 114,3	317 psi			aan ta dar maan
114,3	Ø			
Fb = 0.8(1.1)(24	$(DD \rho c^{2}) = 7$	112 ps:		
1			et av de Se i reiser a	
10 - 317 = 0.1 pln - 2112 = 0.1	150			
1 5				an ann sao sa se a bana bana i s an i anna saonn ann sa ba ann dan .
OVENSMESS NATTO			· · · · ·	
$OYN = 0.268^2 + 0.1$	150 = 0,2	22 21		ction is is okay
			i sa hana da sa	
· ·		anna ta tara tara		
1				

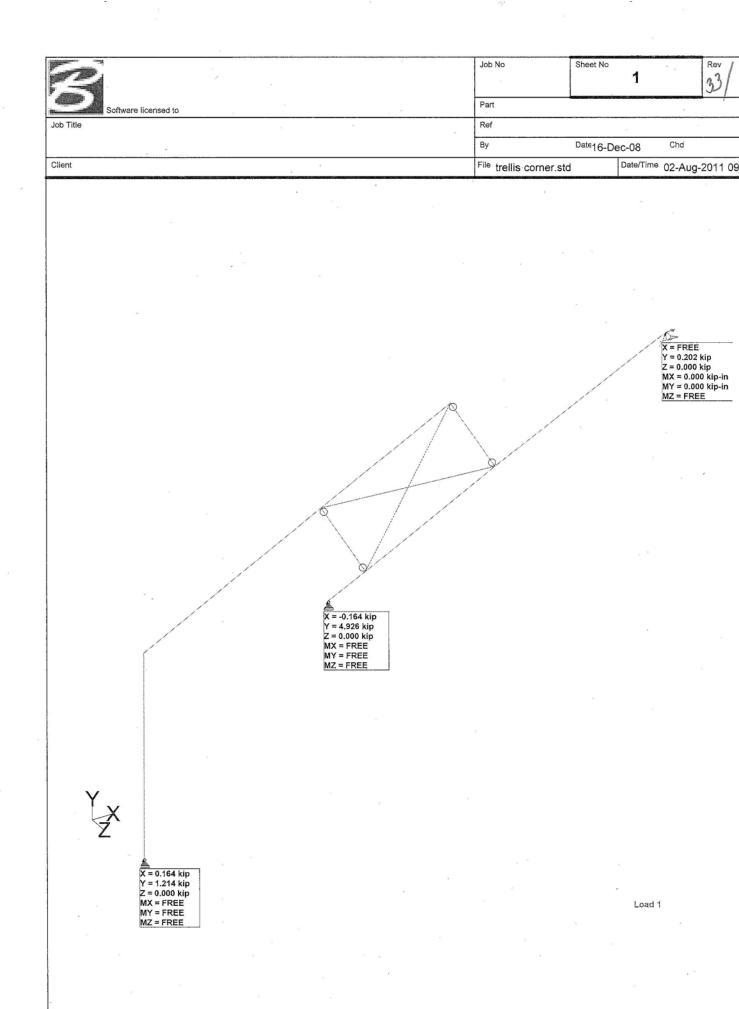
By MCG Date File No. Sheet No. 24 LeMessurier Co nsultants Structural Engineers Thuss members TOP CHOND: AXIAL + BE-10116 Fu: 1150 psi EMIN: 1.6×106 ps: CO=1.0 Cy=1.0 Cy'=1.0 CM: 0.30 compression MEMBER = 0.90 MOULUS OF ELASTUTY CF-1.1 Compression member Kp=110 <u>keli = 1:0 (8.67')(12";)</u> = 7.43 smorth = Governds d1 14" kele. 1.0/2/(p.".) = 6.85 work Emm = Emm Cm = 1.6x 106 (0.9) = 1.49 x106 psi FC = Fc Cm Cp = 1150 psi (0.8×1.1) = 1012 psi FEEI = 0.822(1.49×10° psi) = 21,442 psi (7.43)2 F'= FCE1 = 21,942ps: 21,2 Fx 1012psi C= 0,9 STRUCTURDE LAM $Cp = \frac{1+F'}{2c} - \left(\frac{10+F'}{2c}\right)^2 - \frac{F'}{c}\right)^{0.5} = \frac{1+21.2}{2(e-q)} + \frac{1+21.2}{2(e-q)}^2 - \frac{21.2}{2(e-q)}$ = 0.9.95 USE CD=1.0

Job No Sheet No Rev 23 1 Part Software licensed to Ref Job Title By Chd Date16-Dec-08 File ridge truss.std Date/Time 02-Aug-2011 09 Client COMBINATION - DAD + LIVE BENDING MOMENT -M= 36.2 K. 11 M= 17.9k.11 M: 9.1 K. 4,0 × 11 VIII 35.3 K.11 X

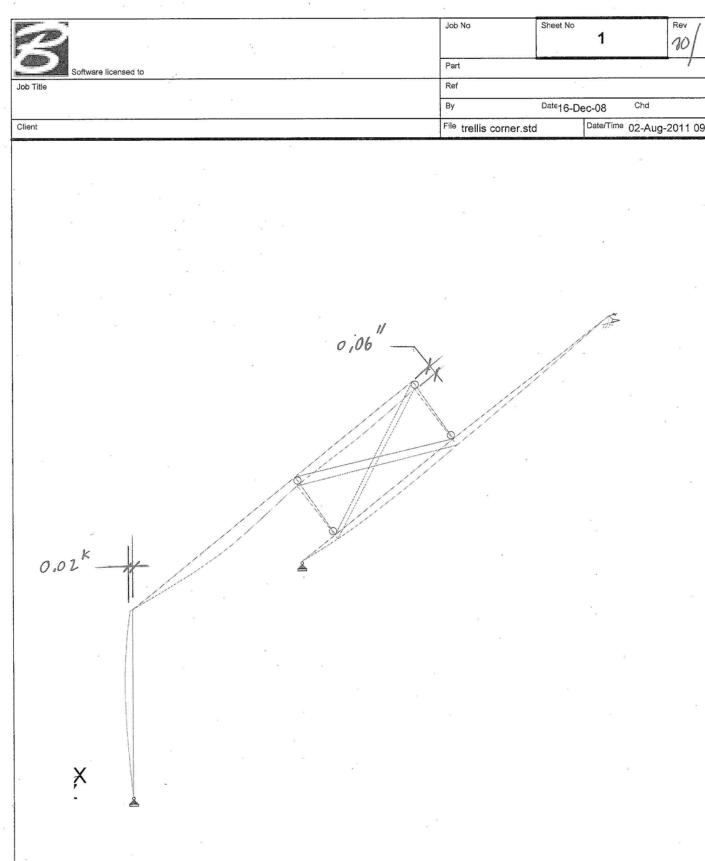

				Job No	Sheet No		Rev
						1	22
Software license	d to			Part			
Job Title				Ref			
				Ву	Date16-D		
Client				File ridge truss.s	td	Date/Time 02-Au	ug-2011 09
	COMB,	NA TO-1 = DUA.	OF LIVE				
			in a de la companya de la contra de la colorie y contra companian en parte de presentador en la companya de la	Annual Report Processor & Address of March 1999			
	PX11	AL Farces					
			1				
· ·							
					~		
				÷			
	4		4	*	4		
	9.4 14)	13.3 c/c)	11.8 10	J F,	9 (L)		
	A		<u></u>	N.	A	<u> </u>	
V	y Hand	6 350	1.9 t CC)	in the	, L	A-18-	
0.4	S B	No Sil	(a)	0 X	NE DA	A.C.)
A	Set .	in the			S S		
d	AAA			\searrow	N.	. A	A
\$ 5	, 4 MT)	9.4 45)	13.3"(5)) 11,8	3(5)	7.8 (7)	7477
	0 -		10.00			, - 0,	
MAX Ar	192						
- 0 CH. 0	121 12 11): 13.3 K(C)					
BOJ CHONE	13'2"x7"): 13.3K/T)					
NIAGINA MI	VALTI AT	(3/2"(0): 10.0	(1c)				
0111 101109	10-11-11C	(3/2"50): 10.0 7.5	$\frac{k}{T}$				
v	1.	32"x 74"): 11	, 4"/c)				
X							
1							

-


:


.

Date By M/G Subject File No. Sheet No. 21 LeMessurier Consultants Structural Engineers RIDGE THUSS AVBLYSIS S=50pst T.O. TAUSS いか- と D=16 psf D=15051 T.O. WARL -TIMBER TUUSS 7-7 F.F.(1) 11'-0" - 11'-0" TOP CONO LOBO 1307. COND LOAD 11/0.5)(15pst) = 0.083 CALCULATE RIDGE LOAD L'RAFTER = (17.33) + (11) - 13.2' $TL = 16 \text{ psf} \left(\frac{13.2'}{11'}\right) + 50 \text{ psf} = 69.2 \text{ psf}$ $I9.2 \text{ psf} = 5\% = \frac{19.2}{69.2} = 0.280$ $R_{RBFTEN} = \frac{69.2pst(11')}{2[1000]} = 0.381^{H_1}$ L:0.275 D:0.106 D:0.1060,3814, 0,083 401-104" R: 0,381"1 (0.5)(40'-10/4") = 7.8K


7/20/11

Job No Sheet No Rev 1 32 Part Software licensed to Ref By Chd Date16-Dec-08 Client Date/Time 02-Aug-2011 09 File trellis corner.std · 2.08 (0) CHECK 4×10 Erlanderenes com A= 40" fc:-1.2"(was)= 30 ps; 40" $1, 2^{k}(c)$ X a 0315 + 0.102 = 0.10361 : out

Job No Sheet No 1 31 Part Software licensed to Ref By Date16-Dec-08 Chd Date/Time 02-Aug-2011 08 Client File trellis corner.std YBORT = 19.4^k." 1.8^k/sort 5" Vn 12" = 24 ksi (0.2") = 4.8^k/Bor TE 12" = 24 ksi (0.2") = 4.8^k/Bor 1. Borb OKB/ -06 11 13.A1 4" EMBEDDED STEEL PLATE O. WALLS 14.4 11 CHERA BEIDONIG 2701375X Ma= 4.27^{ml}(12"1) = 102.4 My=80^{k.11} My=80^{k.11} My=80^{k.11} Ķ Load 1 : Bending Z

Load 1 : Displacement

29 Job No Sheet No Rev 1 Part Software licensed to Ref By Date16-Dec-08 Chd Client File trellis 2xroof rafter suppor Date/Time 13-Jul-2011 14: $nAFTENS \ nEQ'D = \frac{M=9.60^{4.1}}{M_{a}=4.23^{101}} = 2.727$ Sitt (3)# op 6.5 51-2 6-9 1.5 J1.4K le. 1 M= 9.33 k.1 k = R = Ymax 17= 9.68 6.5 Х

Load 1 : Bending Z

6/17/2011

Tel: 309-879-3258 www.perobbins.com

Nordic

Model #:

Solar Decathalon

Job Number:

1106-033

Page # Sheet

- 1 Index
- 2 Worst Case Loading for Wall I-joist
- 3 11-7/8" NI-40x I-Joist Calculation for Worst Case
- 4 Wind Load Supplement
- 5 Snow Load Supplement

U.S. Department of Energy Solar Decathlon 2011 Date 6/30/2011

<u>Appendix</u>

÷

ſ		Ву	Date	File No.	Sheet No.
	LeMessurier Consultants	MCG	6/30/11		34/
20	Structural Engineers	Subject	1		8
i și		•			
	_ CHARK FOOTTN/S B	EANI16	ASSUM	E 2000 pst	Bengumbs
	INTENION FOOTING	0			
	CETTER BROM	n Lastra	I READ!	K. 7 . 94	e l
	66110 6 W 61101		1	X 6 - 2.1	
	MIN FTG	SIZE = 8	At = fiz	5F -> 2	1-0"50
		2	, ks f	and the second sec	
	+				
	EXTENION FOOTN'S:				
	R= 4.2 +	3.6 K (WA	T = T = T = U = T = T	Zal	
				,	
	MIN MTG	5128 - 3512	7.81 = 3-9.	sp 2	1-0'50
		2	s has f		
8 ⁶ 1					
-	· .				
				,	
	*				
				· · · ·	
	5 				
	4 				
	,				

-

÷

Basic Wind Speed	V _{3S}	=	110 mph	
Importance Factor	I.	=	1	
Exposure Category		=	В	
Case A	А	=	3'x9'x21.6lbx.7=	408.24 lb
	В	=	3'x4.5'x14.8x.7=	139.86 lb
	С	=	39'x4.5'x17.2lbx.7=	2113.02 lb
	D	=	39'x9'x11.8lbx.7=	2899.26 lb
	E	=	3'x11'x1.7lbx.7=	39.27 lb
	F	=	3'x11'x-13.1lbx.7=	-302.61 lb
	G	Ξ	39'x11'x0.6lbx0.7=	180.18 lb
	Н	=	39'x11'x-11.3lbx0.7=	- <u>3393.39</u> lb

Ξ

-

A"

Footings

, ,

;

	and the second se					
Footing Type A	Wall 1	2.75 ft x	11.5 ft x	14.57 psf=	460.7763	
(corner)	Wall 2	3.4 ft x	8 ft x	14.57 psf=	396.304	
2'x2'	Floor	2.75 ft x	3.4 ft x	114.0 psf=	1066.087	
	Roof Dead	3.45 ft x	3.4 ft x	15.78 psf=	185.0408	
	Roof Live	3.4 ft x	2.75 ft x	30 psf=		
					2108.208 lbs/	4 ft= 527.052
Footing Type B	Wall	6.8 ft x	8 ft x	14.57 psf=	792.608	
(S and N wall)	Floor	6.8 ft x	5.5 ft x	114 psf=	4263.6	
2.5'x2.5'	Roof Live	6.8 ft x	11 ft x	30 psf=	2244	
	Roof Dead	6.8 ft x	13.8 ft x	15.78 psf=		
					7300.208 lbs/	6.25 ft= 1168.03328
Footing Type C	Wall	5.5 ft x	11.5 ft x	14.57 psf=	921.5525	
(E and W wall)	Floor	5.5 ft x	6.6 ft x	114 psf=	4138.2	
2'x2'	Roof Live	5.5 ft x	6.6 ft x	30 psf=		
	Roof Dead	6.6 ft x	6.6 ft x	15.78 psf=	687.159	
					5746.912 lbs/	6.25 ft= 919.50584
Footing Type D	Floor	6.9 ft x	11 ft x	114 psf=	8652.6	
(Center spine) 2'x2'					8652.6 lbs/	6.25 ft= 1384.416

Roof Joists	14" NI-40x				
	Sloped Length	14'			
	Slope	33.69 Degrees			
	Spacing	24"OC			
	Allowable load	117plf			
Roof weighs	45.8 psf or	91.55 plf on joists			
Floor Joists		11 7/8"NI-80			
	Span	10'			
	Spacing	24"OC			
	Allowable load	227plf			
Floor weighs	114.0 psf or	228.04 plf on joist			
Wall Joists	Are bein	g calculated by Nordic			

. .

9

By Sections

~ .

Shell Load

:

	Section	Section A (Roof Section)				Section B (Roof Section)			
Level 2	Area (sf)	Flat Load (psf)	Glazing (sf)	Weight (lbs.)	Area (sf)	Flat Load (psf)	Weight (lbs.)		
Roof	539.5	15.775	-4.52	8439.31	539.5	15.775	8510.6125		
Floor	0	14.0		0	0	14.0	0		
Exterior Walls	70	14.57		1019.9	70	14.57	1019.9		
Glazing	4.52	8		36.16					
		-		9495.37			9530.5125		

	Section	C (Ground S	Section)		Sectio	on D (Ground	Section)	
Level 1	Area	Flat Load	같은 감독을 얻는 것	Weight	Area	Flat Load	Glazing	Weight
	(sf)	(psf)	(sf)	(lbs.)	(sf)	(psf)	(sf)	(lbs.)
Roof	0	15.775		0	0	15.775		0
Floor	456.5	14.0		6400.13	456.5	14.0		6400.13
Exterior Walls	444.5	14.57	-61.51	5580.164	444.5	14.57	-165.33	4067.5069
Glazing	61.51	. 8		492.08	165.33	8		1322.64
				12472.37				11790.2769

Glazing Area	A B	С	D
	4.52	4.84	9.57
		4.84	25.43
		4.84	3.85
		20.44	8.53
		8.13	22.03
		13.13	7.2
		5.29	20.62
			25.43
			9.67
			3.85
			8.53
			20.62
	4.52	61.51	165.33

AS

-

Trellis Roof		
Solar Panels	Sun Power	2.64 psf
Bracing	Clamps	2 psf
Timbers	Dual 2X6 Douglas Fir Timbers 8' O.C.	0.57 psf
		5.21 psf
		30 psf
Solar Water	1 Sun Drum Panel	26 Pound
Deck		
Primary Member	Pressure Treated 4X4s 4' O.C.	0.85 psf
Secondaries	Pressure Treated 2X4s 16" O.C.	1.66 psf
Decking	Pressure Treated 1X4s	2.5 psf
Decking	Pressure rreated 1X4S	2.5 psi
Detailing	Douglas Fir 1X4's 4' O.C.	0.24 psf

.

97

· ~ ~

:

Gravity Loads Roof	· · ·		
Roofing	Standing Seam Metal	1.5 psf	
Strapping	2.5X3/4" Fir Strapping 18" O.C.	0.8 psf	
Sheathing	ZIP System 5/8" OSB	2 psf	
Framing	NI-40x 14" Joists	2 psi 1.575 psf	
Insulation	10" Fiberglass	1.575 psf	
Sheathing	5/8" OSB		
_		2 psf	
Chaseway framing	3"X2"Pine Strapping 18" O.C.	1 psf	
Insulation Cailing	4 layers Urethane foam (w/skin)	2 psf	
Ceiling	5/8" Gypsum	2 psf	
Incedentials		1.5 psf	
Dead Load		15.775 psf	alot Sald
Live Load		30.0 psf	
Floors			
Finish	Hardwood flooring	4 psf	
Subflooring	1/2" OSB	1.9 psf	
Framing	NI-60 11 7/8" Joists	1.5 psf	
Insulation	4 layers Urethane foam (w/skin)	2 psf	
Insulation	8" Fiberglass	1.12 psf	
Sheathing	Zip System 5/8" OSB	2 psf	
Incedentials		1.5 psf	
Dead Load		14.0 psf (14)	
Live Load		100.0 psf	
Exterior Walls			
Exterior Finish	8" Cambia planks 1/2" thick	2 psf	
Rain Screen	2X2 Straping 24 O.C.	1.05 psf	
Sheathing	Zip System 5/8" OSB	2 psf	
Insulation	4 layers Urethane foam (w/skin)	0.4 psf	
Insulation	8" Fiberglass	1.12 psf	
Framing	NI-60 11 7/8" Joists	1.5 psf	
Sheathing	5/8" OSB	2 psf	
Chaseway Framing	3"X2" Pine Strapping 18" O.C.	1 psf	
Interior Finish	5/8" Gypsum	2 psf	
Incedentials		1.5 psf	
Dead Load		14.57 psf (15)	
Interior Walls		~	
Finish	5/8" Gypsum X 2 Sides	2 psf	
Framing	2X4 Framing	1.25 psf	
Incedentals	27411300005	1.5 psf	
Dead Load		4.75 psf (5)	

.

:

3

6/17/2011

Tel: 309-879-3258

www.perobbins.com

CLIENT: Nordic SUBJECT: Solar Decathalon Job: 1106-033 DESIGNER: TAR

ASCE 7-05 SNOW LOADS

Snow Loads for Hip and Gable Roofs

Flat Roof Snow Load (Pf): Pf = 0.7(Ce)(Ct)(I)(pg) (psf) Exposure Factor (Ce): 1.0 Table 7-2 ASCE 7-05 page 92 Thermal Factor (Ct): Table 7-3 ASCE 7-05 page 93. 1.0 Importance Factor (I): 1.0 Table 7-4 ASCE 7-05 page 93 Ground Snow Load (pg): 90,0 Horizontal Distance Eave to Ridge (W) 11.0 feet Roof Surface type: 1 ASCE 7-05 Section 7.4 page 81 and 82: Enter Roof Slope: 8 /12 Roof Slope in degrees: 33.7 (S): 1.5 Flat Roof Snow Load Pf = 63.0 psf Section 7.3 and 7.3.4 minimums page 81 Sloped-Roof Snow Loads (Ps): Roof Slope Factor (Cs): 0.90774831 Ps = (Cs)(Pf)(psf)

Sloped Roof Snow Load Ps = 57.2 psf

Unbalanced Snow Load: 1.5pf/Ce for roof slope <= 5 degrees 1.5ps/Ce for roof slope > 5 degrees and < 70 degrees Each Building slope <=20 ft in width

Figure 7-5 page 89 Figure 7-5 page 89

Unbalanced Snow Load for W <= 20 = 90.0 psf Rafter System Only Note: unbalanced snow loads need not be considered for slope > 70 degrees or slope < larger 0f 2.38 degrees and 70/W + 0.5 NA = Not Applicable

Unbalanced Snow Load for All Other Roofs or Rafters > 20 ft.

Windward unbalanced load = 17.2 psf

Leeward Drift unbalanced load = 109.1 psf for 8.6 ft. from ridge

Leeward unbalanced load = 57.2 psf from 8.6 to 11.0 from ridge

6/17/2011

Tel: (309) 879-3258 Fax: (309) 879-3256

Basic Wind Load Design Criteria

Client: Client's SN: JOB NUMBER:	Solar Dec	athalon	*	
Roof Slope: Wind Speed:	120	/12 MPH (3 se	ec. Gust)	
Exposure:				
Mean Roof Height:	15.0	ft	Adjustment Factor:	1.21
1st Floor Mean Wall Height	15.0	ft	Adjustment Factor:	1.21
Topographical Factor Kzt:				
Importance Factor I:	1.00			

ASCE 7-05 Simplified Design Procedure Method 1 Enclosed Building Internal Pressure Coefficient Gcpi = +/-0.18

Positive loads act towards the surface and negative loads act away from the surface MWFRS Design Pressures (Net):

End zone of Roof (B): 2 Interior zone of Roof (D): 1	oof Pressures 1.3 psf 3.9 psf	Vertical End zone of Windward (E): End zone of Leeward (F): Interior zone of Windward (G): Interior zone of Leeward (H):	Roof Pr 12.0 -18.9 10.4 -16.2	essures psf psf psf psf
1st Floor Horizontal Pres	ssure			
	1.1 psf 1.7 psf	End Overhang (Eoh): Interior Overhang (Goh):	-12.5 -10.9	psf psf

Component and Cladding Design Pressures (Net):

_		gn Load (ps	f) sf = 10	Desig	gn Load (ps	sf) sf = 20	Desid	gn Load (ps	f) sf =50	ł
Roof Interior (1):	28.7	-31.3	psf	27.8	-29.8	psf	26,9	-27,6	psf	
Roof Edge (2):	28.7	-36.7	psf	27.8	-35.1	psf	26.9	-32.9	psf	
Roof Corner (3):	28.7	-36.7	psf	27.8	-35.1	psf	26.9	-32,9	psf	
Overhang Edge (2);	-53.1	psf		-51.5	psf		-49.4	psf		
Overhang Corner (3):	-53.1	psf		-51.5	psf		-49,4	psf		
1st Floor										
Wall Interior (4):	31.3	-34.0	psf	29.9	-32.5	psf	28.1	-30.7	nof	
Wall Corner (5):	31.3	-42.0	psf	29,9	-39.2	psf	28.1	-35.5	psf psf	
RooflGable										
Wall Interior (4):	31.3	-34.0	psf	29,9	-32.5	psf	28.1	-30.7	psf	
Wall Corner (5):	31.3	-42.0	psf	29.9	-39.2	psf	28.1	-35.5	psf	

A3

P. E. Robbins, Inc. 1777 State Route 167 Victoria, IL 61485

6/17/2011

Tel: 309-879-3258

www.perobbins.com

I-Joist used as beam-column Member Loading 11-7/8 NI-40x OK W6 = 0 pf 0.0 plf Fb= 1950 W_d = psi 14.8 oti 177.6 plf F. = 1200 psl Axial load = 3550 bs Fv= 135 psl Compression F.= 1800 C_d ≕ psi 1.0 E = 1700000 psi U 360 Enth = 881302 psi = E[1 - 1.645 * 0.1] * 1.03 1.66 Dimension Bending Span Length L= 91 in Length Between Supports, "b" Edge (bracing attached to d) 16= 0.001 . In (about x) Length Between Supports, "d" Edge (bracing attached to b) L_d = 91 In (about y) W K. = 1.0 Use 0.001 for conlinous support 1.5 b = In Ix = 3,91 $\ln^4 = 2 \ bd^3$ 12 1,25 C_x = in W. 7.5 = 2bd A = d = 2.5 In Ely = 3.71E+08 lb*ln2 Ky = 6.18E+06 lb < Djelat = 11.875 in Bending 0,001 Lx = ìn $L_{ox} = 0.00206$ in Rbx = 0.05 OK Ly = 91 in Loy = 155,83 In R_{by} = 6.115489 OK F*bx = 1950 5.E+08 psi Cix = psi Fbex = Fbes/F'ba = 2,37E+05 1,00 F*by = 1950 CLy = psi Fbey = 3,E+04 psi Fbey/F'by = 1.45E+01 1.00 M_x = 0 in*lbs = WdL2 0 = Mxox fat = psi 8 1x My = 15319.85 in*ibs W_dL² Mjeist = 45120 In*lbs Shear $ps = \frac{3V_x}{2bd}$ Vx = 0 bs WeL fyz = 0.0 OK = II(FyCd= Lyx , OK , No soon) $V_y =$ 673 lbs WdL Vialst = 1480 lbs OK = II(Vjoist>= Vy , OK , No good) Deflection 0.253 ALImit = in = 5W6L4 ∆_x ≍ 0,000 In OK = $if(\Delta_{\text{Limit}} > = \Delta_x, O_K, N_0 \text{ good})$ $= \frac{384El_x}{5W_dL^4} + W_dL^2$ Δ, = 0.055 In OK = if($\Delta_{\text{Limit}} \ge \Delta_y$, OK, No good) 384Ely Ky Compression P= 3550 lbs E = 473 psi F* = 1800 psi Lax = 0.001 In 0.0004 in = Lex / d OK = KeLb Ley = 91 7.663158 in = Ley / Djelst in = KeLd OK Faet = 4.53E+12-Faet/F*c= -2.52E+09-Fae/F*c= -2.52E+09 $\frac{C_{p} = -1.00}{1.8} = \frac{1 + F_{ell} + F_{o}}{1.8} \sqrt{\left[\frac{1 + F_{ell} + F_{o}}{1.8}\right]}$ FcE2 = 1.23E+04 FcE2/F*c = 6.853435 -Pest Fe 0.9 F'o = = [[(F'c>= fe , OK , No good) 1800 psi OK Tension $= \frac{f_t}{F't} + \frac{f_{bt}}{F_{bx}} + \frac{M_y}{M_{joist}}$ 6 = 473 psł 0.734 OK Mjaist F't = 1200 psi 0.0968 $= f_{b1} \cdot f_t + M_y$ OK Mjeist FbCd Bending and Axial Compression $F_{oE1} = 4.53E+12$ OK FcE2 = 1.23E+04 oK $0.35 = f_{0}^{2} +$ fot My FbE = 5.45E+04 F'o $\overline{F_b C_a C_{Lx} [1 - f_c / F_{cE1}]} \qquad \overline{M_{\text{Joint}} [1 - f_c / F_{cE2} - (f_{b1} / F_{bE})^2]}$ OK OK Required Fop Bearing Capacity = 473 psi

PE ROBBINS INC

1777 State Route 167 • Victoria, Illinois 61485

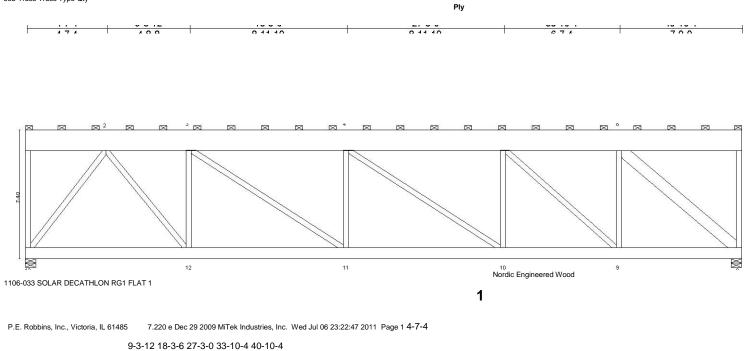
Solo	1	De	dat	the	lor	4	L	dad	rik	19-		Vo	fr.s.	t <u> </u>		. a.			I		A second s	-	- i 	-	•	and the state		Was
S,	'no nou		, 12 , 9	0	nph ps	s	E y	00	sur	-e	C ino		-	ad		ĩ					1					enadoreterno s constantion t	-	1997) 1997)
Rc	20 f	De	ad	7	2	0	psf		4								-	-		-		- 		without Surviva	1923 - Jackson 1994 (1927 - Jackson 1994)	NIN TONETON	Profession 4273	20130
17420, 4	1		1	,	1	1	I	1 - 1	I	-L		Contraction and the			10 20 40 20 440 10			100 - 100 M			2444 C.S.C. & D.S.	077 - 464297445 444297445	264 514930	17.244 yourseau		4077	922 - 299 million 2010 - 299 million	-
Ra	fte	r 190	Ex + 2	ter	ior	B	ea s	rin)) 		11	1		(ann an			***	900 000 action (17 - V. 17 1 0 1			1.117 A.C. (1.117)				Marrian.	3
	"ca 11		Managen	conversion and	(11 .ur	-	=	-				p.	£.						**				LEGIC CONSCIENCES	1725 - Tronana, 495				
1100/2007 211/2200 alives	er.				34	fundance	Og	ļ	Lunnon		(1000) average		NO NEED A						*			la sensitiyaya ta baragtaran	***	1.000 (2000) (20			1	
ingenited with Linearies		ial								1	4	· ^ :))		7.4	F 50								vier relations	**	200 1400094 2000		
	Montal system (* 7)	yithmetic opinion		montanoper		07.VA.(10472)	1000433 WE (9)	and tet the same	Communication of the second	-	ettropologier	2				50		25					**************************************		21-07-22-04-34-0-040 21-07-02-04-0-02-04-0-02-04-0-02-04-0-02-04-0-02-04-0-02-04-0-02-04-0-02-04-0-02-04-0-02-04-0-02-04-0-04-0-04-0		2.2.4.00.007.004.000	
And the second	Be	ndi	'ng	1	(31.	LpL	<u>ç) (</u>	9.3	96	+2		n	17	7.5	pl	E								19-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		Tradition Lines	2007-0000000000000000000000000000000000	
				Sites and the second se		Party and Span of	allower posts	A700-4110,924				(A) ion (1)	linationano roktory,iouv	Webg72,9009		1997 B. January B. San	999009900980	Connections		Verai (Incar) (Vera)		-				****	18800000000000000000000000000000000000	
												MARCHINE .	274-77-1497.0			17/17032-02/00 1976-02-02/00	2											
	*****					1027.040.0500			Alberton gammer				#4+123.844						140-1447-1244 140-1447-1244	200799,975,976,980	0744004403474 07444004444	aliseeritsjoore				******	18000000000000000000000000000000000000	6
																										*****	44,46,853(7,44,4	a la farman
	210220100000-0000								F1960-1200 - 200									*****		1777-110799-144		* Anti-Sec	2722448494999			And the grade of the second		-
mhannacha			-					and provide the state	11/14/21/1946													Martinenar						

(309) 879-3258 • Fax (309) 879-3256

Ed Robbins Email: ed@perobbins.com Tim Robbins Email: tim@perobbins.com Phil Robbins Email: phil@perobbins.com Josh Johnson Email: josh@perobbins.com

;

Customer


Job #___

Page 2 of 5a

AZ

Truss Calculations

Job Truss Truss Type Qty

T	9-3-12	18-3-6	27-3-0	33-10-4	40-10-4
ſ	9-3-12	8-11-10	8-11-10	6-7-4	7-0-0

LOADING(psf) TCLL TCDL BCLL BCDL 90.0 25.0 0.0 20.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code 5-5-11 1.15 1.15 NO IBC2009/TPI2007	CSI TC BC WB (Matrix) 0.17 0.48 1.00	DEFL Vert(LL) Vert(TL) Horz(TL)	in -0.29 - 0.53 0.16 (loc) 10- 11 10-11	l/def >99 9 >91	L/d 240 180 n/a	PLATES Weight: 1140 lb GRIP	
4-7-4 4-8-8	8-11-10 8-11-10 6-7-4 7-0-0							
	1						57	
13	34						6	8

BRACING TOP CHORD Nordic 24F 3.5" x 14" TOP CHORD 2-0-0 oc purlins (6-0-0 max.), except end verticals [P] BOT CHORD Nordic 24F 3.5" x 7.5" WEBS Nordic 24F 3.5" x 3.5" except BOT CHORD Braces at joints 10 ar 12

6-8: 2X4 Nordic 24F 3.5" x 7.5"

REACTIONS (lb/size) 13=14988/0-7-4 (min. 0-3-8), 8=14988/0-7-4 (min. 0-3-8) Max Uplift13=-1529(LC 3), 8=-1529(LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-13=-1150/195, 1-2=-85/0, 2-3=-16695/1682, 3-4=-23606/2411, 4-5=-21055/2148, 5-6=-13558/1381, 6-7=-94/5, 7-8=-1908/319 BOT CHORI 12-13=-1004/9340, 11-12=-1682/16695, 10-11=-2411/23606, 9-10=-2148/21055, 8-9=-1381/13558 WEBS 2-13=-16273/1768, 3-12=-8976/1259, 3-11=-897/8512, 5-10=0/2735, 6-8=-18486/1888, 4-10=-3142/324, 6-502/7977, 5-9=-10477/1073, 2-12=-1150/12472, 4-11=-4049/824

7/7/2011

Tel: 309-879-3258

Victo	oria IL 61485										www.	perobbins.com
	200	5 NDS C	ombined	d Bendii	ng and A	xial Loadi	na					
	CLIENT: Description: Description:	Nordic Top Chord			9							
	Description: Model #:	Solar Decat	blon			Member:	24Fb 3 1/2"	v 14"				
	Job:	1106-033				ally Loaded in:						
	Loading W _{bwall} =	57.53	pli		.7 Deflection	h Check Load: Load Factors	yes	for C/C wi	nd loads	Colur	nn check	K = OK
	Wd _{wall} =	0	pli pli		Load D	Suration (C_D) =						
	Axial load =	2382	lbs	Repe		er Factor C _r =			d V			
	Conditions					K _e =	1.0	· · · ·		x		
	Moisture Condition	-				Incised?			ĽЦ			
	Temperature Plies =	1 ≤ 100 1				COVE	0.25		y y			
	1 100					ON LIMIT = L/		IN	,			
	TWEEN LATERAL S TWEEN LATERAL S			I EDGE b (I DGE d (Id)=	b)=	ding Member:	108 108 24	IN (enter	0.001 for cor	ntinuous support) ntinuous support)		
				Beam S		or C _L override: aring Member	no 2 x 4 #2 SYF		1.0 see note			
						mber F _{cp} (psi)	565					
Member Proper 24Fb 3	ties 3 1/2" x 14"	F _b (psi) 2400	F _t (psi) 1050	F _v (psi) 250	F _{cp} (psi) 560	F _o (psi) 1150	E (psi) 1.6E+10	b (in) 3.5	d (in) 14	с 0.9	Plys 1	Effective b E 3.5 5.84
	(F _t , E, E _{min}) C _t	1		Wet convic	e Factor C _M							
	$(F_b, F_v, F_c, F_{cp}) C_t$	1		F _b	Ft	Fv	F _{cp}	Fc	E and Emin			
				1	1	1	1	1	1			
	$(E, E_{min}) C_i =$	1.00		0								
	$(F_{b}, F_{t}, F_{c}, F_{v}) C_{i} = (F_{cp}) C_{i} =$	1.00 1.00		C _{fu}	1							
	(1 26) 01	1.00										
Bending Flexu	re Area = 49											
	lx= 800.33	Sx =	114.33		M _{b max} =	83878.74	f _{b1} =	734	psi	L _{ub} =	24	L _{eb} = 49
	ly= 50.02	Sy=	28.58		M _{d_max} =		f _{b2} =		psi	L _{ud} =	108	L _{ed} = 218
	R _{Bx} = 7.5	ок	F _{bx} *=			124134036		51722.52		1.0000		F _{bx} ' = 24
	R _{By} = 2.0	OK	F _{by} * =	2400	$F_{bEd} =$	1.80E+09	F _{bEy} /F _{by} *=	750588.5	C _{Ly} =	1.0000		F _{by} ' = 24
Bending Shear												
	V _x = 3106.62		95.100612		F _{vb} ' =		fvb <fvb'< td=""><td>OK</td><td></td><td></td><td></td><td></td></fvb'<>	OK				
	V _y = 0	f _{vd} =	0		F _{vd} ' =	250	fvd <fvd'< td=""><td>ок</td><td></td><td></td><td></td><td></td></fvd'<>	ок				
Deflection												
	Deflection _b =	0.000			Deflection _d = Allowed =		ок					
	Allowed =	0.45			Allowed -	0.45						
Column	Avial Load (Ib) -	0000	<i>i</i> –	10.0		F *-	1150					
	Axial Load (lb) = L _{eb} = 24		$f_c =$		•	F _c * = 30.8571429	1150 OK		E.e. =	1.6349.E+09		
	$L_{ad} = 108$		$L_{ed}/b =$			00.001 1420	ÖR			5.0459E+06		
	F _{cE} = 5.05E+06		$F_{cE}/F_{c}^{*} =$			$C_p =$	0.99997721		F _c ' =		ок	
Combined Ren	ding and Axial Tens	sion										
Someried Bell	$f_t = 49$		f _t /F	$f_{t} + f_{b1} / F_{bb}^{*} =$	0.351978	ОК						
	F _t ' = 1050 p	psi			0.351978							
Combined Ben	ding and Axial Com	pression										
Jonaniou Ben	$F_c < F_{cE1}$	OK										
	$F_{c} < F_{cE2}$	ок		[f _c /F _c ']^2 +	f _{b1} /{F _{b1} '[1-(f _c	(F_{cE1}) + $f_{b2}/(F_{t})$	₂ '[1-(f _c /F _{ce2}) ·	• (f _{b1} /F _{bE})^2]} =	0.31	ок	
	$f_{b1} < F_{bE}$	OK										
Bearing												
	Bearing mem	104.1		ок								
		F _c =	48.6									

7/6/2011

Tel: 309-879-3258

VICI	toria IL 614	485										www.	.perobbins.com
		200	5 NDS C	Combiner	d Bendir	ng and A	xial Loadi	ing					
	r	CLIENT: N	Nordic										
		Description: T Description: C											
		Description:											I
			Solar Decat 1106-033	hlon	,	Mamber Avi	Member: ally Loaded in:	24Fb 3 1/2" :					l
		Loading	100-000				n Check Load:		for C/C wi	ind loads	Colu	mn check	k = OK
		W _{bwall} =	57.53	pli			Load Factors			1		in ener.	(= 0 ,
		Wd _{wall} =	0	pli			$(C_D) =$		1	∇I			l
		Axial load =	23307	lbs	Repe	titive Memb	er Factor C _r =		_	b V			I
		Conditions	-				K _e =				x		I
		e Condition D emperature T					Incised? COV _E			<u> </u>			l
		Plies =	1				0012	0.25		y D			I
							ON LIMIT = L/		IN	,			I
DISTANCE BE	TWEEN	I ATERAL S	UPPORT O	N BREADTH			iding Member:		IN IN (enter)	0.001 for co	ntinuous support)	1	l
DISTANCE BE											ntinuous support)		l
					Beam St		or CL override:	no	Yes; CL= 1	1.0 see note			l
							aring Member		,				
					r	Bearing mer	mber F _{cp} (psi)	565					
Member Proper	rties		F _b (psi)	F _t (psi)	F _v (psi)	F _{cp} (psi)	F _c (psi)	E (psi)	b (in)	d (in)	с	Plys	Effective b E,
A REAL PROPERTY OF A DOMESTIC	3 1/2" x 14	4"	2400								0.9	1	3.5 5.84
	/F.	, E, E _{min}) C _t	4		Wat convic	Easter C.							
		, E, E _{min}) C _t ,, F _c , F _{cp}) C _t	1 1		Wet service F _b			c	E	C and C			l
	(b, v,	F _c , F _{cp} / Ot			ғ _ь 1	F. 1	F _v 1	F _{cp} 1	F。 1	E and E _{min} 1			I
		E, E _{min}) C _i =	1.00		,	,	,	,	,	,			I
	(F _b , F _t , F	$F_{c}, F_{v}) C_{i} =$	1.00		C _{fu}	1							ľ
		$(F_{cp}) C_i =$	1.00										l
Bending Flexu	170												I
Dending Flora	Area =	49											l
	Ix=	800.33	Sx =	114.33		M _{b_max} =	83878.74	f _{b1} =	734	psi	L _{ub} =	24	L _{eb} = 49.
	ly=	50.02	Sy=			M _{d_max} =		f _{b2} =		psi	L _{ud} =	108	L _{ed} = 218
	R _{Bx} =	7.5	OK	F _{bx} * =			124134036		51722.52		1.0000		F _{bx} ' = 24
	R _{By} =	2.0	OK	F _{by} * =	2400	$F_{bEd} =$	1.80E+09	F _{bEy} /F _{by} *=	750588.5	5 C _{Ly} =	1.0000		$F_{by}' = 240$
Bending Shear	r												l
_		3106.62	f _{vb} =	95.100612		F _{vb} ' =	250	fvb <fvb'< td=""><td>ок</td><td></td><td></td><td></td><td>l</td></fvb'<>	ок				l
	V _y =	0	f _{vd} =	- 0		F _{vd} ' =		fvd <fvd'< td=""><td></td><td></td><td></td><td></td><td>ľ</td></fvd'<>					ľ
Deflection													I
Deflection	D€	eflection _b =	0.000	ок	D	Deflection _d =	0.000	ок					l
		Allowed =	0.000			Allowed =							l
			Pullini. Deser										l
Column	Avial	Load (lb) ≓	23307	f _c =	475 7		F_* =	1150					
	Axiai L L _{eb} =	Load (Ib) = 24					F _c ⁻ = 30.8571429	1150 OK		F =	1.6349.E+09		l
	L _{eb} =	108		L _{eb} /u =		-	30.007 1425	UK			1.6349.E+09 5.0459E+06		l
		5.05E+06		$F_{cE}/F_c^* =$			C ₀ =	0.99997721		F _c ' =		ок	l
No. 1 100 10 100				· ve · · ·			- P	0.0000			11-10.0.	U.N.	l
Combined Ben				<i>t 1</i>									
	f _t = F _t ' =	476 ps 1050 ps			$f_{t}^{+}+f_{b1}^{+}/F_{bb}^{+} =$ $F_{b1}^{+}+f_{b2}^{+}/F_{b2}^{+} =$		OK						
	$r_t =$	1000 pa	SI	1(/F1 +161/F1	ρ1 ^{"+1} b2/Гb2 —	0.758683	OK						
Combined Ben	iding and	Axial Com	pression										
		F _c < F _{cE1}	OK										
		$F_c < F_{cE2}$	OK	1	[f _c /F _c]^2 + f _t	_{b1} /{F _{b1} '[1-(f _c /f	(F_{cE1})] + $f_{b2}/(F_{b2})$	₂₂ '[1-(f _c /F _{cθ2}) -	(f _{b1} /F _{bE})^2	j} =	0.48	OK	
	f	$f_{b1} < F_{bE}$	OK										
Bearing													
Bourng	Be	earing membe	per F _{cp} ' (psi)	565	ок								
			F _c =										
													· · · · · · · · · · · · · · · · · · ·

7/6/2011

Tel: 309-879-3258

Victoria IL 61485									www.p	perobbins.com
CLIENT: I Description: I	Nordic Bottom Cho	rd	l Bendi	ng and A	xial Loadi	ng				
Description: Description:	Tension Che	eck								
Model #: 3	Solar Decath	hlon				24Fb 3 1/2"	x 7 1/2"			
Loading	1106-033				lly Loaded in: Check Load:	rension yes	for C/C wind loads	col	umn check	= 0K
W _{bwall} =	4	pli			Load Factors					
Wd _{wall} =		pli	-		uration $(C_D) =$					
Axial load = Conditions	23307	lbs	Rep	etitive Membe	er Factor C _r = K _e =		<u> </u>	d x		
Moisture Condition I	Dry				Incised?			x		
Temperature					COVE	0.25	b			
Plies =	1			DEFLECTION	DN LIMIT = L/	240	IN Y			
DISTANCE BETWEEN LATERAL S DISTANCE BETWEEN LATERAL S	UPPORT ON UPPORT ON	N BREADTH N DEPTH EC	EDGE b (DGE d (ld)=	lb)= stability Facto	ding Member: r C _L override:	490.25 215.25 215.25 no	IN IN (enter 0.001 fo IN (enter 0.001 fo Yes; C _L = 1.0 see	r continuous suppor r continuous suppor note		
					aring Member : mber F _{cp} (psi)	2 x 4 #2 SYF 565)			
Member Properties 24Fb 3 1/2" x 7 1/2"	F _b (psi) 2400	F _t (psi) 1050	F _v (psi) 250	F _{cp} (psi)) 560	F _c (psi) 1150	E (psi) 1.6E+10	b (in) d (ir 7.5) c 7.5 0.9	Plys 1	Effective b E 7.5 5.84
(F _t , E, E _{min}) C _t	1			ce Factor C_M						
(F _b , F _v , F _c , F _{cp}) C _t	1		F₀ 1	Ft 1	F _v 1	F _{cp} 1	F _c Eand∣ 1 1	min		
$(E, E_{min}) C_i =$	1.00			1	1	1				
$(F_b, F_t, F_c, F_v) C_i =$ $(F_{cp}) C_i =$	1.00 1.00		Cf	, 1						
Bending Flexure										
Area = 56.25										
lx= 263.67 ly= 263.67	Sx = Sy =	70.31 70.31			120172.531	f _{b1} =		L _{ub} =	215.25	$L_{eb} = 373.$
$R_{Bx} = 7.1$	ок	F _{bx} *=	3174.0	M _{d_max} = F _{bEb} =	0 140895677	$f_{b2} = F_{bEy}/F_{by}^* =$		L _{ud} = 1.0000	215.25	L _{ed} = 373. F _{bx} ' = 31
R _{By} = 7.1	ок	F _{by} * =	3174		1.41E+08			Ly = 1.0000		F _{by} ' = 31
Bending Shear										
V _x = 980.5	f _{vb} =	26.146667		F _{vb} ' =	287.5	fvb <fvb'< td=""><td>ок</td><td></td><td></td><td></td></fvb'<>	ок			
V _y = 0	f _{vd} =	0		F _{vd} ' =	287.5	fvd <fvd'< td=""><td>ок</td><td></td><td></td><td></td></fvd'<>	ок			
Deflection										
Deflection _b =	0.000 2.04270833	ОК	ſ	Deflection _d = Allowed =	0.000 2.04270833	OK				
Column		_								
Axial Load (Ib) =	23307		414.3		F _c * =	1322.5	-			
$L_{ob} = 215.25$ $L_{od} = 215.25$		L _{eb} /d = L _{ed} /b =	28.7 28.7		28.7	OK		$E_1 = 5.8329.E+06$ $E_2 = 5.8329E+06$		
$F_{cE} = 5.83E+06$		$F_{cE}/F_{c}^{*} =$			C _p =	0.99997732		c'= 1322.47	ок	
Combined Bending and Axial Tens	ion									
$f_t = 414 \text{ p}$		ft/F	'+f _{b1} /F _{bb} * =	0.881619	ок					
F _t ' = 1207.5 p	osi	ft/Ft'+fb1/F	1+fb2/Fb2*=	0.881619	OK					
Combined Bending and Axial Com $$F_{\rm c}$< F_{\rm cE1}$$	pression OK									
$F_o < F_{cE2}$ $f_{b1} < F_{bE}$	ок ок		[f _c /F _c ']^2 +	f _{b1} /{F _{b1} '[1-(f _c /	F _{cE1})]} + f _{b2} /{F _b	₂ '[1-(f _c /F _{ce2}) ·	$(f_{b1}/F_{bE})^{2} =$	0.64	ок	
Bearing Bearing memb	per F _{cp} ' (psi) F _c =	565 414.3	ок							

7/6/2011

Tel: 309-879-3258

Vict	toria IL 61	485										www.p	perobbins.com
		CLIENT: Description:		ord	l Bendi	ng and A	xial Loadi	ng					
		escription:											
			Solar Decat 1106-033	thlon		Member Axia	Member: Ily Loaded in:	24Fb 3 1/2" Compressio					
		Loading				.7 Deflection	Check Load:	yes	for C/C wi	nd loads	Colu	umn check	= OK
		W _{bwall} = Wd _{wall} =	4 0	pli pli			Load Factors uration (C _D) =						
	Α	xial load =	2382	lbs	Rep		er Factor $C_r =$			d d			
		onditions			-		K _e =				x		
		e Condition	-				Incised? COV _E						
		Plies =	1							y y			
					Spar		DN LIMIT = L/	240 215.25	IN IN				
DISTANCE BE					EDGE b (lb)=		215.25	IN (enter		tinuous support		
DISTANCE BE	IWEENI	ATERAL S	UPPORT O	NDEPTHEL			r C _L override:	215.25 no		0.001 for cor 1.0 see note	itinuous support	()	
						Bea	aring Member	2 x 4 #2 SYF					
						Bearing mer	mber F _{cp} (psi)	565					
Member Prope 24Fb 3	rties 1/2" x 7 1	/2"	F _b (psi) 2400	F _t (psi) 1050	F _v (psi) 250	F _{cp} (psi)) 560	F _c (psi) 1150	E (psi) 1.6E+10	b (in) 7.5	d (in) 7.5	с 0.9	Plys 1	Effective b E 7.5 5.84
	(F _t ,	E, E _{min}) C _t	1		Wet service	ce Factor C _M							
	(F _b , F _v ,	$F_{c}, F_{cp}) C_{t}$	1		F _b	Ft	Fv	F _{cp}	F。	E and E_{min}			
	(E	, E _{min}) C _i =	1.00		1	1	1	1	1	1			
		$F_c, F_v) C_i =$	1.00		Cf	u 1							
		$(F_{cp}) C_i =$	1.00										
Bending Flexu	ıre												
-	Area = Ix=	56.25	0	70.04			00400 0040	<i>(</i> –					
	ly=	263.67 263.67	Sx = Sy =			M _{b_max} =	23166.2813 0	$f_{b1} = f_{b2} =$	329 0	psi psi	L _{ub} = L _{ud} =	215.25 215.25	$L_{eb} = 373.$ $L_{ed} = 373.$
	R _{Bx} =	7.1	ок	F _{bx} * =	2400.0		140895677		58706.53		1.0000	210.20	$F_{bx}' = 24$
	R _{By} =	7.1	OK	F _{by} * =	2400	F _{bEd} =	1.41E+08	F _{bEy} /F _{by} *=	58706.53	C _{Ly} =	1.0000		F _{by} ' = 24
Bending Shea	r												
-	V _x =	430.5	f _{vb} =			F _{vb} ' =	250	fvb <fvb'< td=""><td>OK</td><td></td><td></td><td></td><td></td></fvb'<>	OK				
	V _y =	0	f _{vd} =	0		F _{vd} ' =	250	fvd <fvd'< td=""><td>OK</td><td></td><td></td><td></td><td></td></fvd'<>	OK				
Deflection													
		flection _b = Allowed =	0.000 0.896875		[Deflection _d = Allowed =	0.000 0.896875	ок					
		Allowed -	0.050070			Allowed -	0.090075						
Column	Avial I	_oad (lb) =	2382	f _c =	42.3	psi	F _c * =	1150					
	L _{eb} =	215.25	2002	L _{eb} /d =	28.7	greater =	28.7	ок		$F_{cE1} =$	5.8329.E+06		
	$L_{ed} =$	215.25		$L_{ed}/b =$	28.7	,					5.8329E+06		
	$F_{cE} =$	5.83E+06		$F_{cE}/F_{c}^{*} =$	5072.128	3	C _p =	0.99998028		F _c ' =	1149.98	ок	
Combined Ber	nding and	Axial Tens	sion										
	f _t =	42 p				0.177612	OK						
	F _t ' =	1050 p	OSI	1 _t /Ft ⁺¹ b1/F	b1"+1 _{b2} /1-b2"=	0.177612	ок						
Combined Ber	nding and												
		F _c < F _{cE1} F _c < F _{cE2}	OK OK		[f_/F_']^2 +	f.,/{F.,/[1-(f./	F _{cE1})]} + f _{b2} /{F _b	o'[1-(f_/E)-	(f.,/F)/2	1) =	0.14	ок	
	1	b1 < F _{bE}	OK			-DIP (* D1 [* (*C*	· cc1/m · '02/1' b	21' ('C'' C02)	('DT'' DE/ Z	11	0.14	ON	
Poaring													
Bearing	Be	earing memb	ber F _{cp} ' (psi)	565	ок								
			F _c =										

7/6/2011

Tel: 309-879-3258

VICU	oria IL 614	69										www.	perobbins.com
		200)5 NDS C	combiner	d Bendi	ng and A	xial Load	ing					
		CLIENT: I escription: N	Nordic	3-12 4-11 5-1		C							
		escription:											
			Solar Decati	halon	1	Aul		24Fb 3 1/2"					
		Job: 1	1106-033				ally Loaded in: h Check Load:		for C/C wi	ind loads	Colur	nn check	
		W _{bwall} =	10	pli			Load Factors				00101	In onee.	
		Wd _{wall} =	0	pli			uration (C _D) =						
	A	xial load =	9368	lbs	Repr	etitive Memb	er Factor C _r =	1.00		d V			
		onditions					K _e =				x		
		Condition I					Incised?						
	le	mperature Plies =	T ≤ 100 1				COVE	0.10		b			
		Files -	1			DEFLECT	ON LIMIT = L/	240	IN	У			
						Length Bend	ding Member:	73	IN				
DISTANCE BE DISTANCE BE								73 73	IN (enter	0.001 for cor	ntinuous support)		
DISTANCE DE	IVEENL	AIERALO	UPPORTO	DEPTHEN			or CL override:			0.001 for cor 1.0 see note	ntinuous support)		
					Dounce		aring Member		-	1.0 000 11010			
							mber F _{cp} (psi)						
Member Proper	rties		F _b (psi)	F _t (psi)	F _v (psi)	F _{cp} (psi)	F _c (psi)	E (psi)	b (in)	d (in)	с	Plys	Effective b E
	1/2" x 3 1/	/2"	2400								0.9	1	3.5 8.29
	(F.	E, E _{min}) C _t	1		Wat cervir	Eactor Cu							
		E, E _{min}) C _t F _c , F _{cp}) C _t	1		F _b	e Factor C _M		c	C.	5 and E			
	(F _b , F _V ,	$\Gamma_c, \Gamma_{cp}/O_t$	1		Γ _δ	F _t	F _v 1	F _{cp}	F _e	E and E _{min} 1			
	(E,	, E _{min}) C _i =	1.00						,				
		$F_{c}, F_{v}) C_{i} =$			Cfu	u 1							
		$(F_{cp}) C_i =$	1.00										
Bending Flexu	ire												
Denning From	Area =	12.25											
	Ix=	12.51	Sx =	7.15		M _{b_max} =		f _{b1} =	932	psi	$L_{ub} =$	73	L _{eb} = 12
	ly=	12.51	Sy=			M _{d_max} =		f _{b2} =		psi	L _{ud} =	73	L _{ed} = 129
	R _{Bx} =	6.1	OK	F _{bx} *=			269034907		112097.9		1.0000		$F_{bx}' = 24$
	R _{By} =	6.1	ок	F _{by} * =	2400	$F_{bEd} =$	2.69E+08	F _{bEy} /F _{by} *=	112097.9	C _{Ly} =	1.0000		$F_{by} = 24$
Bending Shear	r												
Denning	V _x =	365	f _{vb} =	44.693878		F _{vb} ' =	250	fvb <fvb'< td=""><td>ок</td><td></td><td></td><td></td><td></td></fvb'<>	ок				
	V _y =	0	f _{vd} =			F _{vd} ' =			OK				
5 //													
Deflection	De	flection _b =	0.000	ок	г	Deflection _d =	0.000	ок					
		-	0.30416667		5		0.30416667						
			0100			/	0.0011111						
Column	Avial		0000	6 -	704 7		F * -	1150					
		oad (lb) =		-	764.7		$F_c^* =$			c -	1 5070 5107		
	L _{eb} =	73 73		L _{eb} /d = L _{ed} /b =			20.8571429	OK			1.5673.E+07		
	L _{ed} =	73 1.57E+07		L _{ed} /D = F _{cE} /F _c * =			C. =	0.99999266		F _{cE2} = F _c ' =	1.5673E+07 1149.99	ок	
	CE	1.07 - 07		CE / C	10020.07		Φp	0.00000200		· c	1140.00	UN	
Combined Ben	-			6 IT		1 11070	214						
	$f_t =$	765 p	e			1.11673							
	Ft' =	1050 p	JSI	t _t /Ft ^{+t} b1/F	b1*+fb2/Fb2*=	1.11673	OK						
Combined Ben	nding and												
		$F_c < F_{cE1}$				· · · · · · · · · · · · · · · · · · ·							
		$F_c < F_{cE2}$		1	[f_/F_']^2 + t	ь1/{Fb1'[1-(td/	(F_{cE1}) + $f_{b2}/(F_{1})$	_{b2} '[1-(f _c /F _{ce2}) -	(f _{b1} /F _{bE})^2]} =	0.83	OK	
	I,	$F_{b1} < F_{bE}$	ок										
Bearing													
-	Be	aring mem	iber F _{cp} ' (psi)	560	ок								
			F _c =	764.7									

7/6/2011

Tel: 309-879-3258

Vic	toria IL 61	485										www.	perobbins.com	i -
		200	05 NDS 0	Combined	d Bendii	ng and A	xial Load	ina						
		CLIENT: Description:	Nordic	3-12 4-11 5-1		9								
		Description:												
			Solar Decat 1106-033	thalon	,	Momber Axis	Member: ally Loaded in:	24Fb 3 1/2" Tension	x 3 1/2"					
		Loading	1100-000				Check Load:		for C/C wi	nd loads	Colu	mn check	<= OK	
		W _{bwall} =	9	pli			Load Factors							
		Wd _{wall} =	0	pli	Deer		uration $(C_D) =$			ΝΛ.				
		Axial load =	8163	lbs	Кере	etitive Memb	er Factor C _r = K _e =			Xd	x			
		e Condition	Dry				Incised?				x			
	Te	emperature					COVE	0.10		b				
		Plies =	1				ON LIMIT = L/	240	IN	У				
						Length Ben	ding Member:		IN					
DISTANCE BE								73 73			ntinuous support) ntinuous support)			
DISTANCE DE							or C _L override:	no		1.0 see note	ianuous support			
						Be	aring Member	24Fb 3 1/2"						
						Bearing me	mber F _{cp} (psi)	560						
Member Prope	erties		F _b (psi)	F _t (psi)	F _v (psi)	F _{cp} (psi)	F _c (psi)	E (psi)	b (in)	d (in)	С	Plys	Effective b	E,
24Fb 3	1/2" x 3 1	/2"	2400	1050	250		1150	1.6E+10			0.9	1	3.5	8.291
	(F.	E, E _{min}) C _t	1		Wet servic	e Factor C _M								
		F _c , F _{cp}) C _t	1		F _b	Ft	Fv	F _{cp}	F。	E and Emin				
	-	- 10			1	1	1	1	1	1				
		, E _{min}) C _i = F _c , F _v) C _i =	1.00 1.00		Cfu	1								
	('b, 't,	$(F_{cp}) C_i =$	1.00		Ofu									
Bending Flexu	Area =	12.25												
	Ix=	12.51	Sx =	7.15		M _{b_max} =	5995.125	f _{b1} =	839	psi	$L_{ub} =$	73	L _{eb} =	129
	ly=	12.51	Sy=			M _{d_mex} =		f _{b2} =		psi	L _{ud} =	73	L _{ed} =	
	R _{Bx} =	6.1	OK	F _{bx} *=			269034907		112097.9		1.0000		F _{bx} ' =	
	R _{By} =	6.1	OK	F _{by} * =	2400	PbEd -	2.69E+08	FbEy/Fby -	112097.9	C _{Ly} =	1.0000		F _{by} ' =	24
Bending Shea														
	V _x = V _y =	328.5 0	f _{vb} = f _{vd} =			F _{vb} '= F _{vd} '=	250	fvb <fvb' fvd<fvd'< td=""><td></td><td></td><td></td><td></td><td></td><td></td></fvd'<></fvb' 						
	v _y -	0	Vd -	0		r _{vd} =	250	IVa <fva< td=""><td>OK</td><td></td><td></td><td></td><td></td><td></td></fva<>	OK					
Deflection														
		Allowed =	0.000 0.30416667		D	Deflection _d =	0.000 0.30416667	ок						
		Allowed	0.00410007			Allowed	0.00410007							
Column	Avial	Load (lb) =	8163	f =	666.4	nei	F.* =	1150						
	L _{eb} =	- (ib) 73	0105	L _{eb} /d =			20.8571429	OK		F=	1.5673.E+07			
	L _{ed} =	73		L _{ed} /b =							1.5673E+07			
	F _{cE} =	1.57E+07		$F_{cE}/F_{c}^{*} =$			C _p =	0.99999266		F _c ' =		OK		ľ
Combined Ber	nding and	Axial Ten	sion											
	f _t =	666		f _t /F	$f_t + f_{b1}/F_{bb} =$	0.984206	ок							
	F _t ' =	1050	psi	ft/Ft'+fb1/F	= _{b1} *+f _{b2} /F _{b2} *=	0.984206	ок							
Combined Ber	nding and	Axial Com	pression											
		$F_c < F_{cE1}$	OK											
		$F_c < F_{cE2}$	OK		[f_/F_']^2 + 1	f _{b1} /{F _{b1} '[1-(f _c)	(F_{cE1}) + $f_{b2}/{F_{cE1}}$	b2'[1-(f _c /F _{ce2}) -	- (f _{b1} /F _{bE})^2]} =	0.69	OK		
	1	f _{b1} < F _{bE}	ок											
Bearing														
	Be	earing mem	ber F _{cp} ' (psi)		OK									
			F _c =	666.4										

7/6/2011

Tel: 309-879-3258

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Vict	oria IL 614	35										www.j	perobbins.com
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			200	5 NDS C	ombined	l Bendir	ng and A	xial Loadi	na					
		_	CLIENT:	Nordic	Union		9		1.9					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					4									
				Tension One	3CK									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Solar Decat	hlon			Member:	24Fb 3 1/2"	x 3 1/2"				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Job:											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			•	•	~ 0.					for C/C wir	nd loads	Colum	nn check	(= OK
Atail last = 1746 Ibs Repetitive Member Factor ($\zeta = 1.00$ Notisture Condition Dry Tenperature T 100 DEFINED ETWEEN LATERAL SUPPORT ON BERADTH EDG Member Beam Stability Factor (ζ , coverride: DEFINED ETWEEN LATERAL SUPPORT ON BERADTH EDG 4 (d) Beam Stability Factor (ζ , coverride: DEFINED ETWEEN LATERAL SUPPORT ON BERADTH EDG 4 (d) Beam Stability Factor (ζ , coverride: DEFINED ETWEEN LATERAL SUPPORT ON BERADTH EDG 4 (d) Beam Stability Factor (ζ , coverride: DEFINED ETWEEN LATERAL SUPPORT ON BERADTH EDG 4 (d) Beam Stability Factor (ζ , coverride: DEFINED ETWEEN LATERAL SUPPORT ON DEFTH EDG 4 (d) Beam Stability Factor (ζ , coverride: DEG 7 ($\zeta = 1.00$ ($\zeta = 1, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$ ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 0, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 0, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta = 1.00$) ($\zeta = 1, \zeta = 0, \zeta$										ĺ				
$ \begin{array}{c} Conditions by the Conditions Dry Interpendure T = 1 0 DEFLECTION LIMIT = U 240 N Same Length Bending Member 246 0 0 COV_6 0.25 N DEFLECTION LIMIT = U 240 N Same Length Bending Member 246 0 100 for confinuous support) DISTANCE BETWEEN LATERAL SUPPORT ON BERATITE DOES (c)= 2.25 N DEFLECTION LIMIT = U 240 N Same Length Bending Member 246 0 100 for confinuous support) DISTANCE BETWEEN LATERAL SUPPORT ON DEFINE DOES (c)= 1.25 N DEFLECTION LIMIT = U 240 N N Same Length Bending Member 246 0 100 for confinuous support) DISTANCE BETWEEN LATERAL SUPPORT ON DEFTH EDGE (c)= 1.25 N DEFLECTION LIMIT = U 240 N N Same Length Bending Member 246 0 100 for confinuous support) DISTANCE DETWEEN LATERAL SUPPORT ON DEFTH EDGE (c)= 1.25 N DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LATERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LITERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LITERAL SUPPORT ON DEFLECTION LIMIT = U 240 N DISTANCE DETWEEN LITERAL SUPPORT ON DISTANCE DI$						Pope								
				1/40	IDS	Repe	titive memor				X	_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Dry								x		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-						,	h			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-			y			
DISTANCE BETWEEN LATERAL SUPPORT ON DEPTH EDGE 4 (i) = 92.8 (i) (emet 0.001 for confinuous support) DISTANCE BETWEEN LATERAL SUPPORT ON DEPTH EDGE 4 (i) = 92.8 (i) (emet 0.001 for confinuous support) Bearing member $F_{qc}(ps)$ 580 Member Properties $F_{pc}(ps)$ $F_{r}(ps)$ $F_{r}(ps)$ $F_{r}(ps)$ $F_{r}(ps)$ $E_{r}(ps)$														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DIGTANCE BE		ATERAL S					ding Member:			0.001 for cor	the up a support)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $								or C _L override:						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-		x 14"				
$24Fb_{3} 1/2^{n} X_{3} 1/2^{n} \qquad 2400 \qquad 1050 \qquad 250 \qquad 660 \qquad 1150 \qquad 1.8E^{1} 10 \qquad 3.5 \qquad 3.5 \qquad 0.9 \qquad 1 \qquad 3.5 \qquad t.8$ $(F_{0}, F_{0}, F_{0}, F_{0}) C_{1} \qquad 1 \qquad F_{0} \qquad F_{1} \qquad F_{0} \qquad F$						1	Bearing mer	mber F _{cp} (psi)	560					
$ 24Fb_3 1/2^n X_3 1/2^n \qquad 2400 1050 250 660 1150 1.6E+10 3.5 3.5 0.9 1 3.5 C \\ (F_{\mu}, F_{\nu}, F_{\nu}, F_{\nu}) C_{\mu} 1 \\ (F_{\mu}, F_{\nu}, F_{\nu}) C_{\mu} 0 \\ (F_{\mu}, F_{\nu}, F_{\nu}) C_{\nu} 0 \\ (F_{\nu}, F_{\nu}, F_$	tomber Dropo	-1'		E (pei)	E (nci)	E (pei)	E (nei)	E (nei)	E (noi)	h (in)	-1 (in)		Dha	Effective b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0"											
$ \begin{pmatrix} F_{u}, F_{u}, F_{u}, F_{u}, F_{u}, F_{u}, F_{u}, F_{u} \\ F_{u}, F_{u}, F_{u}, F_{u}, F_{u}, F_{u} \\ (F_{u}, F_{u}, F_{u}, F_{u}, F_{u}) \\ (F_{u}, F_{u}, F_{u}, F_{u}, F_{u}, F_{u}) \\ (F_{u}, F_{u}, $	24100	112 80 11	2	2400	1000	200	000	1100	1.02110	0.0	0.0	0.9		3.0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(F _t , F	Ξ, E _{min}) C _t	1		Wet service	e Factor C _M							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(F _b , F _v ,	F _c , F _{cp}) C _t	1		Fb	Ft	Fv	F_{cp}	Fc	E and E _{min}			
$ \begin{cases} F_{b_{1}}, F_{b_{2}}, F_{c_{1}}, F_{c_{2}}, F_{c_{1}} = 1.00 \\ (F_{c_{2}}), C_{1} = 1.00 \end{cases} C_{b_{2}} = 1 \\ F_{c_{2}}, F_{c_{1}}, F_{c_{2}}, F_{c_{1}} = 1.00 \\ F_{c_{2}}, F_{c_{2}}, F_{c_{1}}, F_{c_{2}}, F$							1			1	1			
$ \left(F_{cy} \right) C_{1} = 1.00 $ Bending Flexure $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
Bending Flexure $\begin{array}{c} Area = 12.25 \\ b^{x} = 12.51 \\ V = 12.51 \\ S = 7.15 \\ S = 7.15 \\ R_{0x} = 8.8 \\ OK \\ F_{0x}^{*} = 2760 \\ R_{0y} = 6.8 \\ OK \\ F_{0y}^{*} = 2760 \\ F_{0x} = 151756553 \\ F_{0x} F_{0x}^{*} = 54984.26 \\ C_{1x} = 10000 \\ F_{1x} = 92.8 \\ L_{u4} = 0 \\ F_{1x} = 287.5 \\ F_{1x} = 28.5 \\ F_{1x} = 28$						C _{fu}	1							
$\begin{array}{c} \label{eq:constraints} & \operatorname{Area} = 12.25 \\ & \operatorname{k} = 12.51 & \operatorname{Sx} = 7.15 & \operatorname{Mb}_{k,max} = 0 & \operatorname{fb}_{1} = 0 & \operatorname{psi} & \operatorname{L}_{ub} = 92.8 & \operatorname{L}_{ub} = \\ & \operatorname{Fb}_{1} = 12.51 & \operatorname{Sy}_{2} = 7.15 & \operatorname{Mb}_{k,max} = 0 & \operatorname{fb}_{2} = 0 & \operatorname{psi} & \operatorname{L}_{ub} = 92.8 & \operatorname{L}_{ub} = \\ & \operatorname{Fb}_{0} = 6.8 & \operatorname{OK} & \operatorname{Fb}_{1} = 2760 & \operatorname{Fb}_{16,5} = 151756553 & \operatorname{Fb}_{16,5}/\operatorname{Fb}_{1} = 54984.26 & \operatorname{CL}_{1} = 1,0000 & \operatorname{Fb}_{1} = \\ & \operatorname{Rb}_{0} = 6.8 & \operatorname{OK} & \operatorname{Fb}_{10} = 2760 & \operatorname{Fb}_{16,5} = 152756553 & \operatorname{Fb}_{16,5}/\operatorname{Fb}_{10} = 54984.26 & \operatorname{CL}_{1} = 1,0000 & \operatorname{Fb}_{1} = \\ & \operatorname{V}_{2} = 0 & \operatorname{f}_{0} = 0 & \operatorname{Fb}_{1} = 287.5 & \operatorname{fb}_{2}/\operatorname{Fb}_{1} = 64984.26 & \operatorname{CL}_{1} = 1,0000 & \operatorname{Fb}_{1} = \\ & \operatorname{V}_{2} = 0 & \operatorname{f}_{0} = 0 & \operatorname{Fb}_{1} = 287.5 & \operatorname{fb}_{2}/\operatorname{Fb}_{1} = 6.8343.26 & \operatorname{OL}_{1} = \\ & \operatorname{O} & \operatorname{Fb}_{1} = 0 & \operatorname{Fb}_{1} = 287.5 & \operatorname{fb}_{2}/\operatorname{Fb}_{1} & \operatorname{OK} & \operatorname{Fc}_{1} = 6.8343.E+06 & \\ & \operatorname{Allowed} = 0.38666667 & \operatorname{OK} & \operatorname{Fc}_{1} = 6.8343.E+06 & \\ & \operatorname{Allowed} = 0.38666667 & \operatorname{Fc}_{2}/\operatorname{Fb}_{2}/\operatorname{Fb}_{2} & \operatorname{Fc}_{1} = 6.8343.E+06 & \\ & \operatorname{Fc}_{1} = 92.8 & \operatorname{L}_{0}/d = 26.51429 & \operatorname{Fc}_{1} = 1322.5 & \\ & \operatorname{L}_{0} = 92.8 & \operatorname{L}_{0}/d = 26.51429 & \operatorname{Fc}_{2} = 0.99998065 & \operatorname{Fc}_{2} = 6.3343E+06 & \\ & \operatorname{Fc}_{2} = 6.832E+06 & \operatorname{Fc}_{2}/\operatorname{F}_{1} = 6.18038 & \operatorname{OK} & \\ & \operatorname{Fc}_{1} = 6.8342E+06 & \operatorname{Fc}_{2}/\operatorname{Fb}_{1}/\operatorname{Fb}_{1} + \operatorname{fb}_{1}/\operatorname{Fb}_{2} = 0.118038 & \operatorname{OK} & \\ & \operatorname{Fc}_{1} = 1207.5 & \operatorname{psi} & (f/\operatorname{Fi}_{1}/\operatorname{Fb}_{1}/\operatorname{Fb}_{1} + \operatorname{fb}_{1}/\operatorname{Fb}_{2} = 0.118038 & \operatorname{OK} & \\ & \operatorname{Fc}_{1} = 1207.5 & \operatorname{psi} & (f/\operatorname{Fi}_{1}/\operatorname{Fb}_{1}/\operatorname{Fb}_{1} + \operatorname{fb}_{2}/\operatorname{Fb}_{2} = 0.118038 & \operatorname{OK} & \\ & \operatorname{Fc}_{1} < \operatorname{OK} & \left(f_{2}/\operatorname{Fb}_{1}/\operatorname{Fb}_{1} + \operatorname{fb}_{2}/\operatorname{Fb}_{2}/Fb$			$(F_{cp})C_i =$	1.00										
$\begin{array}{c} \label{eq:constraints} & \operatorname{Area} = 12.25 \\ & \operatorname{k} = 12.51 & \operatorname{Sx} = 7.15 & \operatorname{Mb}_{k,max} = 0 & \operatorname{fb}_{1} = 0 & \operatorname{psi} & \operatorname{L}_{ub} = 92.8 & \operatorname{L}_{ub} = \\ & \operatorname{Fb}_{1} = 12.51 & \operatorname{Sy}_{2} = 7.15 & \operatorname{Mb}_{k,max} = 0 & \operatorname{fb}_{2} = 0 & \operatorname{psi} & \operatorname{L}_{ub} = 92.8 & \operatorname{L}_{ub} = \\ & \operatorname{Fb}_{0} = 6.8 & \operatorname{OK} & \operatorname{Fb}_{1} = 2760 & \operatorname{Fb}_{16,5} = 151756553 & \operatorname{Fb}_{16,5}/\operatorname{Fb}_{1} = 54984.26 & \operatorname{CL}_{1} = 1,0000 & \operatorname{Fb}_{1} = \\ & \operatorname{Rb}_{0} = 6.8 & \operatorname{OK} & \operatorname{Fb}_{10} = 2760 & \operatorname{Fb}_{16,5} = 152756553 & \operatorname{Fb}_{16,5}/\operatorname{Fb}_{10} = 54984.26 & \operatorname{CL}_{1} = 1,0000 & \operatorname{Fb}_{1} = \\ & \operatorname{V}_{2} = 0 & \operatorname{f}_{0} = 0 & \operatorname{Fb}_{1} = 287.5 & \operatorname{fb}_{2}/\operatorname{Fb}_{1} = 64984.26 & \operatorname{CL}_{1} = 1,0000 & \operatorname{Fb}_{1} = \\ & \operatorname{V}_{2} = 0 & \operatorname{f}_{0} = 0 & \operatorname{Fb}_{1} = 287.5 & \operatorname{fb}_{2}/\operatorname{Fb}_{1} = 6.8343.26 & \operatorname{OL}_{1} = \\ & \operatorname{O} & \operatorname{Fb}_{1} = 0 & \operatorname{Fb}_{1} = 287.5 & \operatorname{fb}_{2}/\operatorname{Fb}_{1} & \operatorname{OK} & \operatorname{Fc}_{1} = 6.8343.E+06 & \\ & \operatorname{Allowed} = 0.38666667 & \operatorname{OK} & \operatorname{Fc}_{1} = 6.8343.E+06 & \\ & \operatorname{Allowed} = 0.38666667 & \operatorname{Fc}_{2}/\operatorname{Fb}_{2}/\operatorname{Fb}_{2} & \operatorname{Fc}_{1} = 6.8343.E+06 & \\ & \operatorname{Fc}_{1} = 92.8 & \operatorname{L}_{0}/d = 26.51429 & \operatorname{Fc}_{1} = 1322.5 & \\ & \operatorname{L}_{0} = 92.8 & \operatorname{L}_{0}/d = 26.51429 & \operatorname{Fc}_{2} = 0.99998065 & \operatorname{Fc}_{2} = 6.3343E+06 & \\ & \operatorname{Fc}_{2} = 6.832E+06 & \operatorname{Fc}_{2}/\operatorname{F}_{1} = 6.18038 & \operatorname{OK} & \\ & \operatorname{Fc}_{1} = 6.8342E+06 & \operatorname{Fc}_{2}/\operatorname{Fb}_{1}/\operatorname{Fb}_{1} + \operatorname{fb}_{1}/\operatorname{Fb}_{2} = 0.118038 & \operatorname{OK} & \\ & \operatorname{Fc}_{1} = 1207.5 & \operatorname{psi} & (f/\operatorname{Fi}_{1}/\operatorname{Fb}_{1}/\operatorname{Fb}_{1} + \operatorname{fb}_{1}/\operatorname{Fb}_{2} = 0.118038 & \operatorname{OK} & \\ & \operatorname{Fc}_{1} = 1207.5 & \operatorname{psi} & (f/\operatorname{Fi}_{1}/\operatorname{Fb}_{1}/\operatorname{Fb}_{1} + \operatorname{fb}_{2}/\operatorname{Fb}_{2} = 0.118038 & \operatorname{OK} & \\ & \operatorname{Fc}_{1} < \operatorname{OK} & \left(f_{2}/\operatorname{Fb}_{1}/\operatorname{Fb}_{1} + \operatorname{fb}_{2}/\operatorname{Fb}_{2}/Fb$	Rending Flex	Ire												
	penuing		12.25											
$\begin{array}{c} R_{Bx}^{*} = 6.8 & \text{OK} & F_{bx}^{*} = 2760. & F_{bcl}^{*} = 151756553 & F_{bcl}/F_{bx}^{*} = 54984.26 & C_{Lx} = 1.0000 & F_{bx}^{*} = \\ R_{By}^{*} = 6.8 & \text{OK} & F_{by}^{*} = 2760 & F_{bcl} = 1.521766553 & F_{bcl}/F_{by}^{*} = 54984.26 & C_{Ly} = 1.0000 & F_{by}^{*} = \\ R_{By}^{*} = 0 & f_{ub} = 0 & F_{va}^{*} = 287.5 & \text{fvb} < Fvb' & \text{OK} \\ V_{y} = 0 & f_{ud} = 0 & F_{va}^{*} = 287.5 & \text{fvb} < Fvb' & \text{OK} \\ \end{array}$ Deflection $\begin{array}{c} Deflection_{b} = 0.000 & \text{OK} & Deflection_{d} = 0.000 & \text{OK} \\ Allowed = 0.386666667 & Allowed = 0.38666667 \\ \hline \\ L_{ub} = 92.8 & L_{ub}/d = 26.51429 & \text{greater} = 26.5142857 & \text{OK} & F_{cl2} = 6.8343.E+06 \\ L_{ub} = 92.8 & L_{ub}/d = 26.51429 & \text{greater} = 26.5142857 & \text{OK} & F_{cl2} = 6.8343.E+06 \\ F_{cl2} = 6.83E+06 & F_{cc}/F_{c}^{*} = 5167.688 & C_{p} = 0.99998065 & F_{c}^{*} = 1322.47 & \text{OK} \\ \hline \\ $		Ix=	12.51	Sx =	7.15		M _{b_max} =	0	f _{b1} =	0	psi	L _{ub} =	92.8	$L_{eb} = 1$
$\begin{array}{c} R_{By} = \ 6.8 OK F_{by}^{*} = \ 2760 F_{bed} = \ 1.52E + 08 F_{bef} = \ 54984.26 C_{Ly} = \ 1.000 F_{by}^{*} = \ 1.000 F_{by}^{*} = \ 287.5 fvb < Fvb^{*} \ OK V_{y} = \ 0 f_{vd} = \ 0 F_{vd}^{*} = \ 287.5 fvb < Fvb^{*} \ OK OK V_{y} = \ 0 f_{vd} = \ 0 F_{vd}^{*} = \ 287.5 fvb < Fvd^{*} \ OK OK V_{y} = \ 0 f_{vd} = \ 0 F_{vd}^{*} = \ 287.5 fvb < Fvd^{*} \ OK OK V_{y} = \ 0 f_{vd} = \ 0 F_{vd}^{*} = \ 287.5 fvb < Fvd^{*} \ OK OK V_{y} = \ 0 F_{vd}^{*} = \ 287.5 fvb < Fvd^{*} \ OK OK V_{y} = \ 0 f_{vd}^{*} = \ 0 F_{vd}^{*} = \ 287.5 fvb < Fvd^{*} \ OK V_{y} = \ 0 Fvd^{*} = \ 0 Fvd$			12.51	Sy=	7.15		M _{d_max} =	0				L _{ud} =	92.8	L _{ed} = 1
Bending Shear $ \begin{array}{c} V_x = & 0 & f_{vb} = & 0 & F_{vb}^* = & 287.5 & fvb < Fvb^* & OK \\ V_y = & 0 & f_{vd} = & 0 & Fvd^* = & 287.5 & fvd < Fvd^* & OK \\ \end{array} $ Deflection Deflection _b = & 0.000 & OK & Deflection _d = & 0.000 & OK & Allowed = & 0.38666667 & OK & Allowed = & 0.38666667 & OK & Allowed = & 0.38666667 & OK & F_{cl1} = & 6.8343.E+06 & \\ L_{abs} = & 92.8 & L_{ab}/d = & 26.51429 & greater = & 26.5142857 & OK & F_{cl2} = & 6.8343.E+06 & \\ L_{abs} = & 92.8 & L_{ab}/d = & 26.51429 & F_{cl2} = & 6.8343.E+06 & \\ L_{ad} = & 92.8 & L_{ab}/d = & 26.51429 & F_{cl2} = & 6.8343.E+06 & \\ F_{cl2} = & 6.83E+06 & F_{cl2} / F_{c}^* = & 5167.688 & C_p = & 0.99998065 & F_c^* = & 1322.47 & OK & \\ \end{array} Combined Bending and Axial Tension $f_{1} = & 143 \text{ psi} & f_1/F_1^* f_{b0}/F_{bb}^* = & 0.118038 & OK & \\ F_1^* = & 1207.5 \text{ psi} & f_2/F_1^* f_{b0}/F_{bb}^* = & 0.118038 & OK & \\ F_1^* = & 1207.5 \text{ psi} & f_2/F_1^* f_{b0}/F_{b1}^* f_{b0}/F_{b1}^* f_{b2}/(F_{b2}^*) - (f_{b1}/F_{bc2})^*] = & 0.01 & OK & \\ \end{array} $ Bearing Bearing member F_{cp}^* (psi) & 560 & OK & \\		R _{Bx} =	6.8	OK			$F_{bEb} =$	151756553				1.0000		
$ \begin{array}{c} V_x = & 0 & f_{bb} = & 0 & F_{bb}' = & 287.5 & fvb < Fvb' & OK \\ V_y = & 0 & f_{cd} = & 0 & F_{cd}' = & 287.5 & fvd < Fvd' & OK \\ \end{array} \\ \hline \\ \begin{array}{c} \text{Deflection} \\ \text{Deflection} \\ \text{Deflection} \\ \text{Deflection} \\ \text{Orbitice} = & 0.38666667 & OK & \\ \begin{array}{c} \text{Deflection}_{g} = & 0.000 & OK & \\ \text{Allowed} = & 0.38666667 & \\ \text{Allowed} = & 0.38666667 & \\ \begin{array}{c} \text{Allowed} = & 0.38666667 & \\ \text{Allowed} = & 0.38666667 & \\ \begin{array}{c} \text{OK} \\ \text{Deflection} \\ \text{Axial Load} (lb) = & 1746 & f_c = & 142.5 & \text{psi} & F_c^* = & 1322.5 \\ \hline \\ \text{L}_{bb} = & 92.8 & & \\ \begin{array}{c} \text{L}_{abd} = & 92.8 & \\ \ \text{L}_{abd} / b = & 26.51429 & \\ \hline \\ \text{F}_{cE} = & 6.83E+06 & F_{cE} / F_e^* = & 5167.688 & \\ \hline \\ \text{Combined Bending and Axial Tension} \\ \hline \\ \text{F}_{t}' = & 143 & \text{psi} & f_t / F_t' * f_{bt} / F_{bb}^* = & 0.118038 & \\ \hline \\ \text{F}_{t}' = & 1207.5 & \text{psi} & f_t / F_t' * f_{bt} / F_{bb}^* = & 0.118038 & \\ \hline \\ \text{F}_{t} \in & - f_{cE} & OK \\ \hline \\ \text{F}_{t} < & F_{c} < F_{cE} & \\ \hline \\ \text{F}_{t} < & F_{c} < F_{cE} & \\ \hline \\ \text{F}_{t} < & F_{t} & \\ \hline \\ \end{array} \end{array} \right) $		R _{By} =	6.8	OK	F _{by} * =	2760	F _{bEd} =	1.52E+08	F _{bEy} /F _{by} *=	54984.26	C _{Ly} =	1.0000		F _{by} ' =
$ \begin{array}{c} V_{x} = & 0 & f_{bb} = & 0 & F_{bb}^{*} = & 287.5 & fvb < Vb^{*} & OK \\ V_{y} = & 0 & f_{cd} = & 0 & F_{cd}^{*} = & 287.5 & fvd < Fvd^{*} & OK \\ V_{y} = & 0 & f_{cd} = & 0 & OK & Deflection_{g} = & 287.5 & fvd < Fvd^{*} & OK \\ \hline Deflection & Deflection_{b} = & 0.000 & OK & Deflection_{g} = & 0.000 & OK & \\ \hline Allowed = & 0.38666667 & Allowed = & 0.38666667 & \\ \hline Allowed = & 0.38666667 & Allowed = & 0.38666667 & \\ \hline Allowed = & 0.38666667 & OK & F_{cE} = & 6.8343.E+06 & \\ \hline Axial Load (lb) = & 1746 & f_{c} = & 142.5 & psi & F_{c}^{*} = & 1322.5 & \\ \hline Axial Load (lb) = & 1746 & f_{c} = & 26.51429 & preater = & 26.5142857 & OK & F_{cE1} = & 6.8343.E+06 & \\ \hline Axial Load (lb) = & 1746 & F_{ce} = & 26.51429 & F_{ce2} = & 6.8343E+06 & \\ \hline Axial Load (lb) = & 1746 & F_{ce} = & 5167.688 & C_{p} = & 0.99998065 & F_{c}^{*} = & 1322.47 & OK \\ \hline Combined Bending and Axial Tension & \\ \hline f_{c} = & 143 & psi & f_{c}/F_{c}^{*} + f_{b}/F_{bb}^{*} = & 0.118038 & OK & \\ \hline F_{c}^{*} = & 1207.5 & psi & f_{c}/F_{c}^{*} + f_{b}/F_{bb}^{*} = & 0.118038 & OK & \\ \hline Combined Bending and Axial Compression & \\ \hline F_{c} < F_{ce2} & OK $	Chan Chan													
$V_{y} = 0 \qquad f_{vd} = 0 \qquad F_{vd}' = 287.5 fvd < Fvd' OK$ Deflection $Deflection_{b} = 0.000 OK \qquad Deflection_{g} = 0.000 OK$ Allowed = 0.38666667 Column $Axial Load (lb) = 1746 \qquad f_{c} = 142.5 psi \qquad F_{c}' = 1322.5 \\ L_{eb} = 92.8 \qquad L_{eb}/d = 26.51429 greater = 26.5142857 OK \qquad F_{cE1} = 6.8343.E+06 \\ L_{ed} = 92.8 \qquad L_{eb}/d = 26.51429 \qquad F_{cE2} = 6.8343.E+06 \\ F_{cE} = 6.83E+06 \qquad F_{cE}/F_{c}' = 5167.688 \qquad C_{p} = 0.99998065 \qquad F_{c}' = 1322.47 OK$ Combined Bending and Axial Tension $f_{1} = 143 \text{ psi} \qquad f_{1}/F_{1}'+f_{b}/F_{ba}' = 0.118038 OK \\ F_{1}' = 1207.5 \text{ psi} \qquad f_{1}/F_{1}'+f_{b}/F_{ba}' = 0.118038 OK \\ F_{c} < F_{cez} = OK \qquad (f_{1}/F_{c}'+f_{b}/F_{ba}' = 0.118038 OK \\ F_{1} < F_{0} < F_{cez} = OK \qquad (f_{1}/F_{c}'+f_{b}/F_{ba}' + f_{c}/F_{ba}' = 0.118038 OK \\ F_{1} < F_{be} < OK \qquad (f_{1}/F_{c}')^{2} + f_{b}/(F_{b1}'(1-(f_{1}/F_{ce1}))) + f_{b2}/(F_{b2}'[1-(f_{1}/F_{ce2}) - (f_{b1}/F_{bE})^{2}]) = 0.01 OK$ Bearing Bearing member $F_{cp}'(psi) \qquad 560 OK$	Bending Shea		٥	f. =	0		E.'=	287 5	fvh <fvh'< td=""><td>OK</td><td></td><td></td><td></td><td></td></fvh'<>	OK				
Deflection Deflection, = 0.000 OK Allowed = 0.38666667 OK Allowed = 0.38666667 OK Allowed = 0.38666667 OK Column Axial Load (lb) = 1746 f_c = 142.5 psi F_o^* = 1322.5 L_{ob} = 92.8 L_{ob}/d = 26.51429 greater = 26.5142857 OK F_{cE1} = 6.8343.E+06 L_{od} = 92.8 L_{od}/b = 26.51429 F_{cE2} = 6.8343E+06 F_{cE} = 6.83E+06 F_{cE}/F_o^* = 5167.688 C_p = 0.99998065 F_o^* = 1322.47 OK Combined Bending and Axial Tension f_1 = 143 psi f_/F_1^*+f_{b1}/F_{bb}^* = 0.118038 OK F_1^* = 1207.5 psi f_/F_1^*+f_{b1}/F_{b1}^*+f_{b2}/F_{b2}^* = 0.118038 OK Combined Bending and Axial Compression F_o < F_{cE1} OK F_c < F_{cE2} OK [f_1/F_0^*]^2 + f_{b1}/(F_{b1}^*[1-(f_0/F_{cE1})]) + f_{b2}/(F_{b2}^*[1-(f_0/F_{ce2}) - (f_{b1}/F_{bE})^2]) = 0.01 OK Bearing Bearing member F_{cp}^*(psi) 560 OK														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		vy-	U	Vd	v		Vd	201.0		OR				
Allowed = 0.38666667 Column Axial Load (ib) = 1746 f _c = 142.5 psi F _c * = 1322.5 L _{abb} = 92.8 L _{abl} /d = 26.51429 greater = 26.5142857 OK F _{cE1} = 6.8343.E+06 F _{cE2} = 6.83E+06 F _{cE} /F _c * = 5167.688 C _p = 0.99998065 F _c * = 1322.47 OK Combined Bending and Axial Tension f ₁ = 143 psi f ₁ /F ₁ *+f _{b1} /F _{bb} * = 0.118038 OK F _t ' = 1207.5 psi f ₁ /F _t *+f _{b2} /F _{b2} * = 0.118038 OK Combined Bending and Axial Compression F _c < F _{cE1} OK F _c < F _{cE2} OK $[f_{c}/F_{c}]^{A}2 + f_{b1}/\{F_{b1}'[1-(f_{c}/F_{ce2}) - (f_{b1}/F_{bE})^{A}2]\} = 0.01 OK$ Bearing member F _{cp} ' (psi) 560 OK	Deflection													
Column Axial Load (ib) = 1746 $f_c = 142.5 \text{ psi}$ $F_c^* = 1322.5$ $L_{abb} = 92.8$ $L_{abl}/d = 26.51429 \text{ greater} = 26.5142857 \text{ OK}$ $F_{cE1} = 6.8343.E+06$ $L_{ad} = 92.8$ $L_{abl}/0 = 26.51429$ $F_{cE2} = 6.8343E+06$ $F_{cE} = 6.83E+06$ $F_{cE}/F_c^* = 5167.688$ $C_p = 0.99998065$ $F_c^* = 1322.47 \text{ OK}$ Combined Bending and Axial Tension $f_1 = 143 \text{ psi}$ $f_l/F_1^*+f_{b1}/F_{bb}^* = 0.118038 \text{ OK}$ $F_t^* = 1207.5 \text{ psi}$ $f_l/F_1^*+f_{b1}/F_{bb}^* = 0.118038 \text{ OK}$ Combined Bending and Axial Compression $F_c < F_{cE1} OK$ $F_c < F_{cE2} OK$ $[f_c/F_c]^{3/2} + f_{b1}/[F_{b1}^*(1-(f_c/F_{cE1})]] + f_{b2}/[F_{b2}^*[1-(f_c/F_{ce2}) - (f_{b1}/F_{bE})^2]] = 0.01 \text{ OK}$ Bearing member F_{cp}^* (psi) 560 OK		Det	lection _b =	0.000	ок	D	eflection _d =	0.000	ок					
Axial Load (lb) = 1746 $f_c = 142.5 \text{ psi}$ $F_c^* = 1322.5$ $L_{eb} = 92.8$ $L_{bb}/d = 26.51429 \text{ greater} = 26.5142857 \text{ OK}$ $F_{cE1} = 6.8343.E+06$ $L_{ed} = 92.8$ $L_{ed}/b = 26.51429$ $F_{cE2} = 6.8343E+06$ $F_{cE} = 6.83E+06$ $F_{cE}/F_c^* = 5167.688$ $C_p = 0.99998065$ $F_c^* = 1322.47 \text{ OK}$ Combined Bending and Axial Tension $f_t = 143 \text{ psi}$ $f_t/F_t^* + f_{b_1}/F_{bb}^* = 0.118038 \text{ OK}$ $F_t^* = 1207.5 \text{ psi}$ $f_t/F_t^* + f_{b_2}/F_{b2}^* = 0.118038 \text{ OK}$ Combined Bending and Axial Compression $F_c < F_{cE2} \text{ OK}$ $[f_c/F_c^*]^2 + f_{b_1}/(F_{b_1}^* (1-(f_c/F_{cE1}))) + f_{b_2}/(F_{b2}^* (1-(f_c/F_{ce2}) - (f_{b_1}/F_{bE})^*2)) = 0.01 \text{ OK}$ Bearing member F_{cp}^* (psi) 560 OK		1	Allowed =	0.38666667			Allowed =	0.38666667						
Axial Load (ib) = 1746 $f_c = 142.5 \text{ psi}$ $F_c^* = 1322.5$ $L_{eb} = 92.8$ $L_{eb}/d = 26.51429$ greater = 26.5142857 OK $F_{cE1} = 6.8343.E+06$ $L_{ed} = 92.8$ $L_{ed}/b = 26.51429$ $F_{cE2} = 6.8343E+06$ $F_{cE} = 6.83E+06$ $F_{cE}/F_c^* = 5167.688$ $C_p = 0.99998065$ $F_c^* = 1322.47$ OK Combined Bending and Axial Tension $f_1 = 143 \text{ psi}$ $f_t/F_t^*+f_{b1}/F_{bb}^* = 0.118038$ OK $F_t^* = 1207.5 \text{ psi}$ $f_t/F_t^*+f_{b1}/F_{b1}^* = 0.118038$ OK $F_c < F_{cE1} OK$ $F_c < F_{cE1} OK$ $F_c < F_{cE2} OK$ $[f_d/F_c]^{A_2} + f_{b1}/(F_{b1}^*(1-(f_d/F_{cE1}))) + f_{b2}/(F_{b2}^*(1-(f_d/F_{ce2})-(f_{b1}/F_{bE})^{A_2})) = 0.01$ OK Bearing member $F_{cp}^*(psi)$ 560 OK	Column													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Joiunn	Axial L	oad (lb) =	1746	f _c =	142.5	nsi	E.* =	1322.5					
$L_{ed} = 92.8 \qquad L_{ed}/b = 26.51429 \qquad F_{cE2} = 6.8343E+06 \qquad F_{cE2} = 6.8343E+06 \qquad F_{cE2} = 6.8343E+06 \qquad F_{cE} / F_{e}^* = 5167.688 \qquad C_{p} = 0.99998065 \qquad F_{c}^* = 1322.47 OK$ Combined Bending and Axial Tension $f_{t} = 143 \text{ psi} \qquad f_{t}/F_{t}^*+f_{b1}/F_{bb}^* = 0.118038 OK \qquad F_{t}^* = 1207.5 \text{ psi} \qquad f_{t}/F_{t}^*+f_{b2}/F_{b2}^* = 0.118038 OK$ Combined Bending and Axial Compression $F_{c} < F_{cE1} OK \qquad [f_{c}/F_{c}^*]^{A_{2}} + f_{b1}/(F_{b1}^*+f_{b2}/F_{b2}^*) = 0.118038 OK$ Bearing Bearing member F_{cp}^* (psi) 560 OK											E-FI =	6.8343.E+06		
$F_{cE} = 6.83E+06 \qquad F_{cE} / F_{c}^{*} = 5167.688 \qquad C_{p} = 0.99998065 \qquad F_{c}' = 1322.47 OK$ Combined Bending and Axial Tension $f_{t} = 143 \text{ psi} \qquad f_{t} / F_{t}' + f_{b1} / F_{bb}^{*} = 0.118038 OK$ $F_{t}' = 1207.5 \text{ psi} \qquad f_{t} / F_{t}' + f_{b1} / F_{b1}' + f_{b2} / F_{b2}^{*} = 0.118038 OK$ Combined Bending and Axial Compression $F_{c} < F_{cE1} OK$ $F_{c} < F_{cE2} OK \qquad [f_{c} / F_{c}']^{A}2 + f_{b1} / [F_{b1}' [1-(f_{c} / F_{ce2}) - (f_{b1} / F_{bE})^{A}2]] = 0.01 OK$ Bearing Bearing member $F_{cp}'(psi) \qquad 560 OK$							-	AVIO PIECO.						
Combined Bending and Axial Tension $f_t = 143 \text{ psi}$ $f_t/F_t'+f_{b1}/F_{bb}^* = 0.118038 \text{ OK}$ $F_t' = 1207.5 \text{ psi}$ $f_t/F_t'+f_{b1}/F_{b2}^* = 0.118038 \text{ OK}$ Combined Bending and Axial Compression $F_c < F_{cE1} \text{ OK}$ $F_c < F_{cE2} \text{ OK}$ $f_b_1 < F_{bE} \text{ OK}$ Bearing member F_{cp}' (psi) 560 OK								C _p =	0.99998065				ок	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			100		UE V			<i>c</i>			· •,			
$F_{t}' = 1207.5 \text{ psi} \qquad f_{t}/F_{b}' + f_{b2}/F_{b2}' = 0.118038 \text{ OK}$ Combined Bending and Axial Compression $F_{c} < F_{cE1} \qquad OK$ $F_{c} < F_{cE2} \qquad OK \qquad [f_{c}/F_{c}]^{A}2 + f_{b1}/[F_{b1}'[1-(f_{c}/F_{cE1})]] + f_{b2}/[F_{b2}'[1-(f_{c}/F_{ce2}) - (f_{b1}/F_{bE})^{A}2]] = 0.01 OK$ Bearing Bearing member F_{cp}' (psi) 560 OK	Combined Be	-						- 14						
Combined Bending and Axial Compression $F_{c} < F_{cE1}$ OK $F_{c} < F_{cE2}$ OK $[f_{c}/F_{c}]^{2} + f_{b1}/\{F_{b1}'[1-(f_{c}/F_{cE1})]\} + f_{b2}/\{F_{b2}'[1-(f_{c}/F_{ce2}) - (f_{b1}/F_{bE})^{2}]\} = 0.01$ OK $f_{b1} < F_{bE}$ OK Bearing member $F_{cp}'(psi)$ 560 OK		-												
$ \begin{array}{cccc} F_{c} < F_{cE1} & OK \\ F_{c} < F_{cE2} & OK & [f_{c}/F_{c}]^{A}2 + f_{b1}/\{F_{b1}'[1-(f_{c}/F_{cE1})]\} + f_{b2}/\{F_{b2}'[1-(f_{c}/F_{ce2}) - (f_{b1}/F_{bE})^{A}2]\} = & 0.01 & OK \\ f_{b1} < F_{bE} & OK & & & & & \\ \end{array} $ Bearing member F_{cp}' (psi) 560 OK		$F_t' =$	1207.5	psi	ft/Ft+fb1/F	b1*+f _{b2} /F _{b2} *=	0.118038	OK						
$ \begin{array}{cccc} F_{c} < F_{cE1} & OK \\ F_{c} < F_{cE2} & OK & [f_{c}/F_{c}]^{A}2 + f_{b1}/\{F_{b1}'[1-(f_{c}/F_{cE1})]\} + f_{b2}/\{F_{b2}'[1-(f_{c}/F_{ce2}) - (f_{b1}/F_{bE})^{A}2]\} = & 0.01 & OK \\ f_{b1} < F_{bE} & OK & & & & \\ \end{array} $ Bearing member F_{cp}' (psi) 560 OK	Combined Be	nding and	Axial Con	opression										
$\begin{array}{cccc} F_{c} < F_{cE2} & OK & [f_{o}/F_{c}]^{A}2 + f_{b1}/\{F_{b1}'[1-(f_{o}/F_{cE1})]\} + f_{b2}/\{F_{b2}'[1-(f_{o}/F_{ce2}) - (f_{b1}/F_{bE})^{A}2]\} = & 0.01 & OK \\ f_{b1} < F_{bE} & OK & & & & & \\ \end{array}$ Bearing member F_{cp}' (psi) 560 OK		iung ana												
$f_{b1} < F_{bE}$ OK Bearing Bearing member F_{cp}' (psi) 560 OK						[f_/F_']^2 + f	i _{b1} /{F _{b1} '[1-(f _c /	(F_{cE1}) + $f_{b2}/(F_{t})$		- (f _{b1} /F _{bE})^2)} =	0.01	OK	
Bearing member F _{cp} ' (psi) 560 OK		ft					the true of		and the second	NEC 10-10				
Bearing member F_{cp} (psi) 560 OK														
	3earing	De		Les E. L(nel)	500	21								
F _c = 142.5		Ве	aring mem			OK								
				F _c =	142.5									

7/6/2011

Tel: 309-879-3258

Victo	oria IL 614	85										www.	perobbins.com
		CLIENT: escription:			d Bendiı	ng and A	xial Load	ing					
		escription:											
			Solar Decat 1106-033	hlon	,	Member Avia		24Fb 3 1/2"					
		Loading	1100-033		Member Axially Loaded in: Compression .7 Deflection Check Load: no for C/C wind loads							mn check	c = OK
		W _{bwali} =	0	pli			Load Factors			<u> </u>			
		Wd _{wall} =	0	pli	Dam		uration (C_D) = er Factor C_r =			N/L			
		onditions	15891	lbs	Rept	entive memo	$K_{e} =$			X d	x		
		Condition	Dry				Incised?			\angle	N		
	Ter	nperature Plies =	T ≤ 100 1				COVE	0.10		b			
		Files -				DEFLECTIO	ON LIMIT = L/	240	IN	У			
DISTANCE BE							ding Member:	92.8 92.8	IN IN (enter	0.001 for cor	ntinuous support	`	
DISTANCE BE								92.8	IN (enter	0.001 for cor	ntinuous support)	
					Beam S	-	or C _L override: aring Member	no		1.0 see note			
							mber F _{cp} (psi)	560	X 14				
Marshar Drama	4'a a		E (noi)		E (nei)	E (nei)			h (1-)	-1 (1			F #
Member Proper 24Fb 3	ues 1/2" x 3 1/	2"	F _ь (psi) 2400	F _t (psi) 1050	F _v (psi) 250	F _{cp} (psi) 560	F _c (psi) 1150	E (psi) 1.6E+10	b (in) 3.5	d (in) 5 3.5	с 0.9	Plys 1	Effective b E, 3.5 8.29
	<i>/</i> = .												
		E, E _{min}) C _t F _c , F _{cp}) C _t	1 1		Wet servic F _b	e Factor C _M F _t	Fv	F _{cp}	F。	E and E _{min}			
	(' b, ' v, '				1	1	1	1 cp	1	L and L _{min}			
		E_{min}) $C_i =$	1.00										
		c, F _v) C _i = (F _{cp}) C _i =	1.00 1.00		C _{fu}	, 1							
		(1 cp) Oi -	1.00										
Bending Flexu	re Area =	12.25											
	lx=	12.51	Sx=	7.15		M _{b_max} =	0	f _{b1} =	0	psi	L _{ub} =	92.8	L _{eb} = 161
	ly=	12.51	Sy=			M _{d_max} =	0	f _{b2} =		psi	L _{ud} =	92.8	L _{ed} = 161
	R _{Bx} =	6.8	OK OK	F _{bx} *=	2760.0 2760		215358980	$F_{bEx}/F_{bx}^*=$			1.0000		F _{bx} ' = 27
	R _{By} =	6.8	UK	F _{by} * =	2760	rbEd -	2.15E+08	F _{bEy} /F _{by} *=	10020.02	2 C _{Ly} =	1.0000		$F_{by}' = 27$
Bending Shear		0	6 -	0		E / -	007 5	6 h at the	01				
	V _x = V _y =	0	f _{vb} = f _{vd} =			F _{vb} ' = F _{vd} ' =	287.5 287.5	fvb <fvb' fvd<fvd'< td=""><td>OK OK</td><td></td><td></td><td></td><td></td></fvd'<></fvb' 	OK OK				
	- y	-	-70				Lorio		-				
Deflection		lection _b = Allowed =	0.000		D	Deflection _d = Allowed =	0.000 0.38666667	ок					
Column													
Column	Axial L	oad (lb) =	15891	f _c =	1297.2	psi	F _c * =	1322.5					
	L _{eb} =	92.8		$L_{eb}/d =$	26.51429	greater =	26.5142857	OK		F _{cE1} =	9.6986.E+06		
	L _{ed} =	92.8		L _{ed} /b =	26.51429		0 -	0.00000000			9.6986E+06	014	
	F _{cE} = 5	9.70E+06		$F_{cE}/F_{c}^{*} =$	7333.509		C _p =	0.99998636		F _c ' =	1322.48	ОК	
Combined Ben	-					4 074000	01/						
	f _t = Ft' =	1297 1207.5				1.074306 1.074306	OK OK						
Combined Ben		Axial Com			01 102 02								
		$F_c < F_{cE1}$ $F_c < F_{cE2}$	ок ок		If /E 11/2 +	f //E 114 /f	/F _{cE1})]} + f _{b2} /{F	'f4 (f /⊑)	/f /E \M	- III	0.00	01	
		$\Gamma_c > \Gamma_{cE2}$ of F_{bE}	OK		10/1 c] 2 4	101/\' b1[!"\lo	• cE1/J/ • 'b2/{F	b2[1"(1c/Fc02)"	('b1//"bE/'2	-11	0.96	OK	
Bearing	Be	aring mem	ber F _{cp} ' (psi)	560	ок								
				1297.2									

7/6/2011

Tel: 309-879-3258

Vict	oria IL 614	185										www.	perobbins.com		
	D	CLIENT: escription:			d Bendi	ng and A	xial Load	ing							
	Model #: Solar Decathlon Job: 1106-033						Member: ally Loaded in: Check Load:		x 3 1/2" for C/C wi	ad loads	Colu	Column check = OK			
		Loading W _{bwall} =	0	pli		.7 Denection	Load Factors				Colu	mn check			
		Wd _{wall} =	0	pli			$ration (C_D) =$			$\nabla \overline{\lambda}$					
		xial load =	12631	lbs	Rep	etitive Memb	er Factor C _r =			d X					
	Moisture	onditions Condition mperature Plies =	-				K _e = Incised? COV _E	no		b b	x				
DISTANCE BE	TWEEN L			N BREADTH		Length Ben	ON LIMIT = L/ ding Member:	240 91.1 91.1	IN IN IN (enter	y 0.001 for cor	ntinuous support)			
DISTANCE BE)GE d (ld)=	•		91.1	IN (enter	0.001 for cor	ntinuous support				
					Beam 5	Be	or C _L override: aring Member mber F _{cp} (psi)			1.0 see note					
Member Proper 24Fb 3	rties 1/2" x 3 1/	/2"	F _b (psi) 2400	F _t (psi) 1050	F _v (psi) 250	F _{cp} (psi)) 560	F _c (psi) 1150	E (psi) 1.6E+10	b (in) 3.5	d (in) 3.5	с 0.9	Plys 1	Effective b E, 3.5 5.84		
		E, E _{min}) C _t	1			e Factor C _M									
	(F _b , F _v ,	$F_{c}, F_{cp}) C_{t}$	1		F₀ 1	F, 1	F _v 1	F _{cp} 1	F _c 1	E and E _{min}					
		E _{min}) C _i =	1.00			,									
	(F _b , F _t , F	^F _c , F _v) C _i = (F _{cp}) C _i =	1.00 1.00		C _{fu}	, 1									
Bending Flexu		10.05													
	Area = Ix=	12.25 12.51	Sx =	7.15		M _{b max} =	0	f _{b1} =	0	psi	L _{ub} =	91.1	L _{eb} = 158		
	ly=	12.51	Sy=			M _{d_max} =		f _{b2} =		psi	$L_{ud} =$	91.1	L _{ed} = 158		
	R _{Bx} = R _{By} =	6.7 6.7	OK OK	F _{bx} * = F _{by} * =	2400.0 2400		154401433 1.54E+08	F _{bEx} /F _{bx} *= F _{bEy} /F _{by} *=			1.0000 1.0000		F _{bx} ' = 24 F _{by} ' = 24		
	,	0.7	<u>o</u> n	• by	2100	. 050	11012-00	· DEY · DY	01000.00	ULy	1.0000		i by 24		
Bending Shear	r V _x =	0	f _{vb} =	0		F _{vb} ' =	250	fvb <fvb'< td=""><td>ОК</td><td></td><td></td><td></td><td></td></fvb'<>	ОК						
	V _y =	0	f _{vd} =			F _{vd} ' =		fvd <fvd'< td=""><td>OK</td><td></td><td></td><td></td><td></td></fvd'<>	OK						
Deflection		flection _b =	0.000		C	Deflection _d =	0.000	ок							
	3	Allowed =	0.37958333			Allowed =	0.37958333								
Column	Avial	and (lb) =	12631	f -	1031.1	nal	F.* =	1150							
	L _{eb} =	= (lb.) = 91.1	12031	L _{eb} /d =			26.0285714	OK		$F_{cE1} =$	7.0917.E+06				
	L _{ed} = F _{cE} =	91.1 7.09E+06		L _{ed} /b = F _{cE} /F _c * =	26.02857			0.99998378			7.0917E+06	ок			
Combined Ber	nding and	Axial Ten	sion												
	f _t =	1031				0.982002									
Combined Ber	F _t ' = nding and	1050 Axial Con		1ℓ/Ft ⁺ fb1/F	ъ1 ⁻⁺¹ ь2/Гь2 ⁻⁼	0.982002	OK								
		$F_c < F_{cE1}$	OK		IE /E 1140 -			114 /6 /	16 15 140		0.00	014			
	f	F _c < F _{cE2} _{b1} < F _{bE}	ок ок		[lc/Fc] ² +	чыл{ Г ы [1-(Т _с і	/F _{cE1})]} + f _{b2} /{F	b2[1-(1 _c /F _{ce2})-	· (I _{b1} /r _{bE})/2	.]] =	0.80	OK			
Bearing				660	01/										
	De	anny mem	ber F _{cp} ' (psi) F _c =		OK										

7/6/2011

Tel: 309-879-3258

Victo	oria IL 614	485										www.	perobbins.com	n
		20	05 NDS (Combine	d Bendi	ng and A	xial Load	lina						
	D	CLIENT: escription: escription:				ng ana r		ing in						
	D	escription:	Solar Deca	thion			Marchan	0451-0 4/01						
			1106-033	thion		Member Axia	Member: ally Loaded in:	24Fb 3 1/2" Compressio	x 3 1/2" on					
		Loading					h Check Load:	no	for C/C w	ind loads	Colu	mn checl	k = OK	
		W _{bwall} =	0	pli			Load Factor							
		Wd _{wall} = xial load =	0	pli	Der		C_D =			N/.				
		conditions	1175	lbs	кер	etitive Memb	er Factor C _r = K _e =			X d				
		Condition	Dry				Incised?			/	х			
	Te	mperature	T ≤ 100				COVE			b				
		Plies =	1					~ ~ ~		у'				
					Spar		ON LIMIT = L/ ding Member:		IN IN					
DISTANCE BET					EDGE b (lb)=		91.1	IN (enter		ntinuous support			
DISTANCE BET	IWEENL	ATERALS	SUPPORT O	N DEPTH EL			or C _L override:	91.1 no		0.001 for cor 1.0 see note	ntinuous support)		
					Deam		aring Member			1.0 see note				
							mber F _{cp} (psi)							
Member Proper	tios		F _b (psi)	F _t (psi)	F _v (psi)	E (pei)	E (nei)	E (noi)	h (in)	d (in)	_	D		-
	1/2" x 3 1/	/2"	2400			F _{cp} (psi)) 560	F _c (psi) 1150	E (psi) 1.6E+10	b (in) 3.5	d (in) 5 3.5	с 0.9	Plys 1	Effective b 3.5	E 5.84
	15									010	0.0		0.0	0.04
		$E, E_{min}) C_t$	1			e Factor C _M		-	-	-				
	(Г _b , Г _v ,	$F_{c}, F_{cp}) C_{t}$	1		F₀ 1	F _t	F _v 1	F _{cp} 1	F _e	E and E _{min}				
	(E,	E _{min}) C _i =	1.00											
	(F _b , F _t , F	F _c , F _v) C _i =	1.00		Cfu	1								
		$(F_{cp}) C_i =$	1.00											
Bending Flexur	re													
5	Area =	12.25												
	Ix=	12.51	Sx =			M _{b_max} =		f _{b1} =		psi	L _{ub} =	91.1	L _{eb} =	158
	ly= R _{8x} =	12.51 6.7	Sy =		0400.0	M _{d_max} =		f _{b2} =		psi	L _{ud} =	91.1	L _{ed} =	
	$R_{By} =$	6.7	OK OK	F _{bx} * = F _{by} * =			154401433 1.54E+08		64333.93 64333.93		1.0000		F _{bx} '=	
	чву	0.1	OR	ьр	2400	bEd -	1.042+00	ьЕУ ву –	04333.93	C _{Ly} =	1.0000		F _{by} '=	24
Bending Shear														
	V _x = V _y =	0	f _{vb} =			F _{vb} ' =	250							
	v _y –	0	f _{vd} =	0		F _{vd} ' =	250	fvd <fvd'< td=""><td>ок</td><td></td><td></td><td></td><td></td><td></td></fvd'<>	ок					
Deflection														
		flection _b =	0.000		0	Deflection _d =	0.000	OK						
	,	Allowed -	0.37958333			Allowed =	0.37958333							
Column														
		oad (lb) =	1175	f _c =			F _c * =			-				
	L _{eb} = L _{ed} =	91.1 91.1		$L_{eb}/d = L_{ed}/b =$	26.02857		26.0285714	OK			7.0917.E+06			
		7.09E+06		$F_{cE}/F_{c}^{*} =$			C. =	0.99998378		F _{cE2} =	7.0917E+06 1149.98	ок		
							-p	0.00000010		• c	1140.00	UN		
Combined Bene	ding and f _t =	Axial Tens 96		f/E	'+f /E * =	0.091351	ок							
	F.' =	1050				0.091351	OK							
					by	0.001001	on							
Combined Bene	ding and													
		$F_c < F_{cE1}$ $F_c < F_{cE2}$	OK OK		If /E 1142 + 1		F _{cE1})]} + f _{b2} /{F	'[1 /f /E)	(F /E \A2	n -	0.01	01/		
		F_{bE}	OK		[[c] c] 2 .	1017 U 01 L 1 (10/	CE1/J/ ' 'b2/\'	b2 [1"(1c/1 co2/ "	(161/1 bE) 2	1/ -	0.01	OK		
Bearing	Do	aring more	her E. L(nci)	500	01									
	De	anng memi	ber F _{cp} ' (psi) F _c =		ок									
			· c -	00.0										

7/6/2011

Tel: 309-879-3258

Vic	ctoria IL 614	C81										www.	.perobbins.com	1
		200	5 NDS C	Combiner	d Bendi	ng and A	xial Loadi	ina						
	r	CLIENT: N												
			Compressio											
	D	Description:	Calar Depat	4.1			Manahara	-	0.1/01					
			Solar Decath 1106-033	alon	1	Member Axia	Member: ally Loaded in:	24Fb 3 1/2": Compressio						
		Loading					h Check Load:		for C/C wi	ind loads	Colu	Imn check	к = ОК	
		W _{bwall} =		pli			Load Factors			-				
	,	Wd _{wali} =		pli	Der		Suration $(C_D) =$			N/				
		Axial load = Conditions	3175	lbs	Repe	atitive Membe	er Factor C _r =		_	X d				
		e Conditions	Drv				K _e = Incised?			/	х			
		emperature T					COVE			b				
		Plies =	1							у				
					Spar		ON LIMIT = L/ : ding Member:		IN IN					
DISTANCE BE					EDGE b (I	(lb)=	mig wenner.	130.2	IN (enter		ntinuous support)			
DISTANCE BE	ETWEEN L	_ATERAL SI	UPPORT ON	N DEPTH ED			a	130.2	IN (enter	0.001 for cor	ntinuous support)			I
					Beam S		or C _L override: aring Member 3			1.0 see note				I
							mber F _{cp} (psi)		X 14"					I
· · · _														I
Member Prope	erties 3 1/2" x 3 1/	1/0"	F _b (psi) 2400	F _t (psi)	F _v (psi)	F _{cp} (psi)	F _c (psi)	E (psi)	b (in)	d (in)	c	Plys	Effective b	
2460 0	3112 83 1	/2*	2400	1050	250	0 560	1150	1.6E+10) 3.5	5 3.5	0.9	1	3.5	5.84
		E, E _{min}) C _t	1		Wet servic	ce Factor C _M								
	(F _b , F _v ,	, F_c , F_{cp}) C_t	1		F _b	F _t	Fv	F_{cp}	Fc	E and E_{min}				1
	(F	, E _{min}) C _i =	1 00		1	1	1	1	1	1				
		F _c , F _v) C _i =	1.00 1.00		C _{fu}	u 1								I
	(10) (0)	$(F_{cp}) C_i =$	1.00		Olu									I
		(* 00/ - 1												I
Bending Flexe	ure Area =	10.05												I
	Area = Ix=	12.25 12.51	Sx =	7.15		M _{b_max} =	0	f _{b1} =	0	psi	L _{ub} =	130.2	Lee =	222.
	ly=	12.51	Sy=			M _{d_max} =	õ	f _{b2} =		psi	$L_{ub} =$	130.2		
	R _{Bx} =	8.0	OK	F _{bx} * =	2400.0		110219494		45924.79		1.0000	10012	F _{bx} ' =	
	R _{By} =	8.0	OK	F _{by} * =	2400	$F_{bEd} =$	1.10E+08		45924.79		1.0000		F _{by} ' =	
Bending Shea	ar												~	
Denuing ones	V _x =	0	f _{vb} =	0		F _{vb} ' =	250	fvb <fvb'< td=""><td>ок</td><td></td><td></td><td></td><td></td><td></td></fvb'<>	ок					
	V _y =	0	f _{vd} =			F _{vd} ' =	250	fvd <fvd'< td=""><td></td><td></td><td></td><td></td><td></td><td></td></fvd'<>						
Deflection	De	eflection _b =	0.000	ок	г	Deflection _d =	0.000	OK						
		Allowed =	0.5425			Allowed =	0.000 0.5425	OK						
						/	010 100							
Column	Avial	and (lb) =	2175	f =	250.2	7.01	c * -	1150						
	Axiai L L _{ab} =	Load (lb) = 130.2	3175	f _c = L _{eb} /d =	259.2 37.2	greater =	F _c * = 37.2	1150 OK		E	3 4740 5+06			
	L _{eb} =	130.2		$L_{eb}/d = L_{ed}/b =$	37.2		01.2	UN			3.4719.E+06 3.4719E+06			
		3.47E+06		$F_{cE}/F_{c}^{*} =$			$C_p =$	0.99996687		F _c ' =		ок		
-														
Combined Ber	ending and f _t =	l Axial Tensi 259 ps		f/F		0.246842	ок							
	Ft'=	1050 ps				· 0.246842	OK							
	.,	1000 1	51	ifter C. ables i	31 ''bz'' bz	0.240042	UN							
Combined Ber	nding and													
		$F_c < F_{cE1}$	OK		17 JE 1140 1	· //= 1/4 /# /			16 15 NAC			-		
	f	F _c < F _{cE2} f _{b1} < F _{bE}	ок ок	,	[t _c /F _c] ² + 1	ь1/{F _{b1} '[1-(1 _с /г	F_{cE1})]} + f_{b2}/{F_{b2}}	2'[1-(1c/Fce2) -	(f _{b1} /F _{bE}) ⁿ 2]} =	0.05	OK		
	·c	J1 T DE	UK											
Bearing														
	Be	earing membe	1	560	OK									
			F _c =	259.2										

7/6/2011

Tel: 309-879-3258

Vict	oria IL 614	85										www.	perobbins.com	ĩ –
		200 CLIENT: M escription: V escription: T	Vordic Vebs 3-11	4-10	d Bendi	ng and A	xial Loadi	ng						
		escription:												
			Solar Decat 106-033	thlon		Member Axia	Member: Illy Loaded in:	24Fb 3 1/2" Tension	x 3 1/2"					
		Loading				.7 Deflection	Check Load:	no	for C/C w	ind loads	Colu	mn check	= OK	
		W _{bwall} ≕ Wd _{wali} ≂	0	pli pli			Load Factors uration (C _D) =							
	A	kial load =	8535	pii lbs	Rep		er Factor $C_r =$			V d				
	C	onditions					K _e =			X	x			
		Condition E	-				Incised?			ĽЦ				
	Ter	nperature T Plies =	5 100				COVE	0.25		ь У				
					0		DN LIMIT = L/		IN	,				
DISTANCE BE DISTANCE BE					EDGE b (I DGE d (Id)=	lb)=	ding Member: r C _i override:	130.2 130.2 130.2 no	IN (enter		ntinuous support) ntinuous support)			
						Bea	aring Member mber F _{cp} (psi)							
Member Proper 24Fb 3	rties 1/2" x 3 1/:	2"	F _b (psi) 2400	F _t (psi) 1050	F _v (psi) 250	F _{cp} (psi)) 560	F _c (psi) 1150	E (psi) 1.6E+10	b (in) 3.5	d (in) 5 3.5	с 0.9	Plys 1	Effective b 3.5	E, 5.84
		E, E _{min}) C _t	1			e Factor C _M								
	(F _b , F _v , F	$F_{c}, F_{cp}) C_{t}$	1		F _b	F _t	Fv	F _{cp}	Fo	E and Emin				
	(E,	E _{min}) C _i =	1.00		1	1	1	1	1	1				
		c, F _v) C _i =	1.00		Cfu	, 1								
		(F _{cp}) C _i =	1.00											
Bending Flexu	re													
	Area = Ix=	12.25 12.51	Sx =	7.15		M _{b max} =	0	f -	0			100.0		000
	ly=	12.51	Sy=			M _{d_max} =	0	f _{b1} = f _{b2} =		psi psi	L _{ub} = L _{ud} =	130.2 130.2	L _{eb} = L _{ed} =	222. 222.
	R _{Bx} =	8.0	OK	F _{bx} *=	2400.0		110219494	F _{bEx} /F _{bx} *=			1.0000		F _{bx} ' =	
	R _{By} =	8.0	OK	F _{by} * =	2400	$F_{bEd} =$	1.10E+08	F _{bEy} /F _{by} *=	45924.79	C _{Ly} =	1.0000		F _{by} ' =	24
Bending Shear	r													
	$V_x =$	0	f _{vb} =			F _{vb} ' =	250	fvb <fvb'< td=""><td>ок</td><td></td><td></td><td></td><td></td><td></td></fvb'<>	ок					
	V _y =	0	f _{vd} =	0		F _{vd} ' =	250	fvd <fvd'< td=""><td>OK</td><td></td><td></td><td></td><td></td><td></td></fvd'<>	OK					
Deflection														
		lection _b = Allowed =	0.000 0.5425		C	Deflection _d = Allowed =	0.000 0.5425	OK						
Column	Avial	oad (lb) =	8535	f -	696.7	noi	E * -	4450						
	L _{eb} =	130.2	6555	L _{eb} /d =	37.2	psi greater =	F _c * = 37.2	1150 OK		F=	3.4719.E+06			
	L _{ed} =	130.2		L _{ed} /b =	37.2						3.4719E+06			
	$F_{cE} = 3$	3.47E+06		$F_{cE}/F_{c}^{*} =$	3019.035		C _p =	0.99996687		F _c ' =	1149.96	OK		
Combined Ben	ding and	Axial Tensi	on											
	f _t =	697 p:				0.663557	OK							
	Ft' =	1050 p	si	ft/Ft'+fb1/F	_{b1} *+f _{b2} /F _{b2} *=	0.663557	OK							
Combined Ben		$F_c < F_{cE1}$	ок											
		F _c < F _{cE2} 1 < F _{bE}	ок ок		[t _c /F _c ']^2 +	t _{b1} /{F _{b1} '[1-(f _c /	F _{cE1})]} + f _{b2} /{F _b	₂ '[1-(f _c /F _{ce2}) -	(f _{b1} /F _{bE})^2	:]} =	0.37	ок		
Bearing														
Dearing	Bea	aring memb	er F _{cp} ' (psi) F _c =		ок									

7/6/2011

Tel: 309-879-3258

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Victo	oria IL 614	85										www.r	perobbins.com
		De	CLIENT: I escription: N escription:	Nordic Webs 5-9 Tension Che		l Bendin	ıg and A	xial Loadi	ng					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		De	Model #:	Solar Decat	thalon					x 3 1/2"				ļ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.7 Deflection	Check Load:	no	for C/C wi	ind loads	Colu	mn check	c = OK
$ \begin{array}{cccc} A \text{ data} & = 102 & \text{ its} & \text{Repetitive Member Factor C} = 1.0 & \text{ for continuous support} \\ Molisure Coulding Dry & Inclused? no & N \\ \text{Piles = 1} & DEFLECTION LMT = 1/240 & N \\ \text{Piles = 1} & DEFLECTION LMT = 1/240 & N \\ \text{DEFLECTION LMT = 1/240 & N \\ (F_{10} - F_{10} - F_{10} & 1 & 1 & 1 \\ 1 & 1 & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} - F_{10} & 0 & C_{10} & 1 \\ (F_{10} - F_{10} + F_{10} + F_{10} + F_{10} + F_{10} & F_{10} & F_{10} & F_{10} & F_{10} \\ (F_{10} - F_{10} & 0 & F_{10} & 0 & F_{10} & F_{1$														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			xial load =	1102		Repe		er Factor C _r =	1.00		d d			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Moisture	Condition I	Dry T ≤ 100				Incised? n COV _E	no 0.25		Ъ	ţ		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Span I EDGE b (lb DGE d (ld)= Beam St	Length Bend b)= tability Factor Bea	ding Member: or C _L override: aring Member 2	110.5 110.5 110.5 no 24Fb 3 1/2" >	IN IN (enter IN (enter Yes; C _L =	0.001 for con			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						F _v (psi)	F _{cp} (psi)	F _c (psi)	E (psi)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24Fb 3								1.6E+10	3.5	3.5	0.9	1	3.5 5.84
$ \begin{pmatrix} F_{b}, F_{b}, F_{b}, F_{b}, G_{b} \in 1 & 1.00 \\ (F_{cy}) C_{b} = & 1.00 \end{pmatrix} C_{b} & 1 \\ \hline \\ Reading Flexure \\ Area = 12.25 \\ b = 12.25 \\ b = 12.25 \\ b = 12.25 \\ b = 12.25 \\ c = 12.51 \\ c = 11.55 \\ c = 12.51 \\ c = 11.55 \\ c = 11.55 \\ c = 11.55 \\ c = 11.55 \\ c = 11.57 \\$		(F _b , F _v , I	$F_{c}, F_{cp}) C_{t}$	1		F _b	Ft	Fv						
$ \left(F_{eg} \right) C_{1} = 1.00 $ Bending Flexure $ \begin{array}{cccccccccccccccccccccccccccccccccccc$						C,	1							ļ
$\begin{array}{c} \operatorname{Area}{} = 12.25 \\ \operatorname{kz}{} = 12.25 \\ \operatorname{kz}{} = 12.25 \\ \operatorname{kz}{} = 12.31 \\ \operatorname{kz}{} = 12.31 \\ \operatorname{kz}{} = 7.4 \\ \operatorname{OK} \\ \operatorname{F}_{\mathrm{kz}}^{**} = 2400 \\ \operatorname{F}_{\mathrm{kz}} = 122787068 \\ \operatorname{F}_{\mathrm{kz}}/\operatorname{F}_{\mathrm{kz}}^{**} = 53661.28 \\ \operatorname{C}_{\mathrm{kz}} = 1.0000 \\ \operatorname{C}_{\mathrm{kz}} = 110.5 \\ \operatorname{L}_{\mathrm{kz}} = 19 \\ \operatorname{C}_{\mathrm{kz}} = 122787068 \\ \operatorname{F}_{\mathrm{kz}}/\operatorname{F}_{\mathrm{kz}}^{**} = 53661.28 \\ \operatorname{C}_{\mathrm{kz}} = 1.0000 \\ \operatorname{F}_{\mathrm{kz}}^{**} = 2 \\ \operatorname{R}_{\mathrm{by}}^{**} = 7.4 \\ \operatorname{OK} \\ \operatorname{F}_{\mathrm{by}}^{**} = 2400 \\ \operatorname{F}_{\mathrm{kz}}^{**} = 122787068 \\ \operatorname{F}_{\mathrm{kz}}/\operatorname{F}_{\mathrm{by}}^{**} = 53661.28 \\ \operatorname{C}_{\mathrm{kz}} = 1.0000 \\ \operatorname{F}_{\mathrm{kz}}^{**} = 1.000 \\ \operatorname{F}_{\mathrm{kz}}^{**} = 2 \\ \operatorname{F}_{\mathrm{by}}^{**} = 250 \\ \operatorname{fvol}^{*} \operatorname{Fvol}^{**} = 250 \\ \operatorname{fvol}^{*} \operatorname{Fvol}^{**} = 250 \\ \operatorname{fvol}^{*} \operatorname{Fvol}^{**} = 0 \\ \operatorname{K}_{\mathrm{d}}^{**} = 0 \\ \operatorname{K}_{\mathrm{d}}^{**$						C Iu								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bending Flexu													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		and the second sec		Sx =	7.15		M _{b_max} =	0	f _{b1} =	0	psi	L _{ub} =	110.5	L _{eb} = 190
$\begin{array}{c} F_{0y} = \ 7.4 OK F_{by} = \ 2400 F_{beld} = \ 1.29E+08 F_{bel}/F_{by} = \ 53661.28 C_{1,y} = \ 1.000 F_{by} = \ 2 \\ \hline \\ Bending Shear \\ V_y = \ 0 f_{v_0} = \ 0 F_{v_0} = \ 250 fvb < Fvb' OK \\ V_y = \ 0 f_{v_0} = \ 0 F_{v_0} = \ 250 fvb < Fvb' OK \\ \hline \\ Deflection \\ \hline \\ Deflection_b = \ 0.000 OK Deflection_d = \ 0.000 OK \\ Allowed = \ 0.46041667 OK Deflection_d = \ 0.46041667 \\ \hline \\ Column \\ \hline \\ \frac{Axial \ Load \ (b) = \ 1102 f_c = \ 90.0 psi \\ L_{ab}/d = \ 110.5 L_{ab}/d = \ 31.57143 greater = \ 31.571426 OK F_{cE1} = \ 4.8202.E+06 \\ L_{cd} = \ 110.5 L_{ab}/d = \ 31.57143 F_{c} = \ 1150 \\ F_{cE} = \ 4.8202.E+06 F_{cE}/r_c^* = \ 4.8202.E+06 \\ F_{cE} = \ 4.8202.E+06 F_{cE}/r_c^* = \ 4.919.462 C_p = \ 0.99997614 F_c^2 = \ 1149.97 OK \\ \hline \\ $						0.400.0							110.5	
$ \begin{array}{c} V_{x} = & 0 & f_{ub} = & 0 & F_{ub} = & 250 & fvb < Vb' & OK \\ V_{y} = & 0 & f_{ud} = & 0 & F_{ud} = & 250 & fvb < Fvb' & OK \\ \hline \\ $														
$ \begin{array}{c} V_{y} = 0 & f_{vd} = 0 & F_{vd}' = 250 fvd < Fvd' OK \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Bending Shear													
$\begin{array}{c} \label{eq:basic} \textbf{Deflection} \\ \hline \textbf{Deflection}_{h} = & 0.000 & \textbf{OK} & \textbf{Deflection}_{d} = & 0.000 & \textbf{OK} \\ \hline \textbf{Allowed} = & 0.46041667 & \textbf{Allowed} = & 0.46041667 \\ \hline \textbf{Column} \\ & \textbf{Axial Load (lb)} = & 1102 & f_e = & 90.0 & psi & F_e^* = & 1150 \\ \hline \textbf{L}_{eb} = & 110.5 & \textbf{L}_{ab}/d = & 31.57143 & \text{greater} = & 31.5714286 & \textbf{OK} & F_{cE1} = & 4.8202.E+06 \\ \hline \textbf{L}_{ed} = & 110.5 & \textbf{L}_{ed}/b = & 31.57143 & F_{cE2} = & 4.8202E+06 \\ \hline \textbf{F}_{cE} = & 4.82E+06 & F_{cE}/F_e^* = & 4191.462 & C_p = & 0.99997614 & F_e^* = & 1149.97 & \textbf{OK} \\ \hline \textbf{Combined Bending and Axial Tension} \\ \hline \textbf{f}_1 = & 90 \ psi & f_1/F_1^* + f_{b_1}/F_{bb}^* = & 0.085675 & \textbf{OK} \\ \hline \textbf{F}_{c1} = & 1050 \ psi & f_1/F_1^* + f_{b_2}/F_{ba}^* = & 0.085675 & \textbf{OK} \\ \hline \textbf{Combined Bending and Axial Compression} \\ \hline \textbf{F}_e < F_{ce1} & \textbf{OK} \\ \hline \textbf{F}_e < F_{ce2} & \textbf{OK} & f_{c}/F_{c}^* + f_{b_3}/F_{ba}^* + f_{b_3}/F_{ba}^* = & 0.085675 & \textbf{OK} \\ \hline \textbf{Bearing} \\ \hline \textbf{Bearing member } \textbf{F}_{ep}^* (psi) & 560 & \textbf{OK} \\ \hline \textbf{OK} \end{array}$														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Deflection	۷y	U	.0			' Vu		IIM N F	0.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Deflection					D			ок					
$\begin{array}{c} L_{eb} = 110.5 \\ L_{ed} = 110.5 \\ L_{ed} = 110.5 \\ F_{cE} = 4.82E + 06 \end{array} \begin{array}{c} F_{cE} / F_c^{*} = 4191.462 \end{array} \begin{array}{c} greater = 31.5714286 \\ F_{cE} = 4.8202E + 06 \\ F_{cE} = 4.822E + 06 \end{array} \begin{array}{c} F_{cE} / F_c^{*} = 4191.462 \end{array} \begin{array}{c} C_p = 0.99997614 \\ F_c^{*} = 1149.97 \end{array} \begin{array}{c} OK \end{array}$	Column	Avial L	cod(b) =	1102	f. =	90.0	nel	F.* =	1150					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			110.5		L _{eb} /d =	31.57143		-						
Combined Bending and Axial Tension $f_t = 90 \text{ psi}$ $f_t/F_t^{1+}f_{b1}/F_{bb}^{*} = 0.085675$ OK $F_t^{*} = 1050 \text{ psi}$ $f_t/F_t^{1+}f_{b1}/F_{b1}^{*+}f_{b2}/F_{b2}^{*=} 0.085675$ OK Combined Bending and Axial Compression $F_c < F_{cE1}$ OK $F_c < F_{cE2}$ OK $[f_c/F_c]^{A_2} + f_{b1}/(F_{b1}^{*-1}[1-(f_c/F_{cE1})]) + f_{b2}/(F_{b2}^{*-1}[1-(f_c/F_{co2}) - (f_{b1}/F_{bE})^{A_2}]) = 0.01$ OK Bearing Bearing member $F_{cp}^{*-1}(psi)$ 560 OK								$C_p =$	0.99997614				ок	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Combined Ben													
Combined Bending and Axial Compression $F_{o} < F_{cE1}$ OK $F_{c} < F_{cE2}$ OK $[f_{o}/F_{o}]^{A2} + f_{b1}/\{F_{b1}'[1-(f_{o}/F_{cE1})]\} + f_{b2}/\{F_{b2}'[1-(f_{o}/F_{co2}) - (f_{b1}/F_{bE})^{A2}]\} = 0.01$ OK $f_{b1} < F_{bE}$ OK Bearing member $F_{cp}'(psi)$ 560 OK		f _t =	90 p	psi										
$\begin{array}{cccc} F_{o} < F_{cE1} & OK \\ F_{o} < F_{cE2} & OK & [f_{o}/F_{o}']^{A}2 + f_{b1}/\{F_{b1}'[1-(f_{o}/F_{cE1})]\} + f_{b2}/\{F_{b2}'[1-(f_{o}/F_{co2}) - (f_{b1}/F_{bE})^{A}2]\} = & 0.01 & OK \\ \hline \\ \hline \\ Bearing \ member \ F_{cp}'(psi) & 560 & OK \end{array}$	2				161,6 41940 1	61 ⁻⁺¹ 62/1-62	0.000070	UK						
$f_{b1} < F_{bE}$ OK Bearing member $F_{ep}'(psi)$ 560 OK	Combined Ben													
Bearing member F _{cp} ' (psi) 560 OK					1	[f _c /F _c ']^2 + f	_{ь1} /{F _{ь1} '[1-(f _с /	F _{cE1})]} + f _{b2} /{F _b	_{>2} '[1-(f _c /F _{c02}) -	· (f _{b1} /F _{bE})^2]} =	0.01	ок	
	Bearing	Be	aring mem			ок								

7/7/2011

Tel: 309-879-3258

Victo	oria IL 614	85										www.p	perobbins.com
		CLIENT: I escription: 1			l Bendir	ıg and A	xial Loadi	ng					
		escription:											
			Solar Decat 1106-033	hlon	,	Annhar Avis	Member: 2 ally Loaded in: (24Fb 3 1/2" >					
		Loading	1100-035				h Check Load:		for C/C wi	ind loads	Colur	nn check	c = OK
		W _{bwall} =	0	pli			Load Factors						
	Δ.	Wd _{wall} =		pli	Rend		er Factor C_D = $\frac{1}{2}$						
		xial load = onditions	10840	lbs	Nepe	allive memor	$K_{e} = -\frac{1}{2}$			X d	x		
	Moisture	Condition I					Incised?	no		$\langle \rangle$	-		
	Ter	mperature ' Plies =	T ≤ 100 1				COVE	0.25		b			
		Files -					ON LIMIT = L/ 2		IN	У			
DISTANCE BE	TWEEN L	ATERAL S	UPPORT O	N BREADTH			ding Member:		IN IN (enter	0.001 for con	ntinuous support)		
DISTANCE BE	TWEEN L	ATERAL S	UPPORT OF	N DEPTH ED			override:				ntinuous support)		
					Deam or		or C _L override: aring Member 2			1.0 see note			
					1		mber F _{cp} (psi)	560					
Member Proper 24Fb 3	ties 1/2" x 3 1/	2"	F _b (psi) 2400	F _t (psi) 0 1050	F _v (psi) 250	F _{cp} (psi) 560	F _c (psi) 1150	E (psi) 1.6E+10	b (in) 3.5	d (in) 5 3.5	с 0.9	Plys 1	Effective b E 3.5 5.84
	(F _t , I	E, E _{min}) C _t	1	7	Wet service	e Factor C _M							
	(F _b , F _v ,	$F_{c}, F_{cp}) C_{t}$	1		F _b	Ft	Fv	F _{cp}	Fa	E and E_{min}			
	(E.	E _{min}) C _i =	1.00		1	1	1	1	1	1			
		F_{c} , F_{v}) $C_{i} =$			C _{fu}	1							
		$(F_{cp}) C_i =$			harsen.								
Bending Flexu	re												
	Area =	12.25	Cu.	745			0	<i>(</i> –	0		1	110 5	
	lx= ly=	12.51 12.51	Sx = Sy =			M _{b_max} = M _{d_max} =		f _{b1} = f _{b2} =		psi psi	L _{ub} = L _{ud} =	110.5 110.5	L _{eb} = 190 L _{ed} = 190
	R _{Bx} =	7.4	ок	- 7.15 F _{bx} *=	2400.0	_	128787068		53661.28		1.0000	110.0	$F_{bx}' = 24$
	R _{By} =	7.4	ок	F _{by} * =			1.29E+08		53661.28		1.0000		F _{by} ' = 24
Bending Shear	r												
-	V _x =	0	f _{vb} =			F _{vb} ' =		fvb <fvb'< td=""><td></td><td></td><td></td><td></td><td></td></fvb'<>					
	V _y =	0	f _{vđ} =	= 0		F _{vd} ' =	250	fvd <fvd'< td=""><td>OK</td><td></td><td></td><td></td><td></td></fvd'<>	OK				
Deflection					_								
		flection _b = Allowed =	0.000 0.46041667		D	Deflection _d = Allowed =	0.000 0.46041667	OK					
Column													
		.oad (lb) =	10840				$F_c^* =$	1150		E -	4 0000 EL06		
	L _{eb} = L _{ed} =	110.5 110.5		L _{eb} /d = L _{ed} /b =	31.57143 31.57143	-	31.5714286	OK			4.8202.E+06 4.8202E+06		
		4.82E+06		$F_{cE}/F_{c}^{*} =$			C _p =	0.99997614		F _c ' =		ок	
Combined Ben	ding and	Avial Ten	sion										
Compilied Ear	f _t =	885		ft/F	$t'+f_{b1}/F_{bb}^{*} =$	0.84276	ок						
	$F_t' =$	1050	psi	ft/Ft+fb1/F	+f _{b2} /F _{b2} *=	0.84276	OK						
Combined Ben	ding and	Axial Com F _c < F _{cE1}	npression OK										
		$F_c < F_{cE2}$		1	[f _c /F _c ']^2 + f	l _{b1} /{F _{b1} '[1-(f _c /	/F _{cE1})]} + f _{b2} /{F _b	,2'[1-(f _c /F _{co2}) -	• (f _{b1} /F _{bE})^2	2]} =	0.59	OK	
	t	$F_{b1} < F_{bE}$	OK										
Bearing													
	Be	aring mem	nber F _{cp} ' (psi) F _c =		ок								

7/7/2011

Tel: 309-879-3258

Vict	ona IL 614	C81										www.	.perobbins.com	1
		200	05 NDS (Combiner	d Bendi	ng and /	Axial Loadi	ina						
	_	CLIENT:	Nordic			19		119						
		Description:		- ale										
		Description:	Tension Che	еск										
	-		Solar Decat	thion			Member:	24Fb 3 1/2"	x 7 1/2"					
			1106-033				ally Loaded in:	Tension						
		Loading					n Check Load:		for C/C wi	ind loads	Colur	mn check	c = OK	
		W _{bwall} =	0	pli			Load Factors							
		Wd _{wali} =		pli	P		Duration (C _D) =			N/				
		xial load =		lbs	Repe	etitive Memb	ber Factor C _r =		_	d V				
		Conditions					K _e =				х			
		e Condition					Incised? COV _E							
	10	Plies =					COVE	0.25		D				
						DEFLECT	ION LIMIT = L/	240	IN	У				
						Length Ben	nding Member:		IN					
DISTANCE BE								110.5			ntinuous support)			1
DISTANCE BE	TWEENL	ATERALS	UPPORT OF	N DEPTH ED				110.5			ntinuous support)	1		1
					Beam S		or C _L override:			1.0 see note				1
							earing Member : ember F _{cp} (psi)	24Fb 3 1/2" 560	x 14"					1
						Deaning me	mber rcp (par)	500						1
Member Proper	rties		F _b (psi)	F _t (psi)	F _v (psi)	F _{cp} (psi)	F _c (psi)	E (psi)	b (in)	d (in)	с	Plys	Effective b	F
	1/2" x 7 1	/2"	2400					1.6E+10				Fiys 1	3.5	5.84
						The second second					0.0		0.0	0.01
		E, E _{min}) C _t	1		Wet servic	ce Factor C _M	i							
	(F _b , F _v ,	$F_{c}, F_{cp}) C_{t}$	1		Fb	Ft	Fv	F _{cp}	F。	E and Emin				1
					1	1	1	1	1	1				1
		, E_{min}) $C_i =$	1.00											1
	(F _b , F _t , F	$F_c, F_v) C_i =$			C _{fu}	u 1								
		$(F_{cp}) C_i =$	1.00											1
Ponding Flavu														
Bending Flexu	Area =	26.25												
	lx=	123.05	Sx =	32.81		M _{b max} =	0	f _{b1} =	= 0	psi	$L_{ub} =$	110.5	L _{eb} =	202
	ly=	26.80	Sy=			M _{d_max} =		$f_{b2} =$		psi	$L_{ub} =$	110.5	L _{eb} =	
	R _{Bx} =	11.1	ок	F _{bx} *=	2400.0	_	56541134		23558.81	•	1.0000	110.0	F _{bx} ' =	
	R _{By} =	3.6	OK	$F_{by}^* =$			5.56E+08		231810.4		1.0000		г _{ьх} – F _{ъу} ' =	
	· .by	010	011	· by	2100	. 050	0.002.00	• DEY • DY	201010.4	ULy	1.0000		by -	24
Bending Shear	r													
	V _x =	0	$f_{vb} =$: 0		F _{vb} ' =	250	fvb <fvb'< td=""><td>OK</td><td></td><td></td><td></td><td></td><td></td></fvb'<>	OK					
	V _y =	0	f _{vd} =	. 0		F _{vd} ' =	250	fvd <fvd'< td=""><td>ок</td><td></td><td></td><td></td><td></td><td></td></fvd'<>	ок					
Deflection	D			214										
		flection _b =	0.000		U	$Deflection_d =$		OK						
		Allowed =	0.46041667			Allowed =	0.46041667							
Column														
	Axial L	_oad (lb) =	1840	f _c =	70.1	osi	F _c * =	1150	i					
	L _{eb} =	110.5					31.5714286	OK		F-61 =	2.2133.E+07			
	L _{ed} =	110.5					01101 1 1222	0.1			4.8202E+06			
		4.82E+06		$F_{cE}/F_{c}^{*} =$			C., =	0.99997614		F _c ' =		ок		
		110-11-11-			11011.0-		-p	0.0000101.		· c	1140.01	UN		
Combined Ben	ding and	Axial Tens	sion											
	f _t =	70 p	psi	ft/F,	$_{t}^{+}+f_{b1}^{+}/F_{bb}^{+}=$	0.066757	OK							
	Ft' =	1050 p	psi	f ₁ /F ₁ '+f _{b1} /F	b1*+f _{b2} /F _{b2} *=	0.066757	OK							
~														
Combined Ben	ding and													
		$F_c < F_{cE1}$	OK											
		$F_c < F_{cE2}$	OK	,	[f_/F_c]^2 + 1	b1/{Fb1'[1-(tc/	(F_{cE1}) + $f_{b2}/\{F_{b2}$	2'[1-(f _c /F _{ce2}) -	$\cdot (f_{b1}/F_{bE})^2$]} =	0.00	OK		
	T _t	$_{b1} < F_{bE}$	OK											
Bearing														
Dearing	Be	aring mem	ber F _{cp} ' (psi)	560	OK									
			$F_c =$											
				7011										

7/6/2011

Tel: 309-879-3258

Vict	toria IL 614	485										www.	perobbins.com	<u>a</u> —
		CLIENT: Description:	Nordic Webs 6-8		d Bendi	ng and A	Axial Loadi	ing						
		Description: Description:	Compressio	on Check										1
		Model #:	Solar Decat 1106-033	thalon		Annabar Avi		24Fb 3 1/2"						1
		Loading					ially Loaded in: on Check Load:			vind loads	Colu	umn check	k = OK	1
		W _{bwall} =		pli		L and F	Load Factors					A	6 Barrers	
	1	Wd _{wall} = Axial load =		pli Ibs	Rep		Duration (C_D) = ber Factor C_r =							1
	С	Conditions		105		Auve men	$K_{e} =$			- X - ~	x			1
		e Condition	-				Incised?			Kμ				1
	16.	emperature Plies =					COVE			р Р				1
					Spar		ION LIMIT = L/ nding Member:		IN IN	,				
DISTANCE BE					HEDGE b (I	lb)=	ung wonser.	110.5	IN (enter		ntinuous support)			
DISTANCE BE	[WEEN L	ATERAL 5	UPPORT OF	NDEPTHED			or C _L override:	110.5 no		r 0.001 for cor 1.0 see note	ntinuous support)	1		1
						Bea	earing Member	24Fb 3 1/2"		10 000 110				1
						Bearing me	ember F _{cp} (psi)	560						ļ
Member Proper			F _b (psi)	F _t (psi)	F _v (psi)	F _{cp} (psi)	F _c (psi)	E (psi)	b (in)	d (in)	c	Plys	Effective b	ьE
24Fb 3	1/2" x 7 1/	/2"	2400	1050	250	560	1150	1.6E+10	3.5	5 7.5	0.9	1	3.5	5.84
	(C) (C)	E, E _{min}) C _t		Ÿ	Wet servic	ce Factor C _M	Л							1
	(F _b , F _v ,	$F_{c}, F_{cp}) C_{t}$	1		F _b	Ft	F _v	F _{cp}	F。	E and E _{min}				1
	(E	, E _{min}) C _i =	1.00		1	1	1	1	1	1				1
	(F _b , F _t , F	$F_c, F_v) C_i =$	1.00		C _{fu}	u 1	J							1
		$(F_{cp}) C_i =$	1.00											1
Bending Flexu														
	Area = Ix=	26.25 123.05	Sx =	= 32.81		M _{b max} =	= 0	f _{b1} =	• 0	psi	L _{ub} =	110.5	L _{eb} =	202
	ly=	26.80	Sy=	15.31		M _{d_max} =	• 0	f _{b2} =	0	psi	L _{ub} =	110.5	L _{eb} =	
	R _{Bx} =	11.1	OK	F _{bx} *=			56541134	F _{bEx} /F _{bx} *=	23558.81		1.0000		F _{bx} ' =	24
	R _{By} =	3.6	OK	F _{by} * =	2400	F _{bEd} =	5.56E+08	F _{bEy} /F _{by} r=	231810.4	4 C _{Ly} =	1.0000		F _{by} ' =	24
Bending Shear		0	f. =	0		5.1-	250	1 horestel	21/					
	V _x = V _y =	0 0	f _{vb} = f _{vd} =			F _{vb} ' = F _{vd} ' =		fvb <fvb' fvd<fvd'< td=""><td></td><td></td><td></td><td></td><td></td><td> </td></fvd'<></fvb' 						
	• ,			-		· •		1994 25 3 4	01.					
Deflection	De	eflection _b =	0.000	ок	ſ	Deflection _d =	0.000	ок						
			0.46041667				0.46041667							
Column														
		Load (lb) =		f _c =			F _c * =		0					
	L _{eb} = L _{ed} =	110.5 110.5		L _{eb} /d = L _{ed} /b =		-	31.5714286	ок			2.2133.E+07			
		110.5 4.82E+06		L _{ed} /D = F _{cE} /F _c * =			C _p =	0.99997614		F _{cE2} = F _c ' =	4.8202E+06 1149.97	ок		
Combined Ber								0.000		- -		.		
Combined Ben	nding and f _t =	Axial Tens 682 p		f _t /F	++f _{b1} /F _{bb} * =	0.649324	ок							
	Ft' =	1050 p				0.649324								
Combined Ben	iding and	Axial Com	opression											ļ
		$F_c < F_{cE1}$	OK											
		F _c < F _{cE2} f _{b1} < F _{bE}	OK OK	ŗ	[f_/F_c']^2 + t	_{b1} /{F _{b1} '[1-(f _c /	(F_{cE1}) + $f_{b2}/(F_{b2})$	_{,2} '[1-(f _c /F _{ce2}) -	(f _{b1} /F _{bE})^2	2]} =	0.35	OK		
	'o	ν1 < Γ _{bE}	UK											
Bearing	Br	- ino mem	See E (nei)	560	OK									
	Dea	anng menn	ber F _{cp} ' (psi) F _c =		OK									

Detailed Water Budget

Function	Events	Gallons	Water	Notes
		per Event	Used (Gallons)	
Hot water Draws	16	20	320	15 gallon requirement plus 5 gals extra for "warm up", if necessary, to reach 110 F
Water Vaporization	5	0.75	3	
Dishwasher	5	3	15	3 gallons per use from
				Manufacturer's Specifications
Laundry Washer	8	11	88	11 gallons per use from
				Manufacturer's Specifications
Hot Water Storage	1	135	135	80 gallon Solar Thermal Tank,
Tanks				50 gallon Backup Tank, and Circulation line
Initial System Fill	1	45	45	Initial water system bleed and pipe fill
Irrigation	15	5	75	5 gallons per day for 15 days,
				for flowers
Fire Protection	N/A	N/A	500	Sprinkler system discharge
Testing	N/A	N/A	100	Testing of domestic hot water system prior to start
Safety Factor	N/A	N/A	193	15% of total water use
Water Required			1479	Total water used over Decathlon Competition

Summary of Unlisted Electrical Components

We have no unlisted electrical components. All electrical components carry an approved testing agency's listing per section 6-7 of the SD2011 Building Code.

Summary of Reconfigurable Features

Storage Wall

The storage walls are effortlessly slid into the hallway expanding the dining and living rooms to provide more flexibility for the family. They are offset from each other, allowing them to be in the open position simultaneously or one at a time. The walls are connected to a track along a truss, which carries a portion of the load. There are also casters along the bottom of the wall, which run along a minimal steel track in the floor and carry the majority of the load. The storage walls are engineered to slide along the track safely and effortlessly.

For the public tours, the house will be configured in its primary layout, however, we will demonstrate the movable components to the jurors during their guided tour. The west storage wall will be moved to expand the dining room for the dinner party and allow the table and chairs to be reconfigured to comfortably seat eight. For movie night the east storage wall will be moved to the open position allowing the living room furniture to be reconfigured.

REF: DRAWING: A-603 MOVABLE COMPONENT DIAGRAM

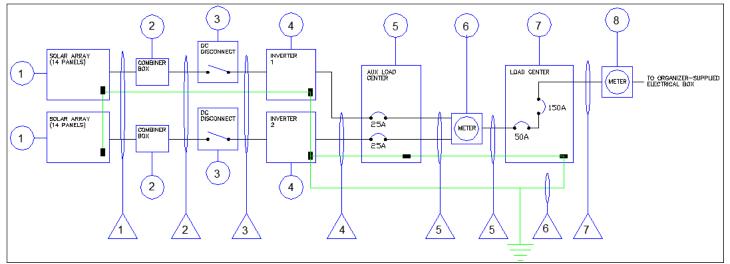
Operable External Blinds

The windows on the south, east and west facades of the 4Dhome are all shaded by exterior horizontal blinds. These products are all commercially available and produced by Hella. The blinds are operated by electronic controls from the interior of the house allowing the user to control the tilt angle and total window coverage. They can be used to mitigate both solar heat gain and daylight.

The blinds will be used in the competition to supplement the passive cooling strategy for the 4dhome. During peak cooling load hours, the blinds will be used to reduce the solar heat gain coefficient of the respective glazing they are covering. The blinds will be retracted as necessary to optimize passive cooling throughout the day.

At night the blinds will be fully retracted to allow views to the interior from outside. During juried walkthroughs the full spectrum of configurations will be demonstrated.

Team Massachusetts, Lot 401

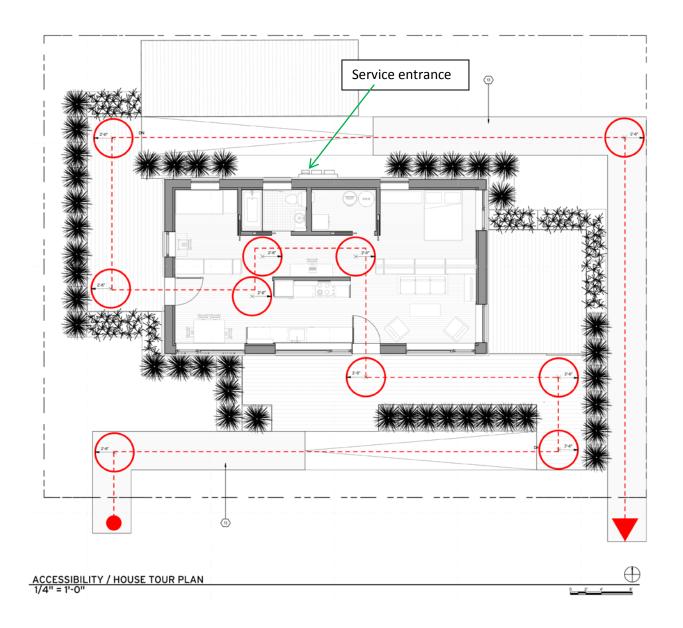

PV Systems

Module Manufacturer	Short Description of Array	DC Rating of Array
		(sum of the DC ratings)
SUNPOWER	Twenty-eight E-19/240 modules; arranged in two arrays, each array	6720 W
	having two strings of seven panels each.	[28 panels rated 240 W]
Total DC power of all arrays i	s6.7 kW (in tenths)	

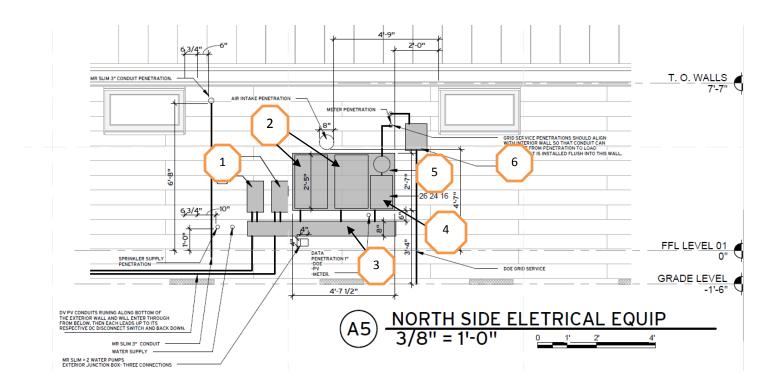
INVERTERS

Inverter Manufacturer	Model Number	Voltage	Rating (kVA or KW)	Quantity
SOLECTRIA	PVI 4000	240 VAC	4.0 KW	2
Total AC power of all in	verters is8	kW (in whole numbers)		

One-Line Electrical Schematic


0	PV SYSTEM EQU	JIPMENT	SCHEDULE		
TAG	COMPONENTS	NO.	MANUFACTURER	MODEL	NOTES
1	PV MODULE	28	SUNPOWER	E19 / 240	4 STRINGS OF 7 MODULES PER STRING
2	COMBINER BOX	2	WILEY ELECTRONICS	ACE-2P	NEMA 3R ENCLOSURE
3	DC DISCONNECT	2	SQUARE D	HU362RB	3-POLE UNFUSED, 60A, 600VDC, NEMA 3R ENCLOSURE, 200KA MAX SHORT CIRCUIT RATING
4	DC/AC INVERTER	2	SOLECTRIA	PVI 4000	NOT CAPABLE OF BACK-FEEDING CURRENTS, NEMA 4/IP 65 ENCLOSURE
5	AUX LOAD CENTER	1	SQUARE D	QO612L100RB	100A MAIN LUG LOAD CENTER, OUTDOOR RATED, 1Ø 120/240VAC 3W, 12 CIRCUITS 6 SPACES, 10 KA MAX SHORT CIRCUIT RATING
6	METER	1	GE	I-210+C	
7	MAIN LOAD CENTER	1	SQUARE D	HOM1632L200TC	240V, 200A, 1 PHASE, 16 SP, 10 KA MAX SHORT CIRCUIT RATING
8	METER	1	N/A	N/A	ORGANIZER SUPPLIED METER

Δ	CONDUCTOR AND CONDUIT SCHEDU	ILE			
TAG	DESCRIPTION OR CONDUCTOR TYPE	CONDUCTOR GAUGE	#/COLOR OF CONDUCTORS	CONDUIT	CONDUIT
				TYPE	SIZE
1	USE-2	10 AWG	4/BLACK,4/BLACK W/WHITE	FREE AIR	N/A
			TERMINAL MARKINGS		
	EQUIP. GROUNDING CONDUCTOR	10 AWG	2/BARE CU	FREE AIR	N/A
	(EGC)				
2&	THWN-2	10 AWG	1/BLACK, 1/WHITE PER CONDUIT	2/EMT	3/4''
3	INSULATED EGC	10 AWG	1/GREEN PER CONDUIT		
4	THWN-2	10 AWG	2/RED, 2/BLACK, 2/WHITE PER	2/EMT	3/4''
			CONDUIT		
	INSULATED EGC	10 AWG	1/GREEN PER CONDUIT		
5	THWN-2	4 AWG	1/BLACK, 1/RED, 1/WHITE	EMT	1.5"
	INSULATED EGC	10 AWG	1 BARE CU		
6	GROUNDING ELECTRODE	4 AWG	1 BARE CU	N/A	N/A
	CONDUCTOR (GEC)				
7	THWN-2	2/0 AWG	2/BLACK, 1/WHITE	1/EMT	1"


REFERENCES	LOAD	VALUE	UNIT
220.82 (B) (1)	GENERAL LIGHTING LOAD (3 VA/SQ FT*945 SQ FT)	2835	VA
220.82 (B) (2)	TWO 20 AMP SMALL APPLIANCE CIRCUIT (2X1500)	3000	VA
220.82 (B) (2)	LAUNDRY CIRCUIT	1500	VA
220.82(B) (3)	REFRIGERATOR	1800	VA
220.82(B) (3)	СООК ТОР	7700	VA
220.82(B) (3)	COOKTOP HOOD	240	VA
220.82(B) (3)	DISHWASHER	1800	VA
220.82(B) (3)	MICROWAVE	1800	VA
220.82(B) (3)	HRV	96	VA
220.82(B) (3)	AIR SOURCE HOT WATER HEATER	1440	VA
220.82(B) (3)	50 GAL HOT WATER TANK	6000	VA
220.82(B) (3)	DEHUMIDIFIER	624	VA
220.82(B) (3)	WATER SUPPLY PUMP	1500	VA
220.82(B) (3)	DRYER	5000	VA
	TOTAL, GENERAL LOAD:	35335	VA
	FIRST 10KVA AT 100%	10000	VA
	REMAINDER AT 40% (0.4*25335)	10134	VA
	SUBTOTAL GENERAL LOAD	20134	
220.82 (C) (2)	MR. SLIM HEAT PUMP (AIR CONDITIONING)	1500	VA
	TOTAL:	21634	VA
	CALCULATED LOAD FOR SERVICE: (TOTAL/240V)	90	A
	DECATHLON GRID SERVICE & HOUSE LOAD CENTER MAIN BREAKER	150	А
	TOTAL AMPACITY FOR PV INVERTER CIRCUITS (2*25)	50	А
	TOTAL AMPACITY OF CIRCUITS SUPPLYING POWER TO LOAD CENTER	200	А
	MAIN LOAD CENTER RATING	200	Α
690.64 (B)(2)	ALLOWABLE AMPACITY FOR CIRCUITS SUPPLYING POWER (1.2*200)	240	А
	ECATHLON GRID SERVICE SUPPLIES ENOUGH CURREN (90< 150A), AND TOTAL OF INPUT CIRCUITS IS LESS THA CENTER CAPACITY (150+50 < 240)		

NEUTRAL LOAD CALCULATIONS		
	Value	Unit
GENERAL LIGHTING LOAD (3VA/ft2)	2835	VA
20 AMP SMALL BRANCH CIRCUIT (2X1500)	3000	VA
Sub Total	5835	VA
3000 VA @ 100%	3000	VA
5835VA-3000VA = 2835 @ 35%	992.3	VA
Sub Total	3992	VA
Microwave and cooktop 9740 VA X 70% for neutral load	6818	VA
Clothes washer dryer 5000 VA X 70%	3500	VA
Dishwasher	1800	VA
Sub total	12118	VA
Total Load	16110	VA
Calculated for neutral = 16110 / 240V	67.13	А

Plan view of the lot showing the house, decks, ramps, tour paths and the service point

Elevation view showing the terminal box (contains the service point), meter and other service equipment

1: DC Disconnect Switches

- 2: Inverters
- 3: Conduit Trough
- 4: Aux Load Center
- 5: PV Meter
- 6: Organizer Meter

Energy Analysis Results and Discussion

Table of Contents

1.	INTF	ODUCTION		
2.	ENE	RGY EFFICIENT DESIGN		
2	2.1.	PHPP as Design Tool		
2	2.2.	Thermal Bridge Analysis and PH	IPP	
2	2.3.	PHPP Results for Boston		
2	2.4.	PHPP Results for Washington D	С	
3.	HVA	C SYSTEM		
3	8.1.	Heating & Cooling		
3	8.2.	Dehumidification		
3	8.3.	Ventilation		
3	8.4.	Indoor Air Quality		
4.	SOL	AR THERMAL SYSTEM		
4	l.1.	Sizing the System		
4	1.2.	The SunDrum Collector		
5.	SOL	AR ELECTRIC SYSTEM		
5	5.1.	The Modules		
5	i.2.	The Array		
5	5.3.	Optimal Tilt Angle		
5	5.4.	Electrical Load		
6.	DYN	AMIC MODEL IN SIMULINK		100
6	5.1.	Description		
6	5.2.	Modeling Philosophy		
6	5.3.	Modeling the Building Envelope	,	
6	5.4.	Modeling Moisture and CO ₂		
6	5.5.	Modeling DHW		
6	5.6.	Modeling Solar		
6	5.7.	Modeling HVAC		
6	5.8.	Inputs		
6	5 <i>.9.</i>	Initial conditions		
7.	DYN	AMIC MODEL RESULTS		
8.	4DH	ome ENERGY MONITORING		
-			Team Massachusetts	

9.	CON	CLUSION	111
8	8.3.	Energy Usage Analysis	110
8	8.2.	Real Time Energy Monitoring	109
8	8.1.	Philosophy	109

1. INTRODUCTION

The results of the Solar Decathlon are not only a showcase of cutting edge homes designed by students, the homes are the embodiment of the ideas of the future where sustainability will help save nations from their dependence on fossil fuels and the earth from climate change. One emerging idea is Passive House, which aims in the design of a home that uses 90% less energy than a conventional home. Passive house standards were formulated at the first Earth Summit in 1992 and aim for a specific energy use equal to or less than 4.75 kBtu/ft²/yr. This value is regarded as the most amount of energy humanity can afford to spend in each new and retrofitted home in order to maintain and save our climate.

Team Massachusetts has decided to design to Passive House standards. The design methodology leads to a final product where highly insulated walls, superior air tightness, and passive solar and internal gains allow a home to be ultraefficient. Only after an efficient building envelope is designed, are the photovoltaics then implemented to mitigate electrical loads.

The adoption of Passive House principles has informed the 4Dhome's building envelope to the highest degree; including window placements, wall constructions, and the mitigation of thermal bridging. The Passive House Planning Package (PHPP) has given Team Massachusetts the ability to make quick changes to the envelope design and to see the subsequent effects on an annual steady state energy balance.

To further investigate the dynamic behavior of the mechanical systems, the 4Dhome has been simulated using Matlab's Simulink, a fully customizable graphical user interface. The dynamic model was successful in simulating the solar decathlon events, something that could not have been simulated using the PHPP. The results showed the mechanical systems in place will satisfy the 4Dhome's needs during climate extremes and most importantly, the rigors of the Solar Decathlon Competition. The results of the PHPP analysis, the HVAC design, the active and passive systems, and the results from dynamic model are explained in the subsequent sections.

2. ENERGY EFFICIENT DESIGN

2.1. PHPP as Design Tool

The basis for all design considerations began with output from the PHPP. The results from the PHPP model are culminated together on a verification page, so as changes are made to the whole house model, the verification page can be reviewed to see whether a design change improved the overall energy balance. Figure 2.1 is a screen shot of the verification page for the 4Dhome.

Most parameters on the verification page are based on the treated floor area (TFA). In brief, the TFA is all area inside the home not including area underneath the footprint of the walls. The TFA also considers rooms with limited use like mechanical rooms to contribute only 60% of their floor area to the TFA total. The heating load and the cooling load are useful to size the mechanical systems for environmental extremes. The specific space heating and specific space cooling energy demands inform how much energy will be required to heat and cool each space on an annual basis.

Energy Demands with Reference to the Treated Floor Area						
Treated Floor Area:	639	ft²				
	Applied:	Monthly Method	PH Certificate:	Fulfilled?		
Specific Space Heat Demand:	4.56	kBTU/(ft²yr)	4.75 kBTU/(ft²yr)	Yes		
Pressurization Test Result:	0.50	ACH ₅₀	0.6 ACH ₅₀	Yes		
Specific Primary Energy Demand (DHW, Heating, Cooling, Auziliary and Household Electricity):	37.3	kBTU/(ft²yr)	38.0 kBTU/(ft²yr)	Yes		
Specific Primary Energy Demand (DHV, Heating and Auxiliary Electricity):	5.3	kBTU/(ft²yr)				
Specific Primary Energy Demand Energy Conservation by Solar Electricity:	106.0	kBTU/(ft²yr)				
Heating Load:	8.60	BTU/(ft ² hr)				
Frequency of Overheating:		%	over 75.0 °F			
Specific Useful Cooling Energy Demand:	4.47	kBTU/(ft²yr)	4.75 kBTU/(ft²yr)	Yes		
Cooling Load:	5.98	BTU/(ft ² hr)				

Figure 2.1: Screen Shot of PHPP Verification

The building envelope, the skin of the 4Dhome, is a very important membrane that stops heat exchange between interior and exterior environments. PHPP allows for the construction of different wall, ceiling, and floor types and then for quick implementation into the steady state model. Figure 2.2 shows an example of a wall with an 11.875" TJI wall stud, 24" on center aside a 2.5" utility chase.

	Surface I		erior: 0.74 erior: 0.45	(hr.ft².F/BTU)		
Primary Material (Enter from interior to exterior)		Secondary Material (optional)	Resistivity R per inch	Tertiary Material (optional)	Resistivity R per inch	Thickness [in]
Gyp Board	0.910					0.625
Air Space				3x2 Pine	1.280	2.500
OSB	1.390					0.625
Fiberglass Sprayed	4.000	OSB TJI	1.390			7.875
Polyur Spray	6.000	OSB TJI	1.390			4.000
Zip OSB	1.390					0.500
		Perc	entage of Mat'l 2	Pero	centage of Mat'l 3	Total Width
			2.18		9.4%	16.1

Figure 2.2: Screen Shot of Wall Element R-Value Calculation

After the walls are modeled, the windows can be assigned to each wall with their own specific orientation, size, solar heat gain coefficients, thermal properties, and overhangs. A way PHPP informed us in glazing application was to help determine the proper amount of glazing area required on the southern façade. The current glazing area is significantly higher than the conceptual design glazing area. The area of the windows needed to be increased so the sun could passively heat the home in the winter time. The PHPP also verified that the addition of more windows would mean a larger heat loss coefficient for the entire home, thus increasing the heating and cooling demand throughout the year. Using the verification page and the windows worksheet in tandem, the window area could be optimized. This trial and error method was not only the method for weighing the energy costs of different windows and their sizes, but also helped in the design of window overhangs, wall R-values, ventilation schemes, and thermal bridges.

After the entire building envelope is constructed in the PHPP, including walls, windows, doors, and thermal bridges, the heat loss of different components of the building envelope can be interpreted. Figure 2.3 shows the percentage of heat

loss transported through each building element. Notice the flux through the thermal bridges is negative; this means with respect to the original PHPP inputs, the thermal bridge analysis increased the accuracy of the model by eliminating redundancies in the heat loss calculations when they were made with respect to exterior dimensions.

				Average	H-Value:	Fraction of	Average
Group #	Area Group	Area	Unit	R-Value [(hr.ft ² .F)/BTU]	U × A [BTU/hr.F]	Transmission Heat Losses	R-Value [(hr.ft².F)/BTU]
1	Treated Floor Area	638.6	ft²				
2	North Windows	26.7	ft²	4.3	6.2	6%	4.3
3	East Windows	46.3	ft²	5.6	8.3	8%	5.6
4	South Windows	192.4	ft²	5.7	33.8	31%	5.7
5	West Windows	39.8	ft²	5.2	7.7	7%	5.2
8	Exterior Wall - Ambient	1110.1	ft²	56.6	19.6	18%	56.6
10	Roof/Ceiling - Ambient	2077.2	ft²	60.8	34.2	31%	60.8
21	Thermal Bridges Ambient	277.8	ft		-1.0	-1%	
Total Thermal Envelope 3493 ft ²		32.2	108.6	100%	32.159		
Envelope-Area-to-Treated-Floor-Area Ratio				5.5	1	-	

Figure 2.3: Screen Shot of Summary of Heat Loss through Each Building Element

2.2. Thermal Bridge Analysis and PHPP

Since PHPP models the building envelope with respect to exterior dimensions, there is some redundancy and sometimes a conservative heat loss calculation at any façade intersection. THERM by Lawrence Berkeley National Laboratory was used to model thermal bridges and to calculate their UA-Value for implementation into the PHPP model. For example, Figure 2.4 shows the peak of the home during a design and development stage as it was modeled through PHPP.

First, exterior dimensions are input into the PHPP, notice Figure 2.4, block 1, there is overlap between each element; this is what PHPP first assumes because of its one dimensional data input. To further show this, the elements are split up in block 2. The red lines indicate the overlapping boundaries of the separate entities. If PHPP were to calculate the UA of the building envelope with these overlapping entities, in cases where a thermal bridge free connection was designed, would yield a conservative heat loss calculation. Using THERM, the entities are combined into one by modeling the actual construction of the roof peak. The new heat loss coefficient for the thermal bridge determined in THERM is entered in place of the overlapping entities in PHPP, resulting in a more accurate heat loss model. Using THERM method ensures a precise building heat loss coefficient, like those needed for Passive House standards.

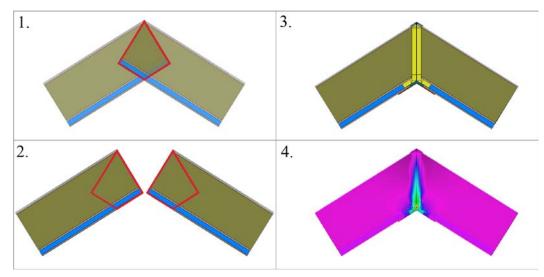


Figure 2.4: Eliminating Heat Loss Calculation Redundancies in PHPP with Thermal Bridge Calculations2011 US DOE Solar DecathlonTeam MassachusettsPublished 08/11/11

2.3. PHPP Results for Boston

Great results from the PHPP near the Boston location were one of the main priorities because this is where the home will eventually reside. As the verification page was shown previously, the home meets PHPP standards in Boston, pending the blower door test which will determine the final air tightness of the home. The design heating load is 5495 BTU/hr and the design cooling load is just under one third of a ton, or 3820 BTU/hr. To put the heating use into perspective for the 4Dhome, it would take an 85% efficient furnace only 18 gallons of #2 fuel oil to heat the 4Dhome for one year!

Out of the total heat required for the home, the passive solar heating and internal gains will account for 83% of the total required heat. Window overhangs, window reveals, and shading reduction factors were designed for the Boston location in order to bring the specific cooling demand within acceptable levels.

2.4. PHPP Results for Washington DC

There is not much the PHPP can reveal about the competition in Washington for the short time the 4Dhome is there, but it can shed some light onto the difference of climate in Washington. For example, the design heating load is reduced to 1329 BTU/hr and design cooling load is reduced to 3386 BTU/hr. Although the design cooling load is reduced compared to Boston, the total annual cooling demand is increased to 7.73 kBTU/ft²/yr. This indicates Boston is prone to higher climactic extremes than Washington, but Washington is a warmer location throughout the year. If the home was placed in Washington year round, 92% of the annual required heating energy would be satisfied by solar and internal gains alone. The dynamic simulation yielded the best results as to how the 4Dhome will perform in the Washington DC climate during the rigors of the competition.

3. HVAC SYSTEM

The mechanical systems have been designed to be highly efficient and to recover heat, to work seamlessly within the HVAC system as a whole while maintaining autonomy, and to provide comfort and convenience in an affordable and reliable design that will function for decades to come. Off-the-shelf components have been used which are accessible to the consumer, coupling them together in an innovative and yet simple and efficient configuration.

3.1. Heating & Cooling

The 4Dhome is heated and cooled with a highly efficient ducted heat pump. Meeting Passive House criteria has permitted the use of a small 9,000 BTU Mitsubishi unit, which is ducted to the main living space and each bedroom. In this split heat pump, a refrigerant is pumped between an outdoor and indoor unit; this fluid can absorb heat from interior air and transfer it outside (which cools the home), or can absorb heat from the outside air and transfer it inside (which heats the home). Unlike conventional electric heaters that use electricity to create heat inside the house, a heat pump uses electricity simply to transfer heat, making it much more efficient.

In addition, unlike conventional heat pumps, this unit is driven by an inverter which adjusts the compressor speed, allowing a varied output based on demand to save energy when possible. The heat pump used in the 4Dhome home transfers 2.9 times more heat energy than electricity it consumes, making it nearly 3 times more efficient than a conventional electric resistance heater.

3.2. Dehumidification

A dehumidifier is needed during hot summer months in Boston, and the Simulink energy model confirms the need for dehumidification in Washington DC in September. The 4Dhome has a 65 pint Honeywell dehumidifier ducted into the HVAC system. The dehumidifier has a dedicated return from the main living space in the hallway, and feeds into the existing main supply duct for the heat pump. With an energy factor of 2.11, this unit is one of the most efficient 2011 US DOE Solar Decathlon Team Massachusetts Published 08/11/11

residential dehumidifiers available. Because it is installed in the attic space and equipped with a drain line, the homeowner doesn't have to empty out the condensate from a tray, or trip over a large plug-in unit sitting in the middle of a room.

3.3. Ventilation

A Passive House is much more airtight than the conventional home, and so mechanical ventilation is very important. The 4D Home employs a heat recovery ventilator (HRV), which ventilates stale interior air through a heat exchanger, using it to pre-heat or pre-cool the incoming fresh air. The Nu-Air HRV unit in the 4D Home is Energy Star rated and captures up to 85% of the energy from the exhausted air. It requires small 5" penetrations in the roof for the fresh air intake and exhaust, and feeds into the main supply duct to the house.

3.4. Indoor Air Quality

Smoke and airborne debris from cooking contribute to poor air quality in the home. In addition to ventilation, a ductless range hood with separate filtering stages for grease, odors, and smoke was chosen to filter cooking fumes before they enter the conditioned space. This allows the occupants of the home to enjoy the benefits of cooking with a range hood without creating an additional penetration in the envelope. Since the hood does not vent to the outside, there is no cost associated with conditioning the make-up air, resulting in significant energy savings when there is a large temperature difference between the outside and conditioned space.

Heating and cooling loads have been minimized by meeting Passive House criteria, which has allowed the use of small and few mechanical components. It is still crucial, however, to design the HVAC system to be highly efficient to minimize electrical consumption and remain net-zero, without adding costly PV panels to our array. The mechanical components must operate under the extreme climate conditions of the area, and work with the other HVAC equipment efficiently, to ensure comfort for the homeowner throughout all seasons.

4. SOLAR THERMAL SYSTEM

Capturing energy from the sun and converting it to electricity via photovoltaic panels is a very clean way to generate electrical energy. However, PV panels are currently not that efficient in converting the sun's energy, most having efficiencies between 10-20% (ours are 19.3% efficient). A much more efficient means of capturing solar energy is through the use of solar thermal collectors, which capture the heat from the sunlight and transfer it to a fluid, which in turn can be used for any number of applications, including heating domestic hot water or space conditioning. Thermal collectors have efficiencies of 50% or higher, thus are anywhere from 3-5 times more efficient at capturing solar energy than PV panels. In previous Solar Decathlon events, several teams heated their hot water with efficient heat pumps and skipped a solar thermal system altogether. Team Massachusetts decided early on that solar thermal system technology, as a vital part of the greater solar energy industry, was too vital not to use on the 4Dhome.

For the 4Dhome, with its Passive House inspired design and super-efficient heat pump, we decided to use solar thermal for our domestic hot water (DHW). Though we could have used it for both heating and cooling the air, we decided the benefits did not outweigh the extra complication and cost.

In brief, this system uses solar thermal collectors and a heat exchanger in closed loop to pre-heat water in an 80 gallon "solar tank". The water in the 80 gallon tank then serves as preheated inlet water for the 50 gallon "backup" tank. If needed, the water is further heated to the set temperature of 125°F by a modern, efficient electric heat pump that is mounted on top of the 50 gallon tank. An electric element in the 50 gallon tank serves as a backup heating source. See a schematic of this system in Figure 4.1.

4.1. Sizing the System

The first step in sizing any DHW system is to determine the load on the system. How much hot water will the home's residents use during a typical day? What is the possible maximum load that the system may face? "Load" can be thought of as the gallons used per day at the hot water set point temperature. Two loads had to be considered; one for just the decathlon contests, and one for the home's permanent location here in Massachusetts. For the decathlon, the load is based off the hot water draws and the dishwasher runs (Team Massachusetts plans to use cold water for clothes washing). The contest hot water load is in Table 4.1.

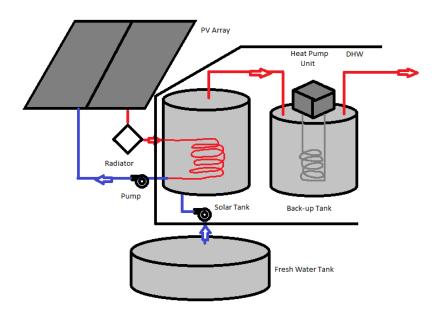
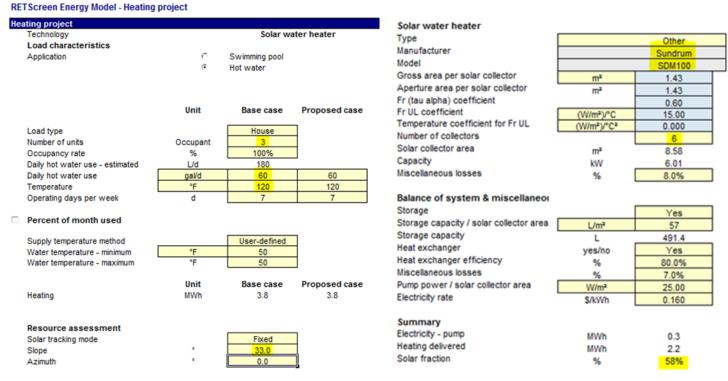



Figure 4.1: Schematic of DHW

Day	Hot Water Draws	Gallons	Dishwasher Runs	Gallons	Total Gallons/Day	Liters
8	2	30	1	2.9	32.9	124.4
9	0	0	0	0	0	0.0
10	2	30	0	0	30	113.4
11	2	30	1	2.9	32.9	124.4
12	2	30	0	0	30	113.4
13	1	15	0	0	15	56.7
14	3	45	1	2.9	47.9	181.1
15	2	30	1	2.9	32.9	124.4
16	2	30	1	2.9	32.9	124.4
Total	16	240	5	14.5	254.5	962.0
				Average	31.8	120.3
				Maximum	47.9	181.1

For the annual load after the home is rebuilt in Boston, the industry standard of 20 gallons per person per day, or 60 gallons per day for the three person household was used (an independent analysis resulted in a 57 gal/day load for the 4Dhome). 60 gallons per day is nearly double the average requirement for the decathlon. Therefore, our initial question was should the solar thermal system be sized to meet the higher load in Boston or the lower load for the competition. Other factors to be considered included system cost; that back-up water heater was a very efficient electric heat pump 2011 US DOE Solar Decathlon Team Massachusetts Published 08/11/11 95

which itself would consume little energy; and finally, the weather conditions for the decathlon (DC in September) were much more favorable for solar hot water heating than the conditions the system would be exposed to in Boston through an entire year. The team turned to two modeling methods to help with this decision—using the publically available Retscreen and an analytical method carried out by using MathCAD. A screen shot of the analysis from Retscreen showing the use of Boston annual data, 120°F water temp, and a demand of 60 gal/day is shown in Figure 4.2.

Figure 4.2: Screen Shot of Retscreen Modeling Software used to Calculate the Solar Fraction

The second method allowed the team to take an analytical approach to the problem. Several important calculations were achieved using MathCAD, including:

- Determining the available solar energy (the monthly average (for Boston) or daily (for the decathlon) irradiation on a tilted surface
- Converting the load from gallons per day into energy required per day, calculating the energy lost through the storage tank walls, and then combining these two to determine the total energy load (per day for the decathlon, per month for Boston)
- Using the "f-chart" method where a series of equations are used to determine the solar fraction, using the same parameters for the SunDrum panels as were used in Retscreen

Table 4.2 includes the results from 9 runs in MathCAD, using the same scenarios used in Retscreen. Both models yield similar results. To reach a relatively high solar fraction in Boston (73% average), a system using eight SunDrum panels is required. However, for the much smaller load and more favorable conditions of the decathlon, only six panels would provide 94% of our DHW load. In result, the 4Dhome will be using six panels during the competition, whereby the solar thermal system should be able to supply nearly the entire contest load. The final owner of the home could always add two additional SunDrum panels for a relatively low cost during the rebuild, if they desired a higher solar fraction for their home.

Table 4.2: Comparison of Results between Retscreen and Analytical Method

		Solar Fract	ion Per Analys	is Method				
			Hot Water		# of			
Simulation	Climate Data		Temperature	Load	SunDrum			
Number	Location	Duration	(°F)	(gal/day)	Panels	Retscreen	Analytical	Average
1	DC	9 days	120	31.8	4	68%	82%	75%
2	DC	9 days	120	31.8	6	100%	92%	96%
3	DC	9 days	130	31.8	4	59%	75%	67%
4	DC	9 days	130	31.8	6	100%	87%	94%
5	Boston	year	120	60	4	29%	44%	37%
6	Boston	year	120	60	6	58%	59%	59%
7	Boston	year	130	60	4	23%	38%	31%
8	Boston	year	130	60	6	47%	51%	49%
9	Boston	year	130	60	8	82%	63%	73%

4.2. The SunDrum Collector

Finally, the SunDrum Panels were chosen over traditional flat plat or evacuated tube collectors for their innovative hybrid technology. Unlike other solar thermal collectors which are mounted separately from a PV system, SunDrum's panels are very thin and mount directly behind the surface of the PV modules. As a PV panel's temperature increases from exposure to sunlight, the temperature difference between the panel and the cooler liquid flowing in planer flow inside the SunDrum panel (water for the competition, a glycol solution to prevent freezing once rebuilt in Massachusetts) causes heat to transfer from the panel to the liquid. Thus, part of the sun's energy that would ordinarily have been wasted is captured by the hybrid panel, and used to heat DHW. A secondary effect is that the PV panel's temperature is lowered during this process, and therefore its efficiency is increased slightly compared to an un-paired panel. Figure 4.3 shows a SunDrum panel mounted in a PV panel. The relative thinness of the panel is evident.

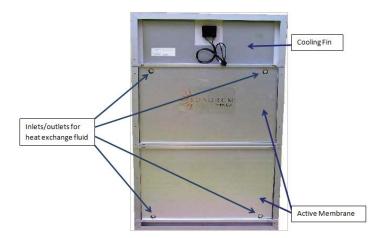


Figure 4.3: SunDrum Panel Installed in its Mated PV panel

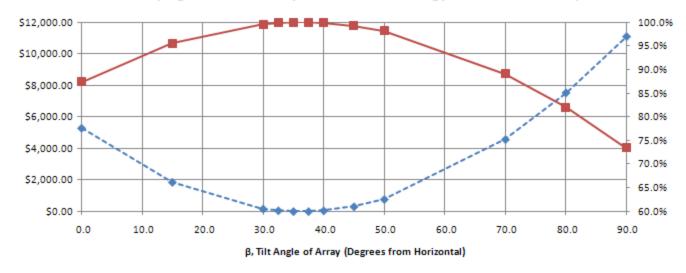
Each panel is made of two thin sheets of sandwiched metal, a thin sheet of insulation, and a frame. In this system, there aren't cylindrical pipes underneath the PV that carry the water; it instead flows between two thin sheets of metal. These sheets have perforations that direct this planar flow along a serpentine path. The hybrid panels will have inlet and outlet pipes (PEX tubing) feeding into and from the bottom (connected to other panels in series). The inlet and outlet ports are located at the top and bottom corners. Using hybrid panels frees up more roof space for additional PV panels (if required), and captures more energy per square foot of installed panel.

2011 US DOE Solar Decathlon

Team Massachusetts

5. SOLAR ELECTRIC SYSTEM

5.1. The Modules


The decision to use SunPower monocrystalline modules was based on several factors; the extremely high efficiency and competitive temperature rating of the panel, and the company's locality. The SunPower E19/240 panels are 19.3% efficient, and have a temperature rating of over 90% (ratio of the rated power at PTC, to the rated power at STC). A module's rating at PTC is a more accurate reflection of the real life performance of the panel than is the STC. The high efficiency of this panel is largely attributed to the use of monocrystalline material, and the all-back contact design. Because our trellis design imposes size constraints for the PV array, it is necessary to use a highly efficient panel with a large power output per area, to ensure the entire electrical load of the home is met with the particular array area available.

5.2. The Array

The photovoltaic system is sized to meet the entire annual electrical load of the 4Dhome when in Boston, Massachusetts. The main array is comprised of twenty-eight SunPower E19/240 panels, having a total DC rating of 6664 W. Because of the size of the array necessary, and the temperature conditions of Massachusetts, proper string sizing requires us to have two arrays, each having two strings of seven panels. Each array connects to a Solectria PVI 4000 string inverter. This configuration allows the user to determine if the PV system is working correctly; each array should produce an equal amount of power, so a malfunction in one array will be easily detectable. All twenty-eight panels are mounted on a south-facing trellis; the PV panels act as an overhang and provide summer shading. The trellis sits above the roof and allows for natural convective cooling of the panels.

5.3. Optimal Tilt Angle

Using an analytical method and TMY3 data, it was found the optimal PV array tilt angle for a non-shaded site in Boston, Massachusetts is 36.5 degrees. This is nearly 6 degrees less than the latitude of 42.4 degrees. Figure 5.1 shows changing the tilt angle from the optimal slope will result in a loss of electricity produced over the 30 year lifetime of the array; the farther away the array is installed from the optimal tilt angle, the losses become more significant. In the design of the 4Dhome's roof and trellis, the optimal tilt angle was considered. Weighing aesthetics and minimal predicted losses in performance, the angle of the roof and trellis is 33 degrees. An array at 33 degrees receives 99.9% the incident energy of an array at the optimal angle.

Effect of Varying Tilt of Stationary PV on Lifetime Energy Production @ \$.14 per kWh

- 🛧 - Lifetime \$ Difference in Electricity Production WRT Most Efficient Orientation 🛛 — 🍽 % Incident Energy Captured Compared to Optimal Angle

Figure 5.1: Effects of Tilt Angle on Annual PV Output for the 4Dhome

5.4. Electrical Load

The total electrical energy use of the 4Dhome is a sum of the appliance, lighting, domestic hot water, and HVAC loads. The power usage and operation schedule of the appliances, lighting, DHW, and the air heat pump are known but the electricity demand of the HVAC system required a more detailed analysis. A dynamic model constructed in Matlab's Simulink will aid in calculating the electrical energy use of all HVAC equipment for both Boston and the competition in Washington DC. The characteristics of the annual electrical load are in Figure 5.2 for Boston.

The predicted annual energy usage of the 4Dhome in Boston, Massachusetts is 6900 kWh. The expected annual energy production of the PV system is over 130% of this load, as predicted by PVWatts. The "extra" energy will ensure that the home will be net-zero even if the eventual owners add more loads, and will also help the home achieve success during the Decathlon Energy Balance event.

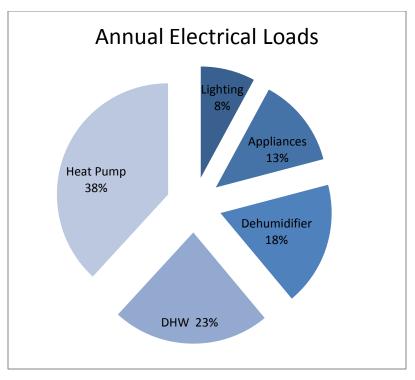


Figure 5.2: Annual Electrical Load for the 4Dhome in Boston

6. DYNAMIC MODEL IN SIMULINK

6.1. Description

Simulink is a mathematical modeling environment within Matlab with a block-diagram graphical user interface used to simulate dynamic systems. Simulink contains a vast library of predefined and customizable functions, or "blocks", and offers tight integration with the rest of the Matlab environment. Simulink was the preferred modeling environment because of its robustness and accessibility, which allowed accurate and fully customizable simulations of the 4Dhome's energy systems during a Solar Decathlon competition period.

The primary goals of the Simulink modeling effort were to verify initial HVAC equipment sizing calculations and develop a tool for simulating various energy related design considerations in competition scenarios.

6.2. Modeling Philosophy

The transport of energy in any home is incredibly complex. Many simplifications must be made to simulate the energy performance of a home in a practical fashion. For the purposes of this model, many energy interactions did not need to be considered. The energy systems that were simulated were building envelope, moisture and carbon dioxide concentration inside the home, PV, DHW, solar thermal, and HVAC systems. Figure 6.1 shows a flow chart of these various systems and their interactions.

Since the competition schedule is known, it was possible to build an input load schedule. These loads represent thermal, moisture and CO₂ concentration gains to the living space of the house that are then used as inputs for the model.

TMY data was used for all ambient conditions. Because of the statistical nature of TMY data it was important to use a wide range of data to establish meaningful results. Competition performance was simulated using various TMY data sets to gain insight into the typical performance variations.

2011 US DOE Solar Decathlon Team Massachusetts Published 08/11/11

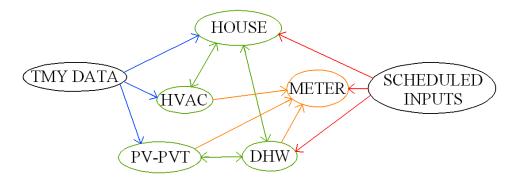
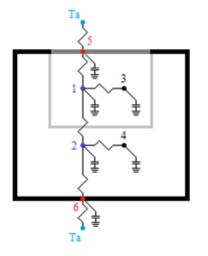



Figure 6.1: Interactions between the Dynamic Systems of the Home

6.3. Modeling the Building Envelope

Equations describing the flow of energy in the home and DHW system were cast into state space representations for ease of modeling. The equations (1st order, ODEs) describe the change in state (temperature) in a particular "thermal zone" with respect to time, as a function of the other states and inputs. The state space formulation provides a convenient scheme for representing coupled systems, implementing controlled and uncontrolled inputs, and computing relevant outputs. Certain inputs (such as a variable mass flow rates) result in mildly non-linear systems. This was dealt with by recasting the state space equations within the simulation for changes in such inputs, as they were infrequent. With initial conditions and environmental inputs, the temperature of each thermal zone can be determined through time integration of the state space equations. The home is represented by six coupled nodes and is shown in Figure 6.2 in the form of a thermal network model. The house model uses ambient temperature and heat gains to the mechanical room and living space as inputs, and then outputs the temperature at each node over the simulation period.

Node	Description
1	Air in the Mechanical Room
2	Air in the Living Space
3	Thermal Mass in Mechanical Room
4	Thermal Mass in Living Space
5	Thermal Mass in Exterior Wall/Floor/Ceiling of Mechanical Room
6	Thermal Mass of Exerior Wall/Floor/Ceiling of Living Space

Figure 6.2: Thermal Network of Home and Description of Nodes

6.4. Modeling Moisture and CO₂

Simplified moisture and CO₂ concentration models were used. Air infiltration and HRV ventilation provide mechanisms for moisture and CO₂ exchange through the building envelope. Moisture is also produced within the house from occupants, appliances and equipment. Saturation pressure data was embedded in the model to compute relative humidity. The only source of CO₂ production in the house is the occupants. The CO₂ concentration in the home is a good indicator of the overall air quality and is used to control the operation of the HRV.

6.5. Modeling DHW

The tank temperatures in the DHW system were simulated with a state space model. The tanks are exposed to the air in the mechanical room, causing them to lose heat to the home. The DHW model outputs the temperatures of the tanks, the heat given to the mechanical room from the tanks, and the heat removed from the air by the heat pump.

6.6. Modeling Solar

A modified Hottel-Whillier model was used to model the SunDrum hybrid solar-thermal panels, which extends the conventional thermal analysis of flat plate solar water collector to include a coupled PV panel. This extended model by Florshuetz allows the use of the usual parameters of the conventional Hottel-Whillier model, such as the collector heat removal factor and heat loss factor and modify them with factors that describe the PV reference efficiency and the decrease in PV efficiency with temperature.

Therefore, the Hottel-Whillier equations can be used for useful thermal output, simply by replacing the parameters with the modified parameters for a hybrid system. Then the useful electrical output of the PV panels that are coupled with SunDrum's hybrid panels can be found by subtracting the useful thermal energy and the overall thermal loss of the system from the total solar energy collected by the surface. The electrical energy produced by the remaining 22 PV panels that are not coupled with hybrid collectors was then simply summed and de-rated according to the system efficiency.

6.7. Modeling HVAC

Heat Pump – The output of the mini-split heat pump is modeled with a tuned PID controller, designed to simulate the unit in cooling mode. The system rise time, settling time, and overshoot were calibrated within Simulink with a built in PID tuner. The set point temperature for the heat pump controller is 23°C.

HRV – The HRV is modeled in its nominal mode of operation and is controlled by a CO_2 sensor located in the living space. The HRV set point is 300ppm higher than the ambient concentration. The HRV facilitates the exchange of air between the home and the environment. When the HRV switches on, the CO_2 concentration in the home falls towards the ambient concentration. The HRV turns off when the concentration in the home is within 10% of the ambient concentration.

Dehumidifier – The electric dehumidifier is modeled in its nominal mode of operation and is controlled by a relative humidity (RH) sensor located in the living space. The dehumidifier operates independently and is not coupled to any other HVAC equipment. The dehumidifier turns on when the RH in the living space reaches 60% and off when it reaches 40%.

6.8. Inputs

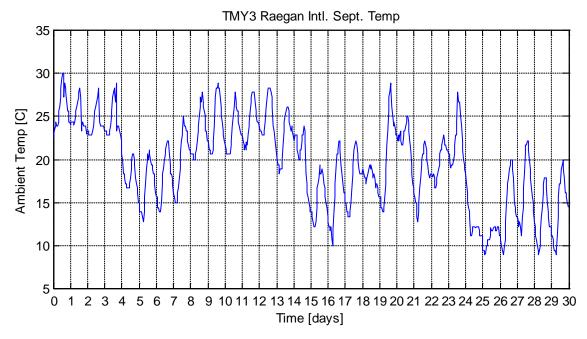
The competition schedule was used to tabulate the following sets of scheduled inputs for the model at 15 minute intervals:

Electrical Draws - Includes electrical draws from appliances and lighting, [W]

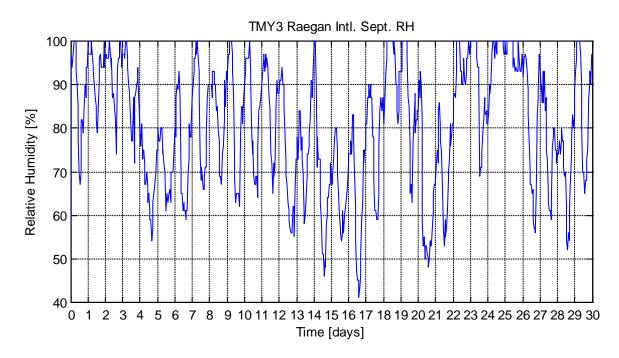
Heat Gains - Includes heat gains associated with scheduled electrical usage and occupants, [W]

Moisture Gains - Includes moisture gains associated with occupant perspiration, appliances (cooktop and dishwasher), and shower use, [kg/hr]

CO₂ - Includes CO₂ gains from scheduled number of occupants at a "low" activity level, [g/hr]


DHW Draw - Includes DHW draws from the shower and dishwasher, [L/hr]

2011 US DOE Solar Decathlon Team Massachusetts Published 08/11/11


Doors - Includes schedule of door states [open, closed] used to determine natural air exchange rate with the environment.

TMY data (hourly intervals) - TMY3 data was used to for atmospheric conditions. Information on temperature, humidity, and irradiation were pre-processed for our needs and used as inputs to the model. Because of the random nature of the data and relatively short duration of the competition, the house model was simulated with several different TMY3 data sets, from various locations and time frames surrounding the competition site and duration.

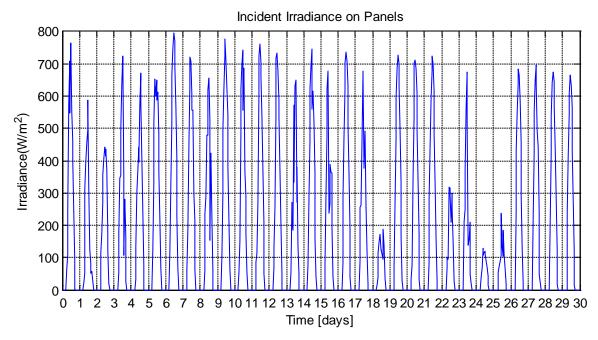

The following Figures, 6.3 through 6.8, show various inputs to this dynamic model, both TMY data and scheduled inputs.

Figure 6.4: Use of TMY Relative Humidity Data Surrounding Competition Period

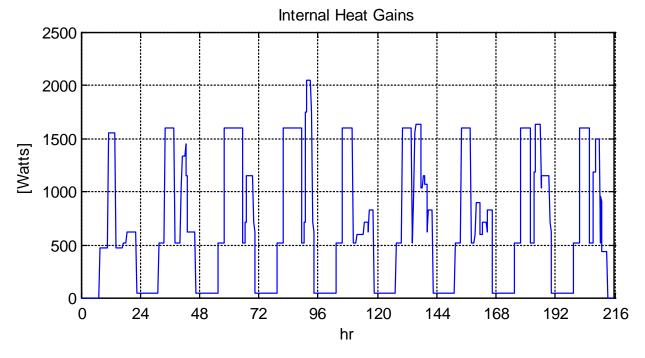


Figure 6.6: A Predicted Schedule of Internal Heat Gains during Competition Period

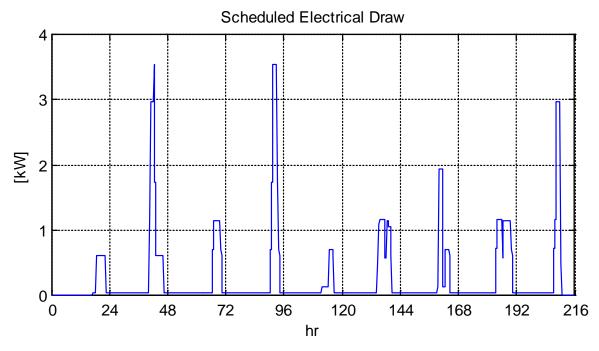


Figure 6.7: A Predicted Schedule of Electric Demand during Competition Period

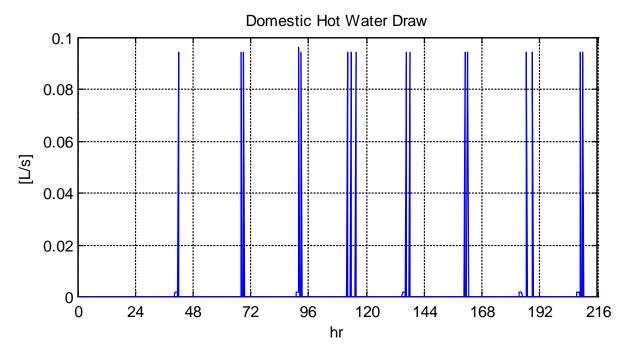


Figure 6.8: A Predicted Schedule of Intermittent Hot Water Draws during Competition Period

6.9. Initial conditions

The model's initial conditions were simply set to be within their controlled ranges. This was preferred to simulating precompetition days for ease of modeling and post processing. Both approaches showed negligible differences in predicted performance.

House - All house zone temperatures are initially set to 23°C.

DHW – The backup tank is initially set to 55° C.

 CO_2 – The initial CO_2 concentration in the house is the average ambient concentration of about 550 ppm (by mass).

RH – The initial relative humidity inside the home is about 55%.

7. DYNAMIC MODEL RESULTS

For the purposes of this section, a "typical" sample simulation was used to generate data and figures to be analyzed in detail. The time frame corresponding to September 13th through 21st from the Reagan Intl TMY3 data was used because it allowed us to use a more conservative estimation of irradiance.

The results show the temperature and relative humidity in the living space remaining within the comfort zone (between 22.2 and 24.4°C and below 60% RH) outside of touring hours. The air temperature in the mechanical room is very sensitive to the operation of the air-to-water heat pump. This will reduce the cooling load over the competition period, but it will be recommended to install ducting for the unit to increase the home's performance during the winter months in its final location. The thermal mass in the home and exterior walls, floor, and ceiling, helps stabilize the air temperatures, especially during times with large temperature swings. The model also shows the HRV is able to handle the CO_2 removal load through ventilation, ensuring fresh air for the occupants.

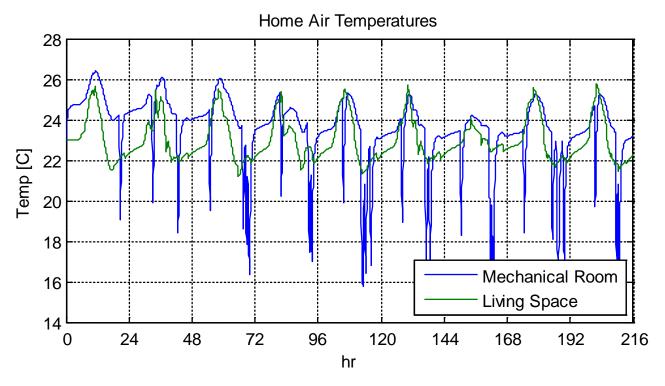
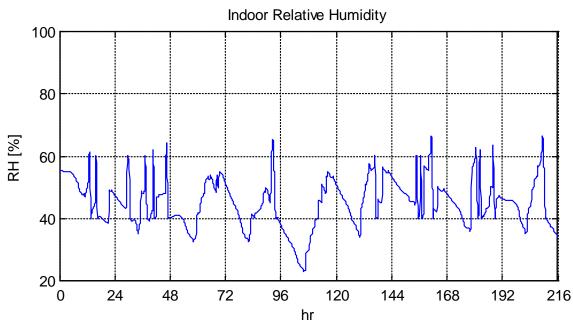



Figure 7.1: Interior Air Temperatures of the Mechanical Room and Living Space over the Sample Simulation.

The DHW tank temperature results shows the backup tank being maintained at acceptable levels during the competition draws. This simulation predicted that the solar-thermal system produces about 60% of the domestic hot water load over the simulated competition period. Although this system was sized to meet 80 to 90% of the DHW load over the course of a year, the competition DHW draws do not represent the hot water use of a typical family. When the draws are dispersed over day, this percentage is much higher.

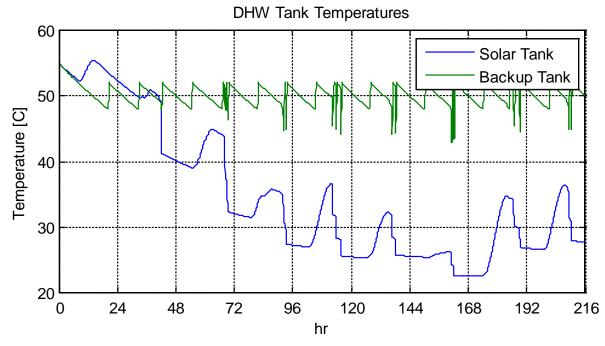


Figure 7.3: DHW Tank Temperatures During Competition.

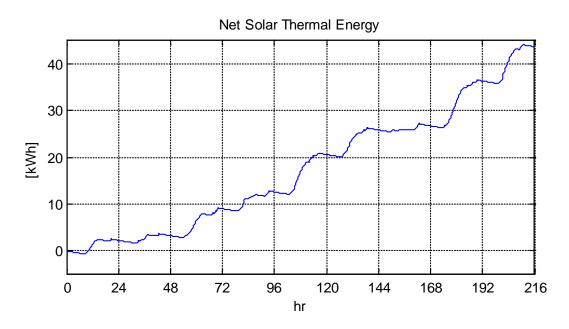


Figure 7.4: Net Thermal Energy Includes Useful Heat from Solar Thermal System and Heat Losses to Mechanical Room.

The simulation results show the 4Dhome performing better than net-zero over the competition period, while meeting comfort zone and fresh air requirements. Over the various time frames simulated, a range of \pm 15kWh on this metric is expected.

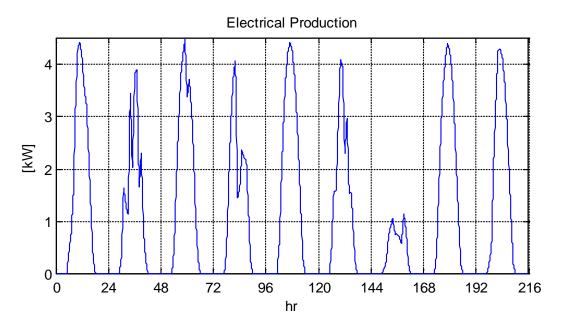


Figure 7.5: Electrical energy production rate from PV and PVT systems.

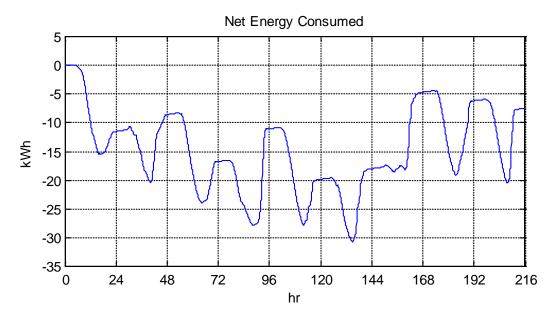


Figure 7.6: Net energy consumed over sample competition period.

The most influential parameters on the model performance seem to be the local irradiance, swinging temperatures and high humidity. These results show the culmination of many energy conscious design decisions. Efficient appliance and equipment selection significantly reduced the electrical load compared to a conventional house (approximately 80% reduction compared to similarly-sized conventional home). Net-zero is not an easy metric to achieve under the competition loads and comfort zone requirements, but with careful planning and a conservative modeling approach we believe we have designed an affordable home-energy system with exceptional performance.

8. 4DHome ENERGY MONITORING

8.1. Philosophy

The modern lifestyle of a working couple with a young child may not allow time for actively monitoring the energy usage of the 4Dhome, unless the activity of doing so is easy, interesting and accessible. The only time typical households are able to evaluate their energy consumption is when they receive their utility bill. With only a monthly bill to review, the detail required to pinpoint energy overuse is not present. The energy monitoring system of the 4Dhome makes understanding energy use easy by explaining energy in forms familiar to the average homeowner. It also actively monitors specific circuits and appliances in the home, giving the home owners a much more detailed picture than from a utility bill.

8.2. Real Time Energy Monitoring

The power consumption at the individual circuit level is measured and logged into the energy monitoring system at one second intervals. This data is then averaged to one minute intervals and transmitted over the internet to an offsite server. The power consumption data is then accessible in real time with any device with a browser (computer, laptop, smart phone, etc.). This interface is called the dashboard and an example of this real time monitoring is in Figure 8.1.

Figure 8.1: Instantaneous Power Consumption Meter

8.3. Energy Usage Analysis

The easy accessibility of this system will allow the 4Dhome owners to observe their consumption habits and create lifestyle adjustments to save energy, whether it is on a daily, weekly, or monthly basis. Figure 8.2 shows an example screen shot of the electricity consumption timeline by day (graph on the left) and by the minute (graph on the right). The system is precise enough so that it is possible to see energy spikes from appliances as small as clock radios and compact fluorescent lights.

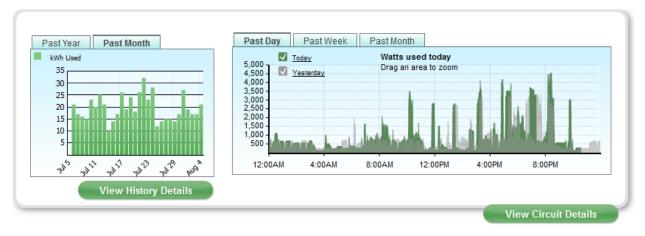


Figure 8.2: The Electricity Consumption Time Line



Figure 8.3: Total Electricity Consumed per Month by Each Electric Circuit

The dashboard makes understanding energy use easy, interesting and accessible all the time. The daily, weekly and monthly average home energy consumption is always displayed in parameters that are intuitive and easily understood. The instantaneous energy consumption display can alert the family via text or email if there is unexpected usage and gives a sense of magnitude of appliance and circuit (room) energy consumption. Additionally, as shown in Figure 8.3, this system translates energy use into dollars, thereby aiding the family's understanding of how they can save money through better energy management. Thus, we believe the dashboard will serve as an active promoter to decrease energy consumption by effectively informing the 4Dhome's inhabitants of their energy use.

9. CONCLUSION

Team Massachusetts has designed an efficient solar powered home optimized for both its permanent home in Boston and the Solar Decathlon competition site. Through steady state modeling with the Passive House Planning Package, independent analysis using Retscreen, PVWatts, and various analytical methods including performing an in depth dynamic simulation, Team Massachusetts is confident the 4Dhome can be net-zero at both sites. The energy analyses have enabled considerations that will allow the 4Dhome to be both competitive and prepared for its final resting place.Construction Specifications

Division 01 - General Requirements

01 10 00	Summary
01 54 00	Construction Aids

Division 02 – Existing Conditions

02 05 19.13 Geotextiles for Existing Conditions

Division 03 – Concrete

Division 04 – Masonry

Division 05 – Metals

05 14 13Architecturally Exposed Structural Aluminum Framing05 50 00Metal Fabrications

Division 06 – Wood, Plastics, and Composites

- 06 05 23 Wood, Plastic and Composite Fastenings
- 06 10 00 Rough Carpentry
- 06 16 00 Sheathing
- 06 20 00 Finish Carpentry
- 06 41 16 Architectural Woodwork
- 06 46 00 Wood Trim

Division 07 – Thermal and Moisture Protection

- 07 21 00 Thermal Insulation
- 07 41 13 Metal Roof Panels
- 07 46 46 Mineral Fiber Cement Siding
- 07 61 13 Corrugated Sheet Metal Roofing
- 07 71 23 Manufactured Gutters and Downspouts
- 07 91 00 Preformed Joint Seals

Division 08 – Openings

- 08 14 00 Wood Doors and Frames
- 08 52 00 Wood Windows
- 08 61 00 Roof Windows

Division 09 – Finishes

09 29 00	Gypsum Board
09 30 33	Stone Tiling
09 64 29	Wood Strip and Plank Flooring
09 91 23	Interior Painting

Division 10 – Specialties

10 06 10	Schedules for Information Specialties
10 06 20	Interior Specialties
10 22 26.43	Operable Partitions
10 44 16	Fire Extinguisher
10 71 13.13	Exterior Shutters

Division 11 – Equipment

11 31 00 Residential Appliances

Division 12 – Furnishings

12 36 00 Countertops 12 42 00 **Table Accessories** 12 43 00 Portable Lamps 12 44 00 **Bath Furnishings** 12 45 00 **Bedroom Furnishings** 12 46 00 **Furnishing Accessories** 12 48 00 **Rugs and Mats** 12 58 00 **Residential Furniture** 12 58 29 Beds 12 58 36 Nightstands

Division 13 – Special Construction

Division 14 – Conveying Equipment

Division 21 – Fire Suppression

21 13 13 Wet-Pipe Sprinkler System

Division 22 – Plumbing

- 22 05 00 Common Work Results for Plumbing
- 22 11 16 Domestic Water Piping
- 22 11 19 Domestic Water Piping Specialties
- 22 12 19 Facility Potable Water Storage Tanks
- 22 13 16 Sanitary Waste Piping and Vent Piping
- 22 13 53 Facility Septic Tanks
- 22 33 30.16 Residential, Storage Electric Domestic Water Heaters
- 22 33 30.26 Residential, Collector-to-Tank, Heat Exchanger Coil, Solar Electric Domestic Water Heaters

Division 23 – Heating, Ventilating, and Air-Conditioning (HVAC)

- 23 31 13.16 Round and Flat-Oval Spiral Ducts
- 23 33 13 Back Draft Dampers
- 23 37 13 Diffusers, Registers and Grilles
- 23 40 00 Super Ultra-Low Penetration Filtration
- 23 72 00 Air to Air Recovery Equipment
- 23 81 26 Split System Air Conditioner
- 23 84 16 Dehumidifiers

Division 25 – Integrated Automation

Division 26 – Electrical

- 26 05 19 Low-Voltage Electrical Power Conductors and Cables
- 26 05 33 Raceway and Boxes for Electrical Systems
- 26 24 16 Panelboards
- 26 27 13 Electricity Metering
- 26 28 16 Enclosed Switches and Circuit Breakers
- 26 31 00 Photovoltaic Collector System
- 26 51 00 Interior Lighting
- 26 56 00 Exterior Lighting

Division 27 – Communications

- 27 21 00 Data Communication Network Equipment
- 27 21 33 Data Communication Wireless Access Points
- 27 22 26 Data Communications Laptop

Division 28 – Electronic Safety and Security

Divisions 31 – Earthwork

31 05 00 Soils for Earthwork

Division 32 – Exterior Improvements

- 32 90 00 Planting
- Division 33 Utilities
- Division 34 Transportation
- Division 35 Waterway and Marine Construction
- Division 40 Process Integration
- Division 41 Material Processing and Handling Equipment
- Division 42 Process, Heating, Cooling, and Drying Equipment
- Division 43 Process Gas and Liquid Handling, Purification, and Storage Equipment
- **Division 44 Pollution Control Equipment**
- Division 45 Industry-Specific Manufacturing Equipment

Division 48 – Electrical Power Generation

48 19 16 Electrical Power Generation Inverters

SECTION 01 10 00 SUMMARY

PART 1 - GENERAL

1.01 PROJECT INFORMATION

- A. Project: Team Massachusetts 4D Home entry, 2011 US Solar Decathlon
 - 1. Location: National Mall, Washington, DC
- B. Architect: Team Massachusetts Massachusetts College of Art and Design
- C. Engineer: Team Massachusetts University of Massachusetts, Lowell
- D. Work Consists of: Design, construction, transportation and assembly of a 1000 sq.ft. house

1.02 INTENT

- A. Drawings and specifications are intended to provide the basis for the proper completion of the Project suitable for the intended use of the Owner.
- B. Items not expressly set forth but which are reasonably implied or necessary for the proper performance of this work shall be included.

1.03 CUTTING AND PATCHING

- A. Provide cutting and patching work to properly complete the Project
- B. Do not remove or alter structural components without written approval
- C. Cut with tools appropriate for materials to be cut

D. Patch with materials and methods to produce patch which is not visible from a distance of three feet

E. Do not cut and patch in manner that would result in a failure of the work to perform as intended, decrease fire performance, decrease acoustical performance, decrease energy performance, decrease operational life, or decrease safety factors

1.04 PROJECT MEETINGS

- A. Arrange for a preconstruction conference prior to start of construction. Meeting shall be attended by Owner, Architect, Engineer, Construction Manager, Contractor, Health and Safety Officer and major subcontractors
- B. Arrange for progress meetings once a month during construction, prior to application for payment. Record minutes and distribute promptly.

1.05 SUBMITTALS

- A. Submit a project schedule and update at least monthly. Submit for approval all submittals listed in individual sections with the following number of copies: Shop Drawings, reviewed and annotated by the Contractor, 3 copies; product data, 3 copies; samples, 3 sets plus range samples where applicable; test reports, 3 copies; warranties, 3 copies; other submittals, 3 copies
- B. Include details of construction and adjacent construction in shop drawings. Clearly indicate any deviations from requirements of the contract documents. Fabricate materials from approved shop drawings only.

1.06 QUALITY ASSURANCE

- A. Comply with applicable codes, regulations, ordinances and requirements of authorities having jurisdiction, including accessibility guidelines where applicable. Submit copies of inspection reports, notices and similar documents to Construction Manager
- B. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years unless otherwise approved by Architect or Engineer
- C. Use experienced installers. Furnish evidence of experience if requested.
- D. Deliver, handle, and store materials in strict accordance with manufacturer's instructions.
- E. Use of any supplier or subcontractor is subject to Owners approval.
- F. Engage and pay for testing agencies as required. Refer to individual sections for additional requirements.

1.08 TEMPORARY FACILITIES

A. Provide temporary facilities and connections as required for the proper completion of the project.

Published 08/11/2011

- B. Provide and maintain temporary utility services
- C. Owner will pay for temporary utility service. Do not waste.
- D. Provide temporary protection for adjacent areas to prevent contamination by construction dust and debris.
- E. Provide temporary barricades as necessary to ensure protection of the public.
- F. Provide suitable waste disposal units and empty regularly. Do not permit accumulation of trash and waste materials.
- G. Maintain egress within and around construction areas.
- H. Maintain fire alarm systems in operation during construction
- I. Provide fire extinguishers in work areas during construction.
- J. Provide temporary protection for adjacent construction. Promptly repair any damage at no additional cost to the Owner.

1.09 PRODUCTS AND SUBSTITUTIONS

- A. Provide products and materials specified. Request Architects selection of colors and accessories in sufficient time to avoid delaying progress of work.
- B. Submit requests for substitutions shall be in writing, including reasons. Submit sufficient information for Architect or Engineer to evaluate proposed substitution.
- C. Remove and replace work which does not conform to the contract documents at no additional expense to the Owner.

1.10 INSTALLATION

- A. Inspect substrates and report any unsatisfactory conditions in writing.
- B. Do not proceed until unsatisfactory conditions have been corrected.
- C. Take field measurements prior to fabrication where practical. Form to required shapes and sizes with true edges, lines and angles. Provide inserts and templates as needed for work of other trades.
- D. Install materials inexact accordance with manufacturer's instruction and approved submittals.

Published 08/11/2011

- E. Install materials in proper relation with adjacent construction and with proper appearance.
- F. Restore units damaged during installation. Replace units which cannot be restored at no additional expense to the Owner.
- G. Refer to additional installation requirements and tolerances specified under individual specification sections.

1.11 CLOSEOUT

- A. Prepare punchlist for remaining work for review by the Architect, Project Manager or Construction Manager
- B. Complete punchlist items promptly at no additional expense to the Owner.
- C. Submit accurate record documents of building and site.
- D. Submit operating manuals, maintenance manuals, and warranty information
- E. Obtain and submit copies of occupancy permits.
- F. Train Owner in use of building systems
- G. Remove temporary facilities and provide final cleaning and touch up.
- H. Restore portions of building, site improvements, landscaping and other items damaged by construction operations to the satisfaction of the Architect, Project Manager or Construction Manger at no additional expense to the Owner

PART 2 - PRODUCTS

PART 3 – EXECUTION

END OF SECTION 01 10 00

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Temporary Generator
- B. Temporary Crane
- C. Temporary Scaffolding
- D. Temporary Barricades

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

A. NPS noise regulation 36CFR2.12, NCCCO

1.04 SUBMITTALS

- A. Generator: Proof of compliance with NPS 36CFR2.12
- B. Crane: Proof of operator NCCCO certification

PART 2 – PRODUCTS

2.01 GENERATOR

- A. Honda EU6500iSA
 - 1. hondapowerequipment.generator spec
- **B.** Plastic Tray
 - 1. Liquid Volume Capacity Greater Than Liquid Contents in Generator

- 2.02 CRANE
 - A. 100 Ton Hydraulic Crane
 - 1. Operator provided by crane owner
 - 2. Set crew: Mod-Set, Inc., 29 Trufant Lane, Topsham, ME 04086, 207-725-0959

2.03 SCAFFOLDING

- A. BAKER STYLE SCAFFOLDING
 - 1. Adjustable 6 foot to 12 foot

2.04 TEMPORARY BARRICADES

- A. Cones
- **B. Yellow Caution Tape**
- C. Signal Flags

PART 3 - EXECUTION

3.01 Install provided temporary protection to prevent damage to turf grass surfaces

END OF SECTION 01 54 00

SECTION 02 05 19.13 GEOTEXTILES FOR EXISTING CONDITIONS

PART 1- GENERAL

1.01 SECTION INCLUDES

A. Filter Fabric for Temporary Foundations

1.02 RELATED SECTIONS

05 50 00 Metal Fabrications

31 05 00 Soils for Earthwork

1.03 REFERENCE STANDARDS

A. ASTM D 5261, D 4632, D 4533, D 4833, D 3786, D 4491, and D 4751

1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 GEOTEXTILES

- A. US Construction Fabrics: Geotextile SKAPS W200
 - 1. Material: Woven polypropylene
 - 2. Roll Dimensions (W x L) ft: 12.5 x 432 / 17.5 x 309
 - 3. Square Yards per Roll: 600

PART 3- EXECUTION

- 3.01 INSTALLATION
 - A. Geotextile fabric must be placed on ground before sand is used for leveling footings

Published 11/23/2010

B. Geotextile fabric must be wrapped around leveling sand the top must be closed by placing footing Foamglas and steel plate material on top to ensure sand will not erode from underneath footings due to wind or rain

END OF SECTION 02 05 19.13

SECTION 05 14 13 ARCHITECTURALLY-EXPOSED STRUCTURAL ALUMINUM

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Photovoltaic mounting system
 - 1. Structural aluminum
 - 2. Stainless steel hardware

1.02 RELATED SECTIONS

A. Section 26 31 00 - Photovoltaic Collector System

1.03 REFERENCE STANDARDS

A. ANSI/AF&PA NDS-2005, UL 467

1.04 SUBMITTALS

A. Product datasheets from manufacturer

1.05 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializes in manufacturing the products specified in this section with minimum 10 years' experience.

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. IronRidge

2.02 COMPONENTS

A. XRS Rail

1. Extruded, anodized 6105-T5 aluminum, clear.

2. 16' long sections and 7' sections cut to size.

B. Mounting Accessories

- 1. Aluminum, mill
 - a. Internal rail splice Joins two rails
 - b. Adjustable L-foot Attaches rails to wooden trellis frame
 - c. Center clamp Type F, 2.5", clamps inside edges of PV panels to rails
 - d. End clamp Type F, 1.81", clamps outer edges of PV panels to rails
- 2. Stainless steel hardware
 - a. Self-drilling, self tapping screw $(10-16 \times \frac{1}{2})$ Fastens rails and splice; Eight per splice.
 - b. Hex cap bolt $(3/8-16 \times 1'')$ One per L-foot.
 - c. Flange nut (3/8"-16) One per L-foot bolt.
 - d. Hex cap bolt (1/4-20 x 2.50") One per center clamp
 - e. Flange nut (1/4-20) One per center clamp, one per end clamp
 - f. Hex cap bolt (1/4-20 x 1.81") One per end clamp

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Tools and instructions required for assembly; IronRidge installation manual
 - 1. Wrenches open-end, box-end, or socket drive with sockets to support the following size hex heads:
 - a. 3/8", used for ¼ cap-end screws, ¼ bolts
 - b. ¼", used for 3/8 cap-end screws, 3/8 bolts
 - 2. Torque values for dry bolts
 - a. Required torque of 84 in-lbs for bolt size of ¼-20
 - b. Required torque of 144 in-lbs for bolt size of 5/16-18
 - c. Required torque of 180 in-lbs for bolt size of 3/8-16

END OF SECTION 05 14 13

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Steel plate for temporary footings

1.02 RELATED REQUIREMENTS

- A. 31 05 00 Soils for Earthwork
- B. 02 05 19.13 Geotextiles for Existing Conditions

1.03 REFERENCE STANDARDS

A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.

PART 2 - PRODUCTS

2.01 METAL FABRICATIONS

- A. General: Shear and punch metals cleanly and accurately. Remove burrs and ease exposed edges.
- B. Dimensions
 - 1. 2 foot x 2 foot x 1/2 inch Quantity: 18
 - 2. 2 foot 6 inch x 2 foot 6 inch x 1/2 inch Quantity: 6
 - 3. 2 foot x 2 foot 4 inches x 1/2 inch Quantity: 1

2.03 STEEL AND IRON FINISHES

- A. Prepare uncoated ferrous metal surfaces to comply with SSPC-SP 3, "Power Tool Cleaning," and paint with a fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79.
- B. Shop Priming: Prepare surfaces according to SSPC-SP 2, "Hand Tool Cleaning"; or SSPC-SP 3, "Power Tool Cleaning." Shop prime steel to a dry film thickness of at least 0.038 mm. Do not prime surfaces to be embedded in concrete or mortar or to be field welded.

C. Apply bituminous paint to concealed surfaces of units set into concrete.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Perform cutting, drilling, and fitting required for installing miscellaneous metal fabrications. Set metal fabrication accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack.

B. Fit exposed connections accurately together to form hairline joints.

END OF SECTION 05 50 00

SECTION 06 05 23

WOOD, PLASTIC AND COMPOSITE FASTENINGS

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Metal Plates
- B. Metal Connectors
- C. Bolts, Washers and Nuts
- D. Threaded Rod

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

A. ICC-ES ESR-2105 / ESR-2523 / ESR-2604 / ESR-2523

PART 2 – PRODUCTS

2.01 METAL PLATES

- A. Simpson Strong-Tie: Architectural products group, The Specialty Collection
 - 1. Custom Fabricated Truss Plates
 - 2. Custom Fabricated Trellis Plates
 - 3. Finish: Factory Primed Grey, Field Painted

2.02 METAL CONNECTORS

A. Manufacturer: Simpson Strong-Tie

- 1. DTT2Z Module Connectors, Quantity: 56
- 2. HL37 Trellis Angle Connectors, Quantity: 36
- 3. LUS28 Deck Joist Hanger, Quantity: 25
- 4. LUS26 Deck Joist Hanger, Quantity: 240
- 5. ABA44Z Deck Post Base, Quantity: 36
- 6. IUS 3 1/2 inch x 11 7/8 inch Floor Joist, Quantity: 138
- 7. A34 Angle Hall Ceiling Connection, Quantity: 20
- 8. HL53 House Footings L Bracket, Quantity: 40
- 9. CMST Coil Strap
- 10. U24 Ceiling Joist Hanger, Quantity: 17
- **B.** Metal Fabrication
 - 1. L Bracket, East Trellis Column: 3 1/2 inch x 3 1/2 inch x 1/4 inch, Qty: 4
 - 2. L Bracket, East Trellis Column: 3 1/2 inch x 4 3/4 inch x 1/4 inch, Qty: 4

2.03 BOLTS, WASHERS AND NUTS

- A. Manufacturer: Simpson Strong-Tie
 - 1. Lag Bolt
 - a. 6 inch x 1/4 inch Decks and Ramps, Quantity: 102
 - b. 4 inch x 1/4 inch Decks and Ramps, Quantity: 42
 - c. 8 inch x 1/2 inch Decks and Ramps, Quantity: 42
 - d. 4 inch x 3/4 inch Truss, Quantity: 200
 - e. 10 inch x 3/4 inch Truss, Quantity: 26
 - f. 4 inch x 1/2 inch Trellis, Quantity: 328
 - 2. Eye Bolt

2.04 THREADED ROD

- A. 11 1/2 inch Module Connectors
- B. 15 inch Module Connectors

PART 3 - EXECUTION

3.01 EXECUTION

A. Steel washers, flat to be used where bolt head or hex nut in direct contact with wood

END OF SECTION 06 05 23

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Engineered Wood Products
- **B.** Dimensional Lumber

1.02 RELATED REQUIREMENTS

- A. Reinforcing and Framing Schedules S-601
- B. Column and Beam Schedules S-602

1.03 REFERENCE STANDARDS

- A. Dimensional lumber: AWPA C24; ALSC Board of Review; IRC 2009
- B. Engineered lumber: ICC ES ESR-1387, HUD MR 925; ICC ES ESR-1153
- C. Fasteners: CABO NER-272; CABO NER-272; ASTM A 563; ASTM A 563; ASTM A 153/A153M; ASTM A 307, Grade A

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. Nordic Engineered Wood, www.nordicewp.com

2.02 ENGINEERED WOOD PRODUCTS

A. Nordic Joist

- 1. Floor Joists: Nordic NI80, 11 7/8 inches
- 2. Plates and Studs: Nordic NI40x, 11 7/8 inches

- 3. Rafters: Nordic NI40x, 14 inches
- 4. Nordic Joist Data Sheets

B. Nordic Lam

- 1. Columns: 1 3/4 inch x 9 1/2 inch
- 2. Columns at Module Marriage Line: 4 inch x 8 inch
- 3. Roof and Deck Beams: 3 1/2 inch x 11 7/8 inch
- 4. Beam and Header Data Sheets
- 5. Column Data Sheets
- C. Nordic EnviroWall
 - 1. Module Mating Line Keyway: 2 inch x 4 inch
 - 2. Module Mating Line Keyway: 2 inch x 6 inch
 - 3. Envirowall Data Sheets

2.02 DIMENSIONAL LUMBER

- A. S4S
- B. Spruce, Pine, Fir
- C. 2 inch x 4 inch
- D. 2 inch x 6 inch

2.03 FASTENERS

- A. Power Drive Fasteners
- B. Steel bolts, hex nuts and flat washers

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Locate nailers, blocking and similar supports to comply with requirements for attaching other Construction.
- B. Securely attach rough carpentry to substrates

- C. Provide preservative-treated materials for all exterior rough carpentry unless otherwise indicated.
- D. Where rough carpentry is exposed to weather, in ground contact, or in areas of high relative humidity, provide fasteners with hot-dip zinc coating or of type 304 stainless steel.
- E. Steel washers, flat to be used where bolt head or hex nut in direct contact with wood
- F. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent

END OF SECTION 06 10 00

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Combination Wall Sheathing, Water-resistive Barrier and Air Barrier
- B. Combination Roof Sheathing and Roof Underlayment
- C. Self-Adhering Flexible Flashing
- D. Subflooring Material
- E. Interior Sheathing

1.02 RELATED REQUIREMENTS

- A. 09 60 00 Flooring
- B. 10 22 26.43 Operable Partitions
- 1.03 REFERENCE STANDARDS
 - A. US DOC PS-2, 2009 IRC, CABO NER-272
- 1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. Huber Engineered Woods, 800-933-9220, www.huberwood.com

2.02 EXTERIOR SHEATHING

A. Exterior Wall Sheathing

1. ZIP System, 1/2 inch Oriented Strand Board Wall Sheathing with Integral Water-Resistive Barrier, Exposure I Sheathing.

2. Dimensions: 1/2 inch, 4 foot x 8 foot panels

B. Roof Sheathing

1. ZIP System, 5/8 inch Oriented Strand Board Roof Sheathing with Integral Water-Resistive Barrier, Exposure I, Structural I Sheathing

- 2. Dimensions: 5/8 inch, 4 foot x 8 foot panels
- 3. Edge: Tongue and Groove
- C. Self-Adhering Flexible Flashing

1. ZIP System Self-Adhering Tape: Pressure Sensitive, Self-Adhering, Cold-Applied, Proprietary Seam Tape Consisting of Polyolefin Film with Acrylic Adhesive

- 2. 3 1/2 inch flashing tape
- 3.6 inch flashing tape

2.03 SUBFLOORING

A. Underlayment

- 1. Advantech (AT-Series) Engineered Flooring Panels
- 2. Not less than 23/32 inch x 4 feet x 8 feet, 24 oc
- 3. Edge Detail: Tongue and Groove

2.04 INTERIOR SHEATHING

A. Walls

- 1. Oriented-Strand-Board Sheathing
- 2. Dimensions: 5/8 inch, 4 foot x 8 foot panels
- 3. Performance Standard: DOC PS2 and ICC-ES ESR-1785

B. Ceiling

- 1. Oriented-Strand-Board Sheathing
- 2. Dimensions: 5/8 inch, 4 foot x 8 foot panels
- 3. Performance Standard: DOC PS2 and ICC-ES ESR-1785

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Securely attach to substrates
- B. All Subflooring, Wall and Roof Sheathing to be glued and nailed to wood framing.
- C. Furnish tape gun for Zip System flashing tapes

END OF SECTION 06 16 00

SECTION 06 20 00 Finish Carpentry

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Lumber
- B. Interior Trim
- C. Exterior Trim
- D. Fasteners

1.02 RELATED REQUIREMENTS

- A. 06 10 00 Rough Carpentry
- B. 06 41 16 Architectural Woodwork

1.03 REFERENCE STANDARDS

A. DOC PS 20, American Lumber Standards Committee Board and Review

1.04 SUBMITTALS

A. Certification Requirements

PART 2 - PRODUCTS

2.01 LUMBER

A. Dimensional lumber: S4S Spruce, Pine or Fir

2.02 INTERIOR STANDING AND RUNNING TRIM

A. Trim: Kiln dried, #1 clear pine

2.02 EXTERIOR STANDING AND RUNING TRIM

A. Trim: Kiln dried, #1 Clear Western Red Cedar

2.03 FASTENERS

A. Hardware: Stainless-steel, hot-dip galvanized or aluminum.

B. Glue: Aliphatic-resin, polyurethane or resorcinol wood glue recommended by the manufacturer.

PART 3 – EXECUTION

3.01 INSTALLATION

- A. Install standing and running trim with minimum number of joints practical, using full length pieces from maximum lengths of lumber available. Stagger joints in adjacent and related trim. Cope at returns and miter at corners.
- B. Use waterproof glue for exterior applications.

END OF SECTION 06 20 0

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Door and Window Casings
- B. Base Board

1.02 RELATED REQUIREMENTS

- A. 06 20 00 Finish Carpentry
- B. 06 41 16 Architectural Woodwork

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 DOOR AND WINDOW TRIM

- A. Finish Grade Plywood
- B. 10 inch x 3/4 inch nominal
- C. Finish: Natural satin finish, water based acrylic

2.02 BASE BOARD

- A. Clear Pine or Poplar
- B. 1 inch x 6 inch nominal, square profile
- C. Finish: Painted same color as walls

PART 3 - EXECUTION (Not Used)

END OF SECTION 06 46 00

SECTION 06 82 00 GLASS-FIBER REINFORCED PLASTIC

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Temporary Footing Materials

1.02 RELATED REQUIREMENTS

A. 05 50 00 Metal Fabrications

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 MANUFACTURER

A. Pittsburgh Corning US, www.foamglas.us/foamglas specs

2.02 TEMPORARY FOOTINGS

A. Foamglas Flat Block– 18 inch x 24 inch x 3 inch thick

PART 3- EXECUTION (Not Used)

END OF SECTION 06 82 00

SECTION 07 21 00 THERMAL INSULATION

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Sprayed Insulation
- B. Blown Fiberglass Insulation

1.02 RELATED REQUIREMENTS

- A. 06 10 00 Rough Carpentry
- B. 06 16 00 Sheathing

1.03 REFERENCE STANDARDS

A. ICC-ES; IBC/IRC; ASTM E 84; ASTM E 96; ASTM E 283; ASTM C 518; ASTM C 687; ASTM C 177; ASTM C 764 Type I; ASTM C 1338; ASTM D 1621; ASTM D 1622; ASTM D1623; ASTM D 2126; ASTM D 2842; ASTM E 136

B. Federal Regulation 16 CFR 1209, 16 CFR 1404, 16 CFR 460. ASTM C-739, ASTM E-84, Smoke Developed Index <450. ICC-ES ESR-1996 Report

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. CertainTeed Corp., Insulation Group: 750 E. Swedesford Rd. P. O. Box 860; Valley Forge, PA 19482-0860; Toll Free Tel: 800-233-8990, www.certainteed.com

2.02 SPRAYED INSULATION

A. CertaSpray Polyurethane Closed Cell Foam

B. Roof, Floor and Walls: 3,000 square feet at a depth of 4 inches

2.02 BLOWN FIBERGLASS INSULATION

- A. Optima Blown Fiberglass Insulation
- B. Roof: 1,250 square feet at a depth of 10 inches
- C. Floor and Walls: 1,850 square feet at a depth of 8 inches

PART 3 - EXECUTION

A. Confirm completion of work in writing for all trades requiring access to interior of wall before application.

3.01 INSTALLATION

END OF SECTION 07 21 0

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Standing Seam Corrugated Metal Roof Panels

B. Trim

1.02 RELATED REQUIREMENTS

A. 06 16 00 SHEATHING

1.03 REFERENCE STANDARDS

- A. UL 263 Fire Resistance Rating; UL 2218 Class 4 Impact Resistance; UL 790 Class A Fire Resistance Rating; ASTM E-283 Air Infiltration Approved; ASTM E-331 Water Penetration Approved CEGS-07416 US Army Corps of Engineers Rated-ASTM E-1592; UL 580 Class 90 Wind Uplift; ASTM 2112-07 5.13; ASTM D 226
- 1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 STEEL ROOFING PANELS

- A. Manufacturer: Drexel Metals, Inc., 204 Railroad Dr., Ivyland, PA 18974, drexmet.com
- B. Galvanized steel sheet metal roofing panels, 24" width, 26 gage.
 - 1. Exposed seam
 - 2. 1/2 inch rib height

2.02 TRIM

- A. Eave Drip Edge
- B. Rake Drip Edge

C. Ridge Cap

PART 3 – EXECUTION

END OF SECTION 07 41 13

1.01 SECTION INCLUDES

A. Mineral fiber cement siding

1.02 RELATED REQUIREMENTS

A. 06 16 00 SHEATHING

1.03 REFERENCE STANDARDS

A. ASTM C 920; ASTM C 1185; ASTM C 1186; ASTM E 72; ASTM E 84; ASTM E 96; ASTM E 136; ASTM E 228; ASTM G 26

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. CertainTeed Corporation, Siding Products Group, P.O. Box 860, Valley Forge, Pennsylvania 19482. (800) 233-8990, www.certainteed.com

2.02 FIBER CEMENT SIDING

- A. CertainTeed ColorMax Prefinished Smooth Lap
- B. Size: 8 1/4 inch x 12 foot

PART 3 - EXECUTION

END OF SECTION 07 46 46

SECTION 07 71 23 MANUFACTURED GUTTERS AND DOWNSPOUTS

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Gutters
- B. Downspouts

1.02 RELATED REQUIREMENTS

- 1.03 REFERENCE STANDARDS
- 1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 GUTTERS

A. Aluminum Gutters

- 1. 4 inch
- 2. Style: Box Gutter, Square
- 3. Aluminum Gutter Hangers

2.02 DOWNSPOUTS

- A. Aluminum Downspout
 - 1. 3 inch
 - 2. Aluminum Strapping

PART 3 – EXECUTION (Not Used) END OF SECTION 07 71 23

1.01 SECTION INCLUDES

- A. Module Joint Seals
- B. Window Joint Seals

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

A. CE EN 14909, ASTM E2112

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. Tremco - Illbruck

2.02 Joint Seal

- A. Illbruck 2112 Insulation Tape
- B. willseal product info

PART 3 – EXECUTION

END OF SECTION 07 91 00

SECTION 08 14 00 WOOD DOORS AND FRAMES

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Pocket Doors
- B. Prefinished Wood Doors
- C. Door Hardware

1.02 RELATED REQUIREMENTS

A. 08 06 10 Door Schedule

1.03 REFERENCE STANDARDS

- A. Passive House Certification
- B. Glazing: IRC 308.6

1.04 SUBMITTALS

- A. Passive House Certification
- **B.** Schematic Drawings

PART 2 – PRODUCTS

2.01 POCKET DOORS

- A. Johnson Hardware, www.johnsonhardware.com
 - 1. 2060 Pocket Door Frame
 - 2. Frame compatible with 2inch x 6 inch interior wall

- B. Jeld-Wen, www.jeld-wen.com
 - 1. Flush All Panel Interior Door
 - 2. Solid Core

2.02 EXTERIOR DOORS

- A. Front Door, South elevation
 - 1. Model: Makrowin 88G2
 - 2. Passive House Certified
 - 3. Finish: Mahogany
- A. Patio Door, West elevation
 - 1. Model: Makrowin 88G2
 - 2. Passive House Certified
 - 3. Finish: Mahogany

2.02 DOOR GLAZING

A.Triple Glazed Low E Insulated with Warm-Edge Spacer System – Swisspacer V, Ug-value of 0.105, SHGC of 0.5 and VT of 0.71

2.03 Hardware: Secustic Melbourne F9-2

A. Aluminum Steel Matte textured

PART 3 - EXECUTION

END OF SECTION 08 14 00

1.01 SECTION INCLUDES

- A. Manufactured Windows
- B. Window Hardware

1.02 RELATED REQUIREMENTS

A. 08 06 50 Window Schedule

1.03 REFERENCE STANDARDS

A. Passive House Certification, IRC 308.6

1.04 SUBMITTALS

A. Passive House Certification

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. Makrowin, European Architectural Supply, 100 Todd Pond Rd, Lincoln, MA, 781-647-4432, www.eas-usa.com

2.02 WINDOW

A. Profile: Makrowin 88G2

B. Glazing: Triple Glazed Low E Insulated with Warm-Edge Spacer System – Swisspacer V, Ug value of 0.105, SHGC of 0.5 and VT of 0.71

2.03 Hardware: Secustic Melbourne F9-2

- A. Aluminum Steel Matte textured
- B. Fully perimeter locking with 2 security closures and safety lock

PART 3 – EXECUTION (Not Used)

END OF SECTION 08 52 00

SECTION 08 61 00 ROOF WINDOWS

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Skylight

1.02 RELATED REQUIREMENTS

A. 08 06 60 Skylight Schedule

1.03 REFERENCE STANDARDS

A. IRC 308.6

1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 MANUFACTURER

A. Roto-Frank, European Architectural Supply, 100 Todd Pond Rd, Lincoln, MA, 781-647-4432, www.eas-usa.com

2.02 SKYLIGHT

- A. Model: WDF Design R8 Top Hinged
- B. Frame: Wood Profile
- C. Glazing: 9A 3 Pane, Tempered, Ug 0.08, Uw 0.14, SHGC 30%, VT 45%

PART 3 - EXECUTION

END OF SECTION 08 61 00

U.S. D.O.E. Solar Decathlon 2011

SECTION 09 29 00

GYPSUM BOARD

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Gypsum Board Wall Panels
- B. Mold and Mildew Resistant Gypsum
- C. Gypsum Board Ceiling Panels

1.02 RELATED REQUIREMENTS

A. 09 06 20 Schedule for Gypsum

1.03 REFERENCE STANDARDS

A. ASTM C 473; ASTM C 475; ASTM C 514; ASTM C 665; ASTM C 840; ASTM C 954; ASTM C 1002; ASTM C 1047: ASTM C 1396: ASTM C 1629: ASTM D 3273; GA-214; GA-216; GA-231; GA-238 Federal Specification SS-L-30D Type III (Grade X); GREENGUARD Children & Schools Certified

1.05 SUBMITTALS

1.06 QUALITY ASSURANCE

A. Provide Products Manufactured in North America Only

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. CertainTeed Gypsum, Inc.; 4300 West Cypress Street, Suite 500, Tampa, FL 33607; 1-800-233-8990 (1-866-427-2872); www.certainteed.com

2.02 GYPSUM BOARD WALL PANELS

- A. REGULAR GYPSUM BOARD: Gypsum core panel solid set core enclosed in paper. Complying with ASTM C1396.
 - 1. ProRoc[®] Regular, manufactured by CertainTeed Gypsum, Inc.
 - 2. Thickness: 1/2 inch
 - 3. Width: 48 inches
 - 4. Length: 8 feet

B. MOISTURE AND MOLD RESISTANT GYPSUM BOARD: Moisture and Mold Resistant Gypsum Board: Gypsum core panel with enhanced core formulated for resistance to moisture and mold; surfaced with moisture/mold resistant paper on front, back, and long edges. Complying with ASTM C1396

- 1. ProRoc[®] Moisture and Mold Resistant With M2TECH[™] Gypsum Board by CertainTeed Gypsum, Inc.
- 2. Thickness: 1/2 inch
- 3. Width: 48 inches
- 4. Length: 8 feet

2.03 GYPSUM BOARD CEILING PANELS

- A. REGULAR GYPSUM CEILING BOARD: Gypsum Core panel with enhanced sag resistant core. Complying with ASTM C 1396.
 - 1. ProRoc[®] Interior Ceiling, manufactured by CertainTeed Gypsum, Inc.
 - 2. Thickness: 1/2 inch
 - 3. Width: 48 inches
 - 4. Length: 8 feet

PART 3 – EXECUTION (Not Used)

END OF SECTION 09 29 00

1.01 SECTION INCLUDES

- A. Concrete Tile
- B. Grout
- C. Tile Backing Board

1.02 RELATED REQUIREMENTS

A. 09 06 30 Schedule for Tiling

1.03 REFERENCE STANDARDS

- A. Ceramic Tile: ANSI A137.1.1988, ANSI- A137.1, ANSI A108.13, , TCA Installation Handbook recommendations
- B. Grout: ANSI A118.7, ANSI A108.10
- C. Tile Backing Board: ANSI A118.9, UL
 - 1. Bonding Material: ANSI A118.4, ANSI A118.11

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 CONCRETE TILE

A. 6 inch x 6 inch

2.02 GROUT

A. Color to match tile color

2.03 TILE BACKING BOARD

- A. WonderBoard 1/2 inch
- B. 36 inch x 60 inch x 1/2 inch
- C. FlexBond Crack Prevention Mortar

PART 3 - EXECUTION (Not Used)

END OF SECTION 09 30 33

SECTION 09 64 29 WOOD STRIP AND PLANK FLOORING

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Pre-finished, tongue and groove wood flooring

1.02 RELATED REQUIREMENTS

A. 06 16 00 Sheathing

1.03 REFERENCE STANDARDS

A. NOFMA grading rules for species, grade, and cut.

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 SOLID-WOOD STRIP FLOORING A. Maple

- B. Tongue and grooved
- C. 3/4 inch
- D. 3-1/4 inch
- E. Random Lengths 9 to 84 inch
- F. Pre-Finished

PART 3 - EXECUTION

3.01 Installation

A. Comply with flooring manufacturer's written installation instructions, but not less than applicable recommendations in NWFA's "Installation Guidelines: Wood Flooring."

B. Solid-wood, Strip flooring: nail down on or above grade

END OF SECTION 09 64 29

1.01 SECTION INCLUDES

A. Interior Paint

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

A. Conformance Standards: AIM; CARB; LADCO; OTC; SCQAMD; Low VOC; MPI

1.04 SUBMITTALS

A. Color Sample

PART 2 - PRODUCTS

2.01 LATEX PAINT

- A. Benjamin Moore, EcoSpec Interior Latex Flat 219
- B. Color: Pure White
- C. Low VOC, low odor

PART 3 – EXECUTION

3.01 PREPARATION

- A. Comply with recommendations in MPI's "MPI Architectural Painting Specification Manual" applicable to substrates indicated.
- B. Remove hardware, lighting fixtures, and similar items that are not to be painted. Mask items that cannot be removed. Reinstall items in each area after painting is complete.

Published 11/23/2010

- C. Clean and prepare surfaces in an area before beginning painting in that area. Schedule painting so cleaning operations will not damage newly painted surfaces.
- D. General surface preparation indicated by manufacturer.
 - 1. Gypsum Wallboard: Nails or screws should be countersunk, and they along with any indentations should be mudded flush with the surface, sanded smooth and cleaned to remove any dust, then prime with a high quality latex primer prior to painting the substrate.
 - 2. Wood: Unpainted wood or wood in poor condition should be sanded smooth, wiped clean, then primed. Any knots or resinous areas must be primed before painting. Countersink all nails, putty flush with surface, then prime with a high quality latex primer.
- E. Provide materials that are compatible with one another and with substrates

3.02 APPLICATION

- A. Comply with recommendations in MPI's "MPI Architectural Painting Specification Manual" applicable to substrates indicated.
- B. Paint exposed surfaces, unless otherwise indicated.
 - 1. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces.
 - 2. Paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 3. Paint the backside of access panels.
 - 4. Do not paint prefinished items, items with an integral finish, operating parts, and labels unless otherwise indicated.
- C. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, or other surface imperfections. Cut in sharp lines and color breaks.
- D. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

3.03 CLEANING

- A. Washing Instructions: Wait at least 14 days after painting before cleaning the surface with a non-abrasive mild cleaner.
- B. Clean up: Wipe up spills immediately with damp cloth or sponge. Wash brushes, rollers and other painting tools with soap and water immediately after use.

END OF SECTION 09 91 23

SECTION 10 06 10 SCHEDULES FOR INFORMATION SPECIALTIES

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Exterior Signage
- B. Interior Signage

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 TBD

PART 3 - EXECUTION

3.01 TBD

END OF SECTION 10 06 10

1.01 SECTION INCLUDES

- A. Towel Racks
- **B.** Soap Dishes
- C. Shower Curtain
- D. Toilet Paper holder

1.02 RELATED REQUIREMENTS

A. 09 30 13 Ceramic Tiling

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 – PRODUCTS

- 2.01 TOWEL BAR
 - A. IKEA Grundtal: Rail
 - 1. Stainless Steel Rail, 20 7/8", model 900.113.96, cost \$6.99, quantity 1

2.02 SOAP DISHES

- A. Ceramic Tile Soap Dishes
- B. Product Description: Glazed Ceramic Soap Dish Tiles for the bathroom

2.03 SHOWER CURTAIN

- A. Water Resistant Shower Curtain and Shower Rod
- B. Product Description: Water resistant fabric/plastic shower curtain, curtain rod, curtain rings, and mounting hardware.

2.04 TOILET ROLL HOLDER

- A. IKEA Grundtal
 - 1. Toilet Paper Roll Holder, Stainless Steel, model 200.478.98 ,cost \$4.99, quantity 1
 - 2. Wall mounted, wood

PART 3 - EXECUTION

END OF SECTION 10 06 20

SECTION 10 22 26.43 OPERABLE PARTITIONS

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Hardware for moveable walls
- B. Plywood

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

A. CARB Phase 2

1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 OVERHEAD TRACK

- A. 2610F Wall Mount Door Hardware
 - 1. Part #: 2610F
 - 2. Johnson Hardware: http://johnsonhardware.com track

2.02 WHEELS

A. Hamilton Caster

- 1. XC70D Duralast Wheel ; 6inch x 3 inch ; 3/4 BB
- 2. Model : W-630-DB70-3/4
- 3. http://hamiltoncaster.com XC70D wheel

2.03 PLYWOOD

A. Finish Grade

B. Birch

C. Formaldehyde free

PART 3 - EXECUTION

END OF SECTION 10 22 26.43

1.01 SECTION INCLUDES

A. Fire Extinguisher

1.02 RELATED REQUIREMENTS

A. 21 13 13 Wet Pipe Sprinkler System

1.03 REFERENCE STANDARDS

A. Mets NFPA requirements, UL rated 2-A:10-B:C, UL listed

1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 KIDDE model FX210R

- A. Type 2A-10BC
- B. Part # 21002770
- B. http://www.kidde.com fire extinguisher

PART 3 - EXECUTION

END OF SECTION 10 44 16

1.01 SECTION INCLUDES

A. Exterior Shutters, Motorized

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 EXTERIOR SHUTTERS, MOTORIZED

- A. Manufacturer: HELLA
- B. Model: AR 63 ZM
- C. http://www.hella.info outdoor blinds

PART 3 - EXECUTION

END OF SECTION 10 71 13.13

SECTION 11 31 00

RESIDENTIAL APPLIANCES

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Kitchen appliances.
- B. Laundry appliances.
- C. Entertainment equipment.

1.02 RELATED REQUIREMENTS

- A. Division 22 Plumbing Piping: Plumbing connections for appliances
- B. Division 26 Equipment Wiring: Electrical connections for appliances

1.03 REFERENCE STANDARDS

A. UL – Underwriters Laboratories Inc.; ENERGY STAR

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 KITCHEN APPLIANCES

- A. Refrigerator/Freezer combination
 - 1. Manufacturer & Model: Whirlpool GB9FHDXWS
 - 2. Type: bottom freezer

U.S. D.O.E. Solar Decathlon 2011

- 3. Size: 18.5 cubic feet
- 4. Specifications: To view this product's technical data, CLICK HERE.

B. Dishwasher

- 1. Manufacturer & Model: Fisher & Paykel DD24SCX6
- 2. Type: compact, single drawer
- 3. Specifications: To view this product's technical data, CLICK HERE.

C. Cooktop

- 1. Manufacturer & Model: BOSCH NET5054UC 500 Series
- 2. Type: built-in
- 3. Size: 4-burner
- 4. Specifications: To view this product's technical data, CLICK HERE.

D. Microwave-Convection Oven combination

- 1. Manufacturer & Model: GE Monogram Built-In Oven ZSC1201NSS
- 2. Type: built-in
- 3. Size: 1.6 CU FT
- 4. Specifications: To view this product's technical data, CLICK HERE.

E. Range Hood

- 1. Manufacturer & Model: BROAN 413004
- 2. Specifications: To view this product's technical data, CLICK HERE.

2.02 LAUNDRY APPLIANCES

- A. Clothes Washer/Dryer combination
 - 1. Manufacturer & Model: LG WM3455HW
 - 2. Type: compact
 - 3. Size: 2.7 cubic feet
 - 4. Specifications: To view this product's technical data, CLICK HERE.

2.03 ENTERTAINMENT EQUIPMENT

A. Television

- 1. Manufacturer & Model: Panasonic TC-L42D2
- 2. Type: LED
- 3. Size: 42 inches
- 4. Energy: Power Rating 0.105 kW
- 5. Specifications: To view this product's technical data, CLICK HERE.

B. Home Theater

- 1. Manufacturer & Model: Sony BDV-E770W
- 2. Type: Includes blu-ray player, audio-video receiver & speakers
- 3. Energy: Power Rating 0.12 kW
- 4. Specifications: To view this product's technical data, CLICK HERE.

PART 3 - EXECUTION

END OF SECTION 11 31 00

SECTION 12 30 00

CASEWORK

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Kitchen Cabinets
- B. Bathroom Cabinets
- 1.02 RELATED REQUIREMENTS

A. 12 36 13 Countertops

- 1.03 REFERENCE STANDARDS
- 1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. IKEA

2.02 KITCHEN CABINETS

A. IKEA Akurum: Frame: White; Front: Abstrakt High Gloss White

- 1. Upper Cabinet, model 298.695.04, cost \$84.00, quantity 2
- 2. Base Cabinet, 2+2 Drawers, model 098.692.70, cost \$270.96, quantity 1
- 3. Base Cabinet, 2 Drawers / 2 Doors, model 398.693.44, cost \$223.98, quantity 3

- 4. Base Cabinet, Sink, model 998.692.61, cost \$ 119.00, quantity 1
- 5. Base Cabinet, Drawer / Door, model 998.693.22, cost \$124.99, quantity 1
- 6. Drawer Base Cabinet, 3 Drawer, model 098.692.89, cost \$175.97, quantity 1
- 7. www.ikea.com akurum cabinets

2.03 BATHROOM CABINETS

- A. IKEA Freden
 - 1. Mirror Cabinet, model 801.411.81, cost \$99.99, quantity 1
 - 2. Sink Cabinet, model 298.627.34, cost \$279.00, quantity 1
 - 3. www.ikea.com freden cabinets

PART 3 – EXECUTION (Not Used)

END OF SECTION 12 30 00

SECTION 12 36 00 COUNTERTOPS

PART 1 – GENERAL

- 1.01 SECTION INCLUDES A. Quartz Composite Countertop
- 1.02 RELATED REQUIREMENTS
- 1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. Caesarstone, 6840 Hayvenhurst Ave. Suite 100, Van Nuys, CA 91406 (877)978-2789, caesarstoneus.com

2.02 COUNTERTOP

- A. Color: Concrete 2003
- B. Edge: Radius
- C. Thickness: 3/4 inch

PART 3 – EXECUTION

3.02 INSTALLATION

END OF SECTION 12 36 00

U.S. D.O.E. Solar Decathlon 2011

SECTION 12 58 00 RESIDENTIAL FURNITURE

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Custom Fabricated Residential Furniture
 - 1. Desktop Work Space
 - 2. Dining Table and chairs
 - 3. Residential Chairs
 - 4. Coffee Table
 - 5. Side Tables
 - 6. Storage Bench Seating
 - 7. Couches and Loveseats

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 RESIDENTIAL FURNITURE

- A. Desktop Workspace: Desktop is a collapsible work surface that can easily be folded up and relocated. Desktop consists primarily of wood and metal.
- B. Dining Table: The dining table is designed to seat up to 10 guests, contain storage for house wares and be reconfigured to accommodate various dining arrangements. The table is comprised primarily of wood and metal.

Published 11/23/2010

- C. Multi-use Chairs: These chairs are intended to service the dining room table, both desktop workspaces, and casual seating throughout the house. The primary materials used will be wood and metal.
- D. Coffee Table: The coffee table will be made up of wood and metal, and will incorporate a storage element.
- E. Side Tables: The side tables will be flexible furniture pieces that can be used either as night side tables or end tables for living room seating. The tables will be fabricated out of wood and metal.
- F. Storage Bench Seating: The bench seating will be reconfigurable to accommodate various dining arrangements, and will incorporate a storage component. The bench seating will consist of wood and metal.

PART 3 – EXECUTION

3.01 INSTALLATION

- A. The installation of all furniture will be in accordance with the architectural drawings provided by team Massachusetts.
- B. The installation of all furniture will take place after the 4D house is assembled and the interior finishes are complete.

END OF SECTION 12 58 00

SECTION 12 58 29 BEDS

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Bed Master Bedroom
- B. Bed Child Bedroom

1.02 RELATED REQUIREMENTS

A. 12 45 00 Bedroom Furnishings

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 Master Bed

2.02 Child Bed

PART 3 – EXECUTION (Not Used)

END OF SECTION 12 58 29

1.01 SECTION INCLUDES

- A. Nightstands Master Bedroom
- B. Nightstands Child Bedroom

1.02 RELATED REQUIREMENTS

A. 12 43 00 Portable Lamps

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 Master Bedroom Nightstands

2.02 Child Bedroom Nightstands

PART 3 – EXECUTION (Not Used)

END OF SECTION 12 58 36

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Tubing
- B. Rings
- C. Supports
- D. Tees
- E. Valves
- F. Finishes
- G. Sprinkler Assemblies
- H. Cabinet
- I. Adapters
- J. Tools
- 1.02 RELATED REQUIREMENTS

A. 10 44 16 Fire Extinguishers

1.03 REFERENCE STANDARDS

A. UPC, IPC, NSPC, NPC

B.B137.5, ASTM F1960

C. ANSI/NSF 14/61, ICC ESR 1099, IAPMO 3558

1.04 SUBMITTALS

PART 2 – PRODUCTS

- 2.01 PIPING AND FITTINGS
 A. Manufacturer: Uponor Inc., 5925 148th Street West, Apple Valley, MN 55124 www.uponor-usa.com
 - B. AquaPEX Tubing, White
 - 1. 1/2 inch, Quantity: 100 foot

- 2. 3/4 inch, Quantity: 10 foot
- 3. 1 inch, Quantity: 200 foot

C. ProPEX Rings

- 1. Ring with Stop -1/2 inch, Quantity: 8
- 2. Ring with Stop 3/4 inch, Quantity: 2
- 3. Ring 1 inch, Quantity: 28

D. Supports

- 1. Tube Talon
 - a. 1/2 inch, Quantity: 100

b. 5/8 inch, Quantity: 100

- c. 3/4 inch, Quantity: 100
- d. 1 inch, Quantity: 100
- 2. PEX Wall Support Bracket
 - a. 1/2 inch, Quantity: 3
 - b. 3/4 inch, Quantity: 3
- 3. Plastic Bend Support 1/2 inch, Quantity: 4

E. Tees

- 1. ProPEX LF Brass Tee
 - a. 1 inch PEX x 1 inch PEX x 1 inch PEX, Quantity: 1
 - b. 1 inch PEX x 3/4 inch PEX x 1 inch PEX, Quantity: 1
 - c. 1 inch PEX x 1 inch PEX x 1/2 inch PEX, Quantity: 1
- 2. EP Multi-port Tee
 - a. 3/4 inch EP Branch Opposing Multi-port Tee- 3 Outlets, Quantity: 1

F. Valves

- 1. ProPEX EP Angle Stop Valve for 1/2 inch PEX, Quantity: 3
- 2. UL/FM Ball Valve Full Port 1 inch, Quantity: 1

G. Finishes

- 1. Concealed Flat Cover Plate White, Quantity: 10
- 2. ProPEX LF Copper Tub Ell 1/2 inch PEX x 1/2 inch Copper (3 inch x 4 inch), Quantity: 1
- 3. ProPEX Escutcheon for 1/2 inch PEX (11/16 inch O.D.) White, Quantity: 3

H. Sprinkler Assembly

1. RFC43 (165oF) Flat Concealed Sprinkler, Quantity: 10 inch

I. Cabinet

1. Sprinkler Cabinet without Sprinkler Heads, Quantity: 1

J. Adapters

- 1. ProPEX LF Brass Sweat Adapter -1 inch PEX x 1 inch Copper, Quantity: 1
- 2. Fire Sprinkler Adapter Push-On Nut, Quantity: 25
- 3. Fire Sprinkler Adapter Mounting Bracket
 - a. 3/4 inch, Quantity: 10
 - b. 1 inch, Quantity: 10
- 4. ProPEX LF Brass Fire Sprinkler Adapter Tee 1 inch PEX x 1 inch PEX x 1/2 inch FNPT, Quantity: 10

K. Tools

- 1. In-Line Flow Test Kit, Quantity: 1
- 2. Concealed Sprinkler Wrench for RFC43 Heads, Flat, Quantity: 1
- 3. Cover Plate, Quantity: 1

PART 3 - EXECUTION (Not Used)

END OF SECTION 21 13 13

SECTION 22 05 00 COMMON WORK RESULTS FOR PLUMBING

- PART 1 GENERAL
- 1.01 SECTION INCLUDES:
 - A. Piping
 - B. Miscellaneous
- 1.02 RELATED REQUIREMENTS
- 1.03 REFERENCE STANDARDS A. NSF Standard 61 Drinking Water System Components - Health Effects
- 1.04 SUBMITTALS
- PART 2 PRODUCTS
- 2.01 PIPING
 - A. Copper; Type L
 - B. Cross-linked Polyethylene (PEX)
 - C. PVC
- 2.02 GROUT
- PART 3 EXECUTION
- 3.01 GENERAL PIPING INSTALLATION
 - A. Install piping free of sags and bends.
 - B. Install Fittings for changes in direction and branch connections.

3.02 GENERAL EQUIPMENT INSTALLATIONS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.B. Install equipment level and plumb, parallel and perpendicular to other building systems and components, unless otherwise indicated.

C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

END OF SECTION 22 05 00

SECTION 22 11 16 DOMESTIC WATER PIPING

PART 1 – GENERAL

1.01 SECTION INCLUDES:

- A. Piping
- B. Fittings
- C. Joining Materials

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

- A. NSF-61 health requirements
- B. ASTM F876 dimensions and
- C. ASTM F877- ability to withstand pressure and temperature
- D. SDR 9 Standard Dimension Ratio
- 1.04 SUBMITTALS
- PART 2 PRODUCTS
- 2.01 PIPING AND FITTINGS
 - A. Hard Copper Tubing: Type L
 - 1. Joining Material: lead-free flux
 - B. Soft Copper Tubing: Type L
 - 1. Joining Material: lead-free flux
 - C. Wirsbo PEX Tubing and Fittings

PART 3 - EXECUTION

- 3.01 PREPARATIONA. Make sure that the pipe is clean and clear of debris.
- 3.02 INSTALLATION

A. Install domestic water piping without pitch for horizontal piping and plumb for vertical piping.

Published 11/23/2010

3.03 INSPECTING

- A. Inspect all pipe as follows:
 - 1. Fill domestic water. Check components to determine that they are not air bound and that piping is full of water.
 - 2. Test for leaks and defects in new piping and parts of existing piping that have been altered extended, or repaired.

END OF SECTION 22 11 16

SECTION 22 11 19 DOMESTIC WATER PIPING SPECIALTIES

PART 1 – GENERAL

1.01 SECTION INCLUDES:

A. Specialty Items

1.02 RELATED REQUIREMENTS

A. 22 11 16 Domestic Water Piping

1.03 REFERENCE STANDARDS

- A. ASSE 1015
- B. AWWA C510
- C. ASTM F877
- D. ASTM F1960
- E. ANSI B18.18
- F. NSF 61-8

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 MANUFACTURED UNITS

- A. Reduced-Pressure Backflow Preventers
- B. Laundry Outlet Boxes
- C. Stop-and-Waste Drain Valves

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install backflow preventer at main water-supply connection.
- B. Install Cloths Washer Box To wall and connect pipes as specified by Manufacturer.
- C. Install Stop-and-Waste Drain Valves as specified by Manufacturer.

END OF SECTION 22 11 19

SECTION 22 12 19 FACILITY POTABLE WATER STORAGE TANKS

PART 1 – GENERAL

1.01 SECTION INCLUDES:

A. Water Tanks

- B. Fresh Water Transfer Pump
- C. Pressure Regulating Tank

1.02 RELATED REQUIREMENTS

- A. 22 33 30.16 Residential, Storage Electric Domestic Water Heaters
- B. 22 33 30.26 Residential, Collector-to-Tank, Solar-Electric Domestic Water Heater

1.03 REFERENCE STANDARDS

- A. PPI 63101-016H
- B. XR3 FDA/NSF-61
- C. C-UL

1.04 SUBMITTALS

PART 2 - PRODUCTS

- 2.01 DOMESTIC WATER STORAGE TANK
 - A. Manufacturer: Aire Industrial, Model#: 951-015002
 - B. Size: 1500 Gallon Fresh Water Bladder Tank, Dimensions 9' (W) x 13' (L) x 18" (H)
 - C. One 4 inch PVC Fill Fitting/Scotty Cap and one 1-1/2" PVC Flange Fitting with PVC Ball Valve

D. Bladder Tanks are manufactured using XR3 FDA/NSF-61 approved materials, which are specifically engineered for the storage of consumable fluids

E. To view this product's technical data, CLICK HERE

2.02 FRESH WATER TRANSFER PUMP

- A. Manufacturer: Craftsman model Professional 3/4 hp Hydro-Glass® Shallow Well Jet Pump
- B. Description: Used to provide a constant pressure to domestic water lines
- C. Motor: 3/4 Hp, Capacitor Start, Dual voltage 115 or 230

- D. Tap Size: Discharge Two 1 inch, Suction 1-1/4 inches
- E. Pressure Rating: 40/60 PSI
- F. To view this product's technical data, CLICK HERE

2.03 PRESSURIZATION TANK

- A. Manufacturer: Amtrol, Model WX-202P
- B. Description: Holds pressure in tank to reduce the amount of times the pump is needed. When pressure is dropped below a certain rating the pump will recharge the tank.
- C. Size: 20 Gallon 32-1/8" (H) x 15-3/8 (D)
- D. Pressure Rating: Pre-charge 38 PSI, Working Pressure 125 PSI
- E. Inlet/Outlet: 1" NPTF Stainless Steel
- F. To view this product's technical data, CLICK HERE

PART 3 – EXECUTION

A. There must be an accessible area around openings for filling and emptying the tank of no less than 12 inches

END OF SECTION 22 12 19

SECTION 22 13 16 SANITARY WASTE PIPING AND VENT PIPING

PART 1 – GENERAL

1.01 SECTION INCLUDES:

- A. Piping
- B. Fittings
- C. Joining Material

1.02 RELATED REQUIREMENTS

1.03 REFERENCE STANDARDS

- A. ASTM D 1784 Rigid Vinyl Compounds
- B. ASTM D 1785 PVC Plastic Pipe, Schedule 40
- C. ASTM D 2466 PVC Plastic Fittings, Schedule 40
- D. ASTM D 2564 Solvent Cements for PVC Pipe and Fittings
- E. NSF Standard 14- Plastic Piping Components and Related Materials
- F. NSF Standard 61 Drinking Water System Components Health Effects

1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 PIPING

- A. Polyvinyl Chloride (PVC)
- B. Polyvinyl Chloride Fittings
 - 1.1. Coupler
 - 2.90 degrees
 - 3.45 degrees
 - 4. Tee

2.03 Joining Materials

- A. Primer
- B. Cement

PART 3 - EXECUTION

3.01 PREPARATION

- A. Prepare pipe by reaming burrs.
- B. Remove scale dirt on inside and outside of pipe.
- C. Prepare piping fittings.

3.02 INSTALLATION

- A. Cut pipe to desired length.
- B. Support pipe with hangers every 5 feet
- C. Add Primer and Cement to pipe and fitting then press together holding for several seconds till cement has cured.

END OF SECTION 22 13 16

PART 1 – GENERAL

1.01 SECTION INCLUDES:

A. Water Tank

- 1.02 RELATED REQUIREMENTS
- 1.03 REFERENCE STANDARDS
 - A. ASTM D 751
- 1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 GRAY WATER STORAGE TANK

- A. Manufacturer: Aire Industrial, Model#: 951-010001
- B. Size: 1000 Gallon Fresh Water Bladder Tank, Dimensions 9' (W) x 12' (L) x 16" (H)
- C. One 4 inch PVC Fill Fitting/Scotty Cap and one 1-1/2" PVC Flange Fitting with PVC Ball Valve
- D. Bladder Tanks are manufactured using rugged 22 oz. reinforced PVC fabrics, which are specifically engineered for the storage of gray water
- E. To view this product's technical data, CLICK HERE
- PART 3 EXECUTION
 - A. There must be an accessible area around openings for filling and emptying the tank of no less than 12 inches

END OF SECTION 22 13 53

PART 1 – GENERAL

1.01 SECTION INCLUDES:

- A. 50 Gallon Back-Up DHW Storage Tank
- B. Heat Pump used to augment solar thermal system

1.02 RELATED REQUIREMENTS

A. 22 33 30.26 Residential, Collector-to-Tank, Heat-Exchanger-Coil, Solar-Electric Domestic Water Heaters

- B. 22 11 23 Domestic Water Pumps
- C. 22 05 00 Common Work Results for Plumbing

1.03 REFERENCE STANDARDS

A. ANSI STANDARD 61 DRINKING WATER SYSTEM COMPONENTS

1.04 SUBMITTALS

- A. DHW system schematic
- B. Mechanical room layout drawing

PART 2 - PRODUCTS

2.01 BACK-UP HOT WATER STORAGE TANK

A. Manufacturer: State Water Heaters

B. Description: This 50-gallon tank (designated the back-up hot water tank) stores the DHW at the desired set point of 120 degrees F. Its cold water inlet is connected to the 80-gallon solar hot water tank, and its hot water outlet is connected to the hot water piping for the home. This tank's water is heated primarily by the Green Star heat pump mounted on top of it, but also has a built-in electric element to augment the heat pump.

Published 11/23/2010

C. Equipment:

- 1. State Water Heaters model ES6 50 DOCS
 - a. Weight: 155
 - b. Warranty: 10 years
 - c. Substitutions: any 50 gallon electric hot water tank.
 - d. To view this product's technical data, CLICK HERE

2.02 HOT WATER HEAT PUMP

A. Manufacturer: USI Green Energy

B. Description: This heat pump operates by transferring heat from the surrounding air to the water stored in the tank on which it is attached. This technology is a relatively new application to an old idea, and is more than twice as efficient as traditional electric water heaters. A copper coil is inserted into the tank, through which the heat transfer fluid circulates. The heat pump should be able to keep the water at the desired set point for most loads. At high loads, the back-up electric element build into the tank will activate and augment the heat pump. C. Equipment

- 1. Green Star Model WH 270
 - a. Weight: 48 lbs
 - b. Warranty: 1 year labor, 6 year parts

c. Substitutions: a 50-gallon hot water tank with a built-in electric heat pump could replace this heat pump along with the 50-gallon tank on which it sits.

d. To view this product's spec sheet, CLICK HERE.

PART 3 – EXECUTION

END OF SECTION 22 33 30.16

RESIDENTIAL, COLLECTOR-TO-TANK, HEAT-EXCHANGER-COIL, SOLAR-ELECTRIC DOMESTICWATER HEATERS

PART 1 – GENERAL

1.01 SECTION INCLUDES:

- A. SunDrum Hybrid Solar Collector System
- B. Solar-heated hot water tank storage tank

1.02 RELATED REQUIREMENTS

- A. 22 33 30.16 Residential, Storage Electric Domestic Water Heaters
- B. 22 11 23 Domestic Water Pumps
- C. 22 05 00 Common Work Results for Plumbing

1.03 REFERENCE STANDARDS

- A. ANSI Standard 61 Drinking Water System Components
- B. Solar Rating & Certification Corporation (SRCC) Standards

1.04 SUBMITTALS

A. Solar hot water system schematic

PART 2 – PRODUCTS

2.01 SOLAR THERMAL SYSTEM

- A. Manufacturers
 - 1. Solar thermal panels: SunDrum Solar
 - 2. Controller: Steca Elektronik GmBh
 - 3. Expansion tank: Amtrol, Inc.
 - 4. Circulator pump: Grundfos

B. Description: The closed-loop system used is the SDM300-6-B, consisting of two strings of three panels connected in parallel. This is a hybrid system that not only provides heat to the DHW system, but also helps cool the PV array. Each of the six panels is mounted directly underneath a PV panel, and hence will not be visible. While the sun is shining, heat from the PV panels is transferred to the fluid flowing through the

Published 11/23/2010

SunDrum panels. This fluid is pumped to the 80 Gallon solar water tank, where it flows through a heat exchanger coil inside the tank. The heat is transferred to the water in the tank, and thus the fluid leaving the coil is cooler than the fluid exiting from the collectors. This cooler fluid then circulates back to the collectors and the process repeats. There is a temperature sensor in one of the collectors, and another in the water tank. A preprogrammed controller is connected to these two sensors. It activates a circulator pump when it detects a collector temperature 16° F higher than tank temperature and will shut the pump off when collector temperature drops to within 8° F higher than tank temperature. The heat transfer fluid is distilled water.

C. Equipment

- 1. Six (6) SunDrum SDM100 solar thermal collector panels.
 - a. Dry weight: 22 lbs. Installed weight: 26 lbs.
 - b. Operating temperature range: -40° C to +90° C
 - c. Warranty: 10 years

d. Substitutions: none. All components listed make up one complete system and are all provided by SunDrum Solar, LLC, per MOU with Team Massachusetts.

- d. For this product's tech data, CLICK HERE.
- 2. Six (6) SDM100 Connection Kits

a. Each kit includes 2-3/8 inch barbs, 2 plugs, 2 stainless steel hose clamps, 5 feet of industrial hose, and 5 feet of UV resistant insulation.

- 3. One (1) HK-2 Header Kit
 - a. x inch diameter copper piping
 - b. Air expansion valve
- 4. Controller
 - a. Steca Solar TR0301U
 - b. For this product's data sheet, CLICK HERE.
- 5. Pump Station: pump and check valve
 - a. Grundfos Alpha pump
 - b. For this product's data sheet, CLICK HERE.
- 6. Expansion tank
 - a. Amtrol Extrol Rx-15
 - b. For this product's data sheet, CLICK HERE.
- 7. Five Gallons of Distilled Water

2.02 SOLAR HOT WATER TANK

A. Manufacturer: Heat Transfer Products, Inc.

B. Description: This is a Heat Transfer Contender SSC-80SE 80 Gallon Water Tank that includes a built-in heat exchanger coil used for a solar thermal system. The water in this tank serves two purposes: as a "heat sink" to absorb heat from the solar thermal system; and as "pre-heat" tank for the "cold" water entering the back-up, 50 gallon hot water tank (see section 22 33 30.26). This tank will not be connected to power so that the electrical heating

element in this tank will never turn on. The solar thermal system controller will control the water temperature in this tank.

- C. Equipment
 - 1. Manufacturer: Heat Transfer Products, Inc.
 - 2. Model: Contender SSC-80SE .
 - 3. For this product's data sheet, CLICK HERE.
- 2.03 DISTILLED WATER 5 gallons

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Special Techniques
 - 1. Follow SunDrum Solar SDM300 Series Installation Manual.
- A. Interface with Other Work
 - 1. The solar thermal panel installation must be coordinated with the installation of the PV system, since the panels are mounted directly into six PV panels. Exact location of the six chosen PV panels in the PV array must be confirmed, so that SunDrum solar panels are placed correctly.

3.02 SYSTEMS START-UP

A. This closed loop solar thermal system must be charged differently than most solar thermal systems. Follow steps in SunDrum Solar SDM300 Series Installation Manual starting under the heading "System Startup and Shutdown".

END OF SECTION 22 33 30.26

23 31 13.16 ROUND AND FLAT-OVAL SPIRAL DUCTS

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Metal ductwork
- B. Duct fittings

1.02 RELATED SECTIONS

- A. Section 23 33 13 Back Draft Dampers
- B. Section 23 37 13 Diffusers, Registers, and Grilles
- C. Section 23 72 00 Air to Air Energy Recovery Equipment
- D. Section 23 81 26 Split System Air Conditioner

1.03 REFERENCE STANDARDS

A. National Fire Protection Association (NFPA) 90A, Standard for the Installation of Air Conditioning and Ventilating Systems

B. American Society for Testing and Materials (ASTM) A653, Standard specifications for Steel Sheet, Zinc-coated (Galvanized) or Zinc-Iron Alloy Coated (Galva-nealed) by the hot-dip process.

C. Sheet Metal and Air Conditioning Contractor's National Association (SMACNA) – HVAC Duct Construction Standards (DCS) – Metal and Flexible

1.04 SUBMITTALS

- A. Construction Drawings, Ductwork
- B. Product datasheets from manufacturer

1.05 QUALITY ASSURANCE

A. Qualifications

1. Company specializing in manufacturing the type of products used here should have a minimum of three years of documented experience.

Published 11/23/2010

2.01 MANUFACTURERS

A. Fantech

B. The Duct Shop

2.02 MATERIALS

- A. Ductwork
 - 1. Rigid ducts are hot dipped galvanized steel, ASTM A653/A653M FS type B, with G60/Z180 coating.
 - 2. 5", 8", and 10" circular ductwork is used.
 - 3. Minimal amounts of flexible round insulated ductwork will be used.

B. Duct fittings

1. Saddle taps on round – The Duct Store

a. 6" saddletap to fit on 10" round; for supply run off to secondary bedroom.

b. 6" saddletap to fit on 8" round; for fresh air supply run off to HRV.

- c. 26 gauge galvanized steel
- 2. Reducer Fantech
 - a. Fantech CKR Series (Model CKR 54); 5" to 4"
 - b. Use to reduce 5" HRV return to 4" for bathroom return
 - c. Length in line: 3 ¼"
- 3. Reducer The Duct Shop
 - a. (2) 10" to 6"; reduce 10" main line to 6" bedroom registers

b. (2) 6" to 5"; (1) expand 5" HRV supply collar to 6" to use the 6" saddletap on the 8" fresh air supply duct, and (1) expand 5" HRV exhaust collar to 6" to then expand to 8", for the combined 8" exhaust duct.

c. (1) 6" to 8"; expand 6" HRV exhaust section to 8" for 8" combined exhaust.

d. 26 gauge galvanized steel

4. Elbows – The Duct Shop

- a. 45 degree adjustable elbow; 8", 5", 4"
- b. 90 degree adjustable elbow, 10", 8", 5", 4"
- c. 26 gauge galvanized steel
- 5. Wye adapters The Duct Shop
 - a. 10 x 10 x 8"; used to connect dehumidifier supply to main 10" supply.
 - b. 10 x 10 x 10"; to split heat pump supply.
 - c. 8 x 8 x 8"; used to branch the dehumidifier exhaust into the combined exhaust.
 - d. 26 gauge galvanized steel
- C. Exterior Vents, weather hoods Fantech
 - 1. Roof cap (Model RC 8), 8", with damper flap closure, duct connection and screened exhaust opening.
 - a. Total height from bottom of collar to top of bend: 11 $\frac{3}{4}$ "
 - 2. Supply outdoor weather hood (Model FML 8, UPC # 24118), 8", single unit
- D. Duct accessories Fantech
 - 1. Stabilizing mounting clamps (5", 8", 10") two inch wide galvanized steel bands lined with neoprene
 - 2. Inlet guards (8") Wire ring, zinc chromate plated steel. Used at fresh air intake.

PART 3 – EXECUTION

3.01 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Special instructions

- 1. Minimize flexible ductwork.
- 2. A rectangular to round transition is required to connect the Mr. Slim unit.
- 3. Use fittings that minimize head loss.
- 4. Maintain access to volume dampers and backflow dampers for airflow tuning and maintenance.

END OF SECTION 23 31 13.16

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Back draft dampers
- B. Volume dampers

1.02 RELATED SECTIONS

A. Section 23 31 13.16 - Round and Flat-Oval Spiral Ducts

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

A. Construction Drawings, Ductwork

1.05 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializes in manufacturing the products specified in this section with minimum 10 years' experience.

1.05 SYSTEM DESCRIPTION

A. Back draft dampers are used where backflow could occur.

B. Supplies from air-to-air heat pump, HRV, and dehumidifier are combined to form a single supply duct. Returns from house and from bathroom combine before entering the HRV. A single fresh air and single exhaust house penetration serve both the dehumidifier and HRV. Back draft dampers are needed in the house supply and exhaust lines, mainly where duct runs join together.

C. Not included in this section are back draft dampers installed at the diffuser/register collar. See Section 23 37 13 – Diffusers, Registers, and Grilles.

D. Volume dampers are used to control the airflow to/from equipment and the house.

E. Volume dampers are needed in the return line to the house to the dehumidifier, in the supply from the house to the dehumidifier, and at the combined supply to the house and to each bedroom.

2.01 MANUFACTURERS

A. Fantech

2.02 MATERIALS

- A. Back draft damper
 - 1. RSK back draft dampers, models RSK 8 and RSK 10 (UPC # 69080 and 69100)
 - 2. 8" diameter and 3 1/8" wide, 10" diameter and 3" wide
 - 3. Galvanized Steel Collar and Lightweight Aluminum Damper Blades
 - 4. Spring loaded for positive closure

B. Volume damper

- 1. Iris Damper, models IR 6, IR 8, and IR10 (UPC # 63060, 63080, 63100)
- 2. 6" diameter and 2" wide, 8" diameter and 2 ¼" wide, 10" diameter and 2 3/4" wide
- 3. Include calibrated airflow measuring device.

PART3 - EXECUTION

3.01 INSTALLATION

- A. Install back draft dampers in locations to eliminate backflow.
- B. Install volume dampers in locations where air tuning is required.

C. Follow manufacturer's instructions for ductwork installation, and follow measures for maximizing efficiency.

END OF SECTION 23 33 13

SECTION 23 37 13

DIFFUSERS, REGISTERS, AND GRILLES

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Diffusers
- **B.** Registers
- C. Dampers installed at diffuser collar

1.02 RELATED SECTIONS

A. Section 23 31 13.16 - Round and Flat-Oval Spiral Ducts

1.03 REFERENCE STANDARDS

A. ANSI/ ASHRAE Standard 70-2006.

1.04 SUBMITTALS

A. Product datasheet from manufacturer.

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. Fantech

B. Hart and Cooley

2.02 PRODUCTS

- A. Supply and exhaust grilles
 - 1. Fantech DG Series exhaust grille (Model DG 4, UPC # 67940)
 - a. Low profile, fixed circular plastic.
 - b. Used in bathroom ceiling; return from bathroom to HRV.
 - c. For use with 4" duct; duct connections are 1/8" smaller than duct size.

- d. Matching diameter galvanized mounting collar with nailing strip is included.
- e. Total length: 3 ¾", grille outer diameter: 4 7/8"
- 2. Hart and Cooley CBPS/CBPR T-bar curved-blade perforated supply/return diffuser, steel

a. Used at each 6" diameter bedroom supply, at the 8" dehumidifier hallway return, and at the 10" combined hallway supply.

- b. Dimension: 23-¾" x 23-¾"
- c. Perforated steel face, white finish
- d. Available in 6", 8", 10", 12", 14", and 16" diameter necks.
- e. 2" high collar permits easy flex connections
- f. Individually adjusted pattern deflectors can be field-adjusted for 1, 2, 3-way air patterns.
- 3. Hart and Cooley T-bar accessories
 - a. 5400 Series Collar Ring; 2" high collar permits easy flex connections.
 - b. 3800 Series adjustable damper; for use with 5400 series collar.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Follow manufacturer's instructions for installation

END OF SECTION 23 37 13

SECTION 23 40 00 SUPER ULTRA-LOW PENETRATION FILTRATION

PART1 – GENERAL

1.01 SECTION INCLUDES

A. Super Ultra-Low Penetration Air-filters

1.02 RELATED SECTIONS

A. Section 23 37 13 – Diffusers, registers, and grilles

1.03 SUBMITTALS

A. Product datasheet from manufacturer.

PART2 - PRODUCTS

2.1 MANUFACTURERS

A. Flanders Corporation

2.2 Materials

A. Flanders Precisionaire 2 inch LEED MERV 13 Filters

B. Actual filter face size for 12 inch x 24 inch and 24 inch x 24 inch filters is 5/8 inch under on height and width Actual face size on all other sizes is 1/2 inch under on height and width

C. Actual filter depth is 1/4 inch under for these nominal 2 inch deep filters

PART3 – EXECUTION (Not Used)

END SECTION 23 40 00

SECTION 23 72 00 AIR TO AIR ENERGY RECOVERY EQUIPMENT

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Ventilation Equipment

1.02 RELATED SECTIONS

A. Section 23 31 13.16 - Round and Flat-oval Spiral Ducts

1.03 REFERENCE STANDARDS

A. HVI, CSA C22.2

1.04 SUBMITTALS

A. Product datasheet from manufacturer

1.05 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializes in manufacturing the products specified in this section with minimum 10 years' experience.

B. Memberships & Certification: CSA, Air-Conditioning, Heating and Refrigeration Institute (AHRI), NRTL/C, Heating, Refrigeration and Air Conditioning Institute of Canada (HRAI), Home Ventilating Institute (HVI), Canadian Home Builders Association (CHBA).

PART 2 – PRODUCTS

2.01 MANUFACTURERS

A. Nu-Air Ventilation Inc.

2.02. COMPONENTS

A. Heat Recovery Ventilator (HRV), Model ES100

B. Housing/Core

- 1. Painted 0.032 Aluminum casing with a white enamel finish
- 2. Cabinet insulation is 1-inch polyurethane

3. Core is a cross-flow heat exchanger

C. Characteristics

- 1. Defrosting system for outdoor conditions below -5 degrees Celsius.
- 2. Polyester Air Filters: MERV rating of 9
- 3. Expanded Polystyrene Insulation
- 4. 24 V circuit protection with self resetting fuse

D. Specifications

- 1. Airflow: 104-129 CFM at 0.4 in wg
- 2. Electrical: 120V/1 /60 Hz, 0.7 A, 84 W

E. To view this product's technical data, CLICK HERE.

PART 3 – EXECUTION

3.01 PREPARATION

A. Clean surfaces thoroughly prior to installation. Remove all debris and confirm structural support for connections and supporting elements.

B. Verify all clearances and requirements as specified by manufacturer.

3.02 INSTALLATION

A. Follow manufacturer's instructions for handling and installation, and follow measures for maximizing efficiency in the duct layout.

B. Install units with adequate spacing to access heat recovery coils and filters for maintenance.

C. To view this product's technical data, CLICK HERE.

END OF SECTION 23 72 00

PART 1 – GENERAL

1.01 SECTION INCLUDES

- A. Indoor and outdoor units of split-ducted air-conditioning system
- B. Refrigerant piping
- C. Controls
- D. Fan

1.02 RELATED SECTIONS

A. Section 23 31 13.16 - Round and Flat-oval Spiral Ducts

1.03 REFERENCE STANDARDS

A. Comply with ASHRAE 15, EPA, AHRI, UL, ETL and ISO Standards

1.04 SUBMITTALS

A. Product datasheet from manufacturer

PART 2 - PRODUCTS

- 2.01 MANUFACTURER
 - A. Mitsubishi Electric

2.02 COMPONENTS

- A. Mr. Slim Concealed Duct Mini Split Heat Pump System
 - 1. Includes (1) SEZKD09NA4 Indoor unit and (1) SUZKA09NA Outdoor condensing unit
 - 2. External finish: Galvanized-steel sheets
 - 3. Built-in drain mechanism for condensate removal
 - 4. Polypropylene Honeycomb Air filter included with indoor unit

- 5. Cooling capacity: 8100 BTU, Cooling capacity range: 3,800 10,900 BTU
- 6. Heating capacity: 10,900 BTU, Cooling capacity range: 4,800 14,100 BTU
- 7. Total Input: 670 W Cooling and 1,020 W heating
- 8. Power Supply: 1-phase, 60 Hz, 208/230V
- 9. Air Flow, Lo-Med-Hi: 194-247-317 CFM (dry), 174-222-285 CFM (wet)
- 10. Weight: 42 lb (indoor unit), 66 lb (outdoor unit)

11. Dimensions [W x D x H]: 31-1/8" x 27-9/16" x 7-7/8" (Indoor unit), 31-1/2" x 11-1/4" x 21-5/8" (outdoor unit).

B. Refrigerant

- 1. R410A refrigerant
- 2. Piping: Insulated Copper tubing size at gas side 3/8 inch and liquid side 1/4 inch
- C. Controls
 - 1. PAR-21 MAA wired remote controller included
 - 2. Indoor unit powered from outdoor unit using A-Control
 - 3. Automatic fan speed control
 - 4. Auto restart following a power outage
- D. Fan
- 1. Two Sirocco Fans
- 2. Direct-driven DC Brushless Motor
- 3. Motor Output: 96W

E. To view these products technical data, CLICK HERE.

PART 3 - EXECUTION

3.01 PREPARATION

- A. Clean surfaces thoroughly prior to installation
- B. Mount the indoor unit into a ceiling strong enough to withstand the weight of the unit

3.02 INSTALLATION

A. Perform the installation securely referring to the product installation manual.

- B. Be sure to install the unit level
- C. Use an exclusive circuit as accordance to NFPA 90B.
- D. To view this product's technical data, CLICK HERE.

END OF SECTION 23 81 26

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Dehumidifier

1.02 RELATED SECTIONS

A. Section 23 31 13.16 - Round and Flat-oval Spiral Ducts

1.03 REFERENCE STANDARDS

A. ETL listed, UL 474

1.04 SYSTEM DESCRIPTION

A. Ducted, with dedicated return to main supply.

1.05 SUBMITTALS

A. Product datasheet from manufacturer.

PART 2 – PRODUCTS

2.01 MANUFACTURER

A. Honeywell International Inc.

2.02 COMPONENTS

- A. Honeywell TrueDRY DR65 ventilating dehumidification system
 - 1. Energy performance: 2.22 liters (4.7 pints) per kilowatt hour.
 - 2. Dimensions (L x W x H) / weight: 28.5" x 12" x 12" / 55 lbs (length includes duct collars)
 - 3. Electrical: 120V AC, 60HZ, 5.2 Amps
 - 4. Blower: 160 CFM @ 0.0 inches WG
 - 5. Capacity at 60% RH: 21 pints/day (60 F), 42 pints/day (70 F), 65 pints/day (80 F)
 - 6. Drain connection: ³/^{''} threaded female NPT, with attached ³/^{''} threaded male NPT.

Published 11/23/2010

- 7. Refrigerant: R-410A
- 8. Filter: standard MERV-11, 1" (D) x 9" (H) x 11" (W)
- 9. Duct connections: 8" duct collars for inlet and outlet, ABS plastic
- 10. For this product's data sheet, CLICK HERE.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Installation must conform to NEC, ANSI/NFPA 70 and National Fuel Gas Code ANSI Z223.1
- B. Install in accordance with manufacturer's instructions.
- C. Use backdraft damper immediately before connection of dehumidifier outlet to main supply.
- C. Allow for adequate clearances for servicing and proper operation.

END OF SECTION 23 84 16

SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 – GENERAL

1.01 SUMMARY

A. Wire and cable for 600 volts and less.

B. Wiring connectors and connections.

1.02 RELATED SECTIONS

A. Section 26 05 33 – Raceway and Boxes for Electrical Systems

1.03 REFERENCE STANDARDS

A. NECA 1 – Standard for Good Workmanship in Electrical Contracting; National Electrical Contractors Association; 2006.

B. NFPA 70 – National Electric Code; National Fire Protection Association; 2008.

1.04 SUBMITTALS

1.05 QUALITY ASSURANCE

A. Conform to requirements of NFPA 70.

B. Manufacturer qualifications: Company specializing in manufacturing the products specified in this section with a minimum of 10 years experience.

C. Products: Furnish products listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

PART 2 – PRODUCTS

- 2.01 MANUFACTURERS
 - A. Southwire
 - B. General Cable

2.02 MATERIALS

- A. Southwire CU-USE wire
 - 1. Type USE-2 copper conductor
 - 2. Insulation voltage rating: 600V
 - 3. Cross-linked polyethylene insulation
- B. Southwire Simpull THWN-2 wire
 - 1. Type THWN-2 copper conductor
 - 2. Insulation voltage rating: 600V
 - 3. Thermoplastic insulation/SIM nylon sheath
- C. Southwire bare copper wire
- D. Southwire Romex wire
- E. General Cable, Carol Brand 18-3 thermostat wire
 - 1. 150V
 - 2. Type CL2
- F. Belden RG6/U cable
 - 1. Quad shielded
 - 2. Coaxial
- **D.** Wiring Connectors
 - 1. In accordance with UL and NEC.
 - 2. Branch Circuits 10 AWG and smaller:

a. Connectors shall be solderless, screw-on, pressure cable type, 600 volt, 105 degrees C, with integral insulation; approved for copper and aluminum conductors, and reusable.

b. Integral Insulator: Must have skirt to completely cover stripped wires.

c. Comply with manufacturer's listing/labeling as to the number, size, and combination of conductors that may be joined.

3. Feeder Circuits: Connectors shall be indent, hex screw, or bolt-clamp type. Material shall be highly conductive and corrosion resistant.

2.03 WIRING REQUIREMENTS

A. See "Conductor and Conduit Schedule" on page E-602 (Three-line diagram) of Construction Documents for required wire gauges/colors.

B. Concealed Dry Interior Locations: Use only building wire in raceway, nonmetallic-sheathed cable, armored cable, or metal clad cable.

C. Exposed Dry Interior Locations: Typically, use only building wire in raceway.

1. At equipment rooms use building wire in raceway, nonmetallic-sheathed cable, armored cable, or metal clad cable.

D. Wet or Damp Interior Locations: Use only building wire in raceway, direct burial cable, armored cable with jacket, or metal clad cable.

E. Exterior Locations: Use only building wire in raceway, direct burial cable, service-entrance cable, armored cable with jacket, or metal clad cable.

F. Underground Installations: Use only building wire in raceway, direct burial cable, or service-entrance cable.

G. Use solid conductor for feeders and branch circuits 10 AWG and smaller.

H. Use stranded conductors for control circuits.

I. Use minimum of 12 AWG conductors for power and lighting circuits.

J. Use minimum of 16 AWG conductors for control circuits.

K. Use 10 AWG conductors for 20 ampere, 120 volt branch circuits longer than 25 meters (75 feet).

L. Use 10 AWG conductors for 20 ampere, 240 volt branch circuits longer than 60 meters (200 feet).

PART 3 – EXECUTION

3.01 EXAMINATION

A. Verify that any mechanical work likely to damage wire and cable has been completed.

B. Verify that raceway installation is completed and supported.

3.02 PREPARATION

A. Swab raceway before installing wire.

U.S. D.O.E. Solar Decathlon 2011

B. Clean conductor surfaces before installing lugs and connectors.

3.03 INSTALLATION

- A. Install wire and cable securely and neatly, as in NECA 1.
- B. Route wire and cable as required to meet project conditions.
 - 1. Wire and cable routing indicated is approximate unless dimensioned.
- C. Pull all conductors into raceway at same time.
- D. Protect exposed cable from damage.
- E. Neatly train and lace wiring inside boxes, equipment, and panelboards.

F. Trench and backfill for direct burial cable installation. Install warning tape along entire length of direct burial cable, within 75 millimeters (3 inches) of grade.

END OF SECTION 26 05 19

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 – GENERAL

- 1.01 SUMMARY
 - A. Ground rod kit
 - B. Washer Electrical Equipment Bond (WEEB) hardware
- 1.02 RELATED SECTIONS
 - A. Section 05 14 13 Architecturally-exposed structural aluminum
- 1.03 REFERENCE STANDARDS

A. UL 467, CSA C22.2#41 2007

- 1.04 SUBMITTALS
 - A. Product datasheet from manufacturer

PART 2 – PRODUCTS

2.01 MANUFACTURERS

A. Wiley Electronics LLC

2.02 MATERIALS

- A. Copper Bonded Grounding Rod 5/8 inch x 8/ feet
- B. Bronze Clamps
- C. Conductor
- D. Ground Rod Connector
- E. Drive Sleeve
- F. WEEB-DMC Compression Clip
- G. WEEBL-6.7 Grounding Lug
- H. WEEB Bonding Jumper-6.7

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. WEEBs are single use only.

C. WEEB clip and lug assembly: Tighten fasteners to 10 ft-lb / 13.5 N-m using general purpose anti-seize compound on threads.

D. WEEB lug assembly: Lay in equipment grounding conductor and tighten bolt to 7 ft-lb / 10 N-m.

E. WEEB bonding jumper assembly: Torque to 10 ft-lb / 13.5 N-m using general purpose anti-seize compound on threads.

END OF SECTION 26 05 26

SECTION 26 05 33

RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.01 SUMMARY

A. RACEWAY

B. CONDUITS

1.02 RELATED SECTIONS

A. 26 05 19 – Low-Voltage Electrical Power Conductors and Cables

1.03 REFERENCE STANDARDS

- A. UL 797 Electrical Metallic Tubing.
- B. UL 514B Conduit, Tubing and Cable Fittings.
- C. UL 6 Electrical Rigid Metal Conduit Steel
- D. ANSI C80.1 Electrical Rigid Steel Conduit
- E. ANSI C80.3 Steel Electrical Metallic Tubing.
- F. ANSI B1.20.1 Pipe Threads, General Purpose.

G. NEMA 250 – Enclosures for Electrical Equipment (1000 Volts Maximum); National Electrical Manufacturers Association; 2003.

H. NFPA 70 – National Electrical Code; National Fire Protection Association; 2008.

1.04 SUBMITTALS

1.05 QUALITY ASSURANCE

A. Conform to requirements of NFPA 70

B. Manufacturer qualifications: Company specializing in manufacturing the products specified in this section with a minimum of 10 years experience.

C. Products: Furnish products listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

- 2.01 MANUFACTURERS
 - A. Allied Electrical Group
 - B. JM Eagle

2.02 MATERIALS

- A. Allied Kwik-Fit EMT (Electrical Metallic Tubing) for indoors, 1-1/4 inch Trade Size
 - 1. Nominal outside diameter: 1.510 inch
 - 2. Nominal wall thickness: 0.065 inch
 - 3. Approximate weight per 100 Feet: 101 pounds
 - 4. Bundle: 840 feet, approx. 720 pounds
 - 5. To view this product's technical data, CLICK HERE
- B. Allied Rigid Steel Conduit, hot-dip galvanized steel, exterior, 1-1/2 inch Trade Size
 - 1. Nominal outside diameter: 1.900 inch
 - 2. Nominal wall thickness: 0.138 inch
 - 3. Approximate weight per 100 Feet: 263 pounds
 - 4. Bundle: 800 feet
 - 5. Allied RIGID is recognized as an equipment grounding conductor by NEC Article 250.
 - 6. To view this product's technical data, CLICK HERE
- C. JM Eagle Electrical Conduit
 - 1. PVC/non-metallic
 - 2. ANSI/UL 651 conforming
 - 3. NEMA TC-2 conforming
 - 4. To view this product's technical data, CLICK HERE

PART 3 – EXECUTION (Not Used)

END OF SECTION 26 05 33

SECTION 26 24 16

PANELBOARDS

PART 1 - GENERAL

1.01 SUMMARY

- A. CIRCUIT BREAKERS
- **B. LOAD CENTERS**

1.02 SUBMITTALS

A. Construction Drawings: Wiring diagram

PART 2 – PRODUCTS

2.01 MANUFACTURERS

A. Schneider Electric

2.02 PRODUCTS

- A. Homeline Load Center HOM1632L200TC, single phase, indoor main lugs, ground bar included.
 - 1.32 branch circuits
 - 2. 200 Amp Mains Rating
 - 3. To view this product's technical data, CLICK HERE
- B. QO Load Center QO612L100RB, single phase, outdoor main lugs, ground bar sold separately
 - 1. 12 branch circuits
 - 2. 100 Amp Mains Rating
 - 3. To view this product's technical data, CLICK HERE

PART 3 - EXECUTION (Not Used)

END OF SECTION 26 24 16

SECTION 26 27 00

LOW-VOLTAGE DISTRIBUTION EQUIPMENT

PART 1 - GENERAL

- 1.01 SUMMARY
 - A. Wall Receptacles
 - **B.** Switches

1.02 RELATED SECTIONS

- A. 26 05 19 Low-Voltage Electrical Power Conductors and Cables
- 1.03 REFERENCE STANDARDS
 - A. UL 2003
 - B. UL 943
 - C. UL 1472
 - D. CSA C22.2 184.1

PART 2 – PRODUCTS

2.01 MANUFACTURERS

- A. Hubbell
- B. Leviton

2.02 MATERIALS

- A. Hubbell Tamper-Proof Receptacle RRD15SWTR
 - 1.15A/125V
 - 2. Self-Grounding
 - 3. To view this product's technical data, CLICK HERE

B. Hubbell Tamper-Proof Receptacle DR20WHITR

1.20A/125V

- 2. 3-Wire Grounding
- 3. To view this product's technical data, CLICK HERE
- C. Leviton Single-Pole Switch 5601-2W
 - 1.15A/120V
 - 2. To view this product's technical data, CLICK HERE
- D. Leviton 3-Way Switch 5603-2W
 - 1.15A/120V
 - 2. To view this product's technical data, CLICK HERE

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install in accordance with manufacturer's instructions.

END OF SECTION 26 27 00

SECTION 26 27 13

ELECTRICITY METERING

PART 1 - GENERAL

1.01 SECTION REQUIREMENTS

A. Submittals: Product Data and Construction Drawings.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Coordinate with utility companies for services and components they furnish.

PART 2 - PRODUCTS

2.01 EQUIPMENT FOR ELECTRICITY METERING BY UTILITY COMPANY

A. Meters will be furnished by utility company.

B. Current-Transformer Cabinets: Comply with requirements of electrical power utility company.

C. Meter Sockets: Comply with requirements of electrical power utility company.

D. Meter Sockets: Steady-state and short-circuit current ratings shall meet indicated circuit ratings.

E. Modular Meter Center: Factory-coordinated assembly of a main service terminal box with disconnect device, wireways, tenant meter socket modules, and tenant feeder circuit breakers arranged in adjacent vertical sections. Assembly shall be complete with interconnecting buses and other features as specified below:

1. Comply with requirements of utility company for meter center.

2. Housing: NEMA 250, Type 3R enclosure.

3. Minimum Short-Circuit Rating: 10,000 Amp symmetrical at rated voltage.

4. Main Disconnect Device: Circuit breaker, series-combination rated for use with downstream feeder and branch circuit breakers.

5. Tenant Feeder Circuit Breakers: Series-combination-rated molded-case units, rated to protect circuit breakers in downstream tenant and to house loadcenters and panelboards that have 10,000-Amp interrupting capacity.

a. Identification: Provide legend identifying tenant's address.

b. Physical Protection: Tamper resistant, with hasp for padlock.

6. Meter Socket: Rating coordinated with indicated tenant feeder circuit rating.

2.02 MANUFACTURERS

- A. Landis & Gyr
- B. General Electric

2.03 MATERIALS

- A. Landis & Gyr Meter Socket UAT-4
 - 1. Single phase, 200A
 - 2. OH/UG Service feeder location
 - 3. Standard 4-jaw, ringless
 - 4. NEMA 3R, rainproof enclosure
 - 5. To view this product's technical data, CLICK HERE
- B. GE Singlephase Meter I-210+c
 - 1. ANSI C12.1, C12.10, C12.20, C37.90.1 conforming
 - 2. To view this product's technical data, CLICK HERE

PART 3 - EXECUTION

3.01 INSTALLATION

A. Comply with equipment installation requirements in NECA 1.

B. Install equipment for utility company metering. Install raceways and equipment according to utility company's written requirements. Provide empty conduits for metering leads and extend grounding connections as required by utility company.

C. Install modular meter center according to NECA 400 switchboard installation requirements.

END OF SECTION 26 27 13

SECTION 26 28 16

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 – GENERAL

1.01 SUMMARY

A. NONFUSIBLE SWITCHES

- 1.02 RELATED REQUIREMENTS
- 1.03 REFERENCE STANDARDS

A. UL98, Standard for Safety, Enclosed and Dead Front Switches. UL Listed under File E2875, or E154828.

B. NEMA Standards Publication KS1, Enclosed Switches.

C. NEMA KS 1 – Enclosed and Miscellaneous Distribution Equipment Switches (600 V maximum); National Electric Manufacturers Association; 2001 (R2006).

D. NFPA 70 – National Electric Code; National Fire Protection Association; 2008.

1.04 SUBMITTALS

A. Construction Documents: Electrical wiring diagram.

1.05 QUALITY ASSURANCE

A. Conform to requirements of NFPA 70.

B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum 10 years experience.

C. Products: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

PART 2 – PRODUCTS

2.01 MANUFACTURERS

A. Schneider Electric

2.02 COMPONENTS

A. Square D DC Disconnect Switch, model HU362RB, 3-pole, unfused.

Published 11/23/2010

- 1. Product Data
 - a. Current Rating: 60 Amp
 - b. Voltage Rating: 600 Volt DC
 - c. Weight: 6 pounds
 - d. Dimensions: (H D W): 17.5 inch x 10.5 inch x 7.25 inch
 - e. To view this product's technical data, CLICK HERE

PART 3 - EXECUTION (Not Used)

END OF SECTION 26 28 16

SECTION 26 31 00

PHOTOVOLTAIC COLLECTOR SYSTEM

PART 1 – GENERAL

1.01 SUMMARY

A. Photovoltaic Modules, Frame, Junction Box, and Cables

B. Transition Box

1.02 RELATED SECTIONS

- A. Section 26 27 17 Equipment Wiring: Connection to facility power distribution.
- B. Section 48 19 16 Electrical Power Generation Inverters

1.03 REFERENCE STANDARDS

A. Photovoltaic modules

1. ASTM E 1799 – Standard Practice for Visual Inspections of Photovoltaic Modules.

2. UL 1703 – Flat Plate Photovoltaic Modules and Panels; 2002.

3. UL 4703 – Photovoltaic Cable.

4. IEC 61215 – Crystalline Silicon Terrestrial Photovoltaic (PV) Modules – Design Qualification and Type Approval; 2005; ed. 2.

5. IEC 61730 – Photovoltaic (PV) Module Safety Qualification; 2004; Class A.

6. UL Fire Safety Class C.

B. Combiner Box

1. CAN/CSA C22.2 No. 107.1-01 General Use Power Supplies; 2001.

2. CAN/CSA C22.2 No. 0.4-04 Bonding of Electrical Equipment; 2004.

3. CAN/CSA C22.2 No. 0.12-M1985 Wiring Space and Wiring Banding Space in Enclosures for Equipment Rated 760 V or Less.

4. CAN/CSA-C22.2 No. 0-M91 General Requirements – Canadian Electrical Code, Part II.

1.04 SUBMITTALS

A. Construction Drawings: Wiring diagram

PART 2 – PRODUCTS

2.01 MANUFACTURERS

- A. Sunpower
- **B.** Wiley Electronics

2.02 MATERIALS

A. SunPower E19/240 Photovoltaic Modules

1. Description: 72 silicon solar cells in frame, factory assembled with junction box, series interconnection cables, bypass diodes located in junction box; IEC 61215 compliant, UL 1703 listed.

- 2. Maximum System Voltage (UL): 600 Volt
- 3. Rated Power: 240 Watt
- 4. Rated MPP Voltage: 40.5 Volt
- 5. Rated MPP Current: 5.93 Amp
- 6. Open Circuit Voltage: 48.6 Volt
- 7. Short Circuit Current: 6.30 Amp
- 8. Series Fuse Rating: 20 Amp
- 9. To view this product's technical data, CLICK HERE

B. Wiley Electronics ACE-2P Pass-through Box

- 1. Description: 2-string, unfused, with anodized aluminum mounting bracket.
- 2. To view this product's technical data, CLICK HERE

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Provide DC and AC lightning protection devices to protect inverter and PV modules.

C. Provide minimum clearance of 7mm (1/4 inch) between PV panels to allow for thermal expansion of the frames.

Published 11/23/2010

- D. Note: SunPower modules are positively grounded. See installation manual for grounding requirements.
- 3.02 SAFETY

A. Install according to manufacturer's handling, installation, and fire safety requirements and recommendations.

3.03 INSPECTION

A. Provide the services of manufacturer-training personnel to inspect and commission the system:

1. Energy Efficiency: Verify equipment is properly installed, connected, and adjusted. Verify that equipment is operating as specified.

2. Renewable Energy: Verify proper operation in all modes of system operation by testing. Verify proper operation under a wide range of conditions to verify energy delivery as calculated for those conditions.

a. Solar Energy Systems: Comply with ASTM E1799 – Standard Practice for Visual Inspections of Photovoltaic Modules.

END OF SECTION 26 31 00

SECTION 26 51 00

INTERIOR LIGHTING

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. LED LIGHTING

B. FLUORESCENT

1.02 RELATED REQUIREMENTS

A. 26 06 50 Schedules for Lighting

1.03 REFERENCE STANDARDS

A. UL listed, ETL listed

1.04 SUBMITTALS

A. Product Data

PART 2 – PRODUCTS

2.01 LED

A. BKSSL

1. BQL-LED-E22-WHP-D, SL Brickstar Louvered 8 watt, e22 lamp, 2 Fixtures

B. USAI

1. 3140-10-S-LSTA4-8420-C1-20W-30-30-NC-120-DIML3, R1 BeveLED Adjustable 40 degree, 5 Fixtures

C. ALKCO

- 1. ARIS-21-40-120-PRL-HWC/AJC6, L1 LED Task Light, 4 Fixtures
- 2. ARIS 41-40-120-PRL-HWC/AJC6, L2 LED Task Lamp, 1 Fixture

D. Amerlux

1. CNTRV22-12-LED-E-WT-C-120-NF-3000-DIM, R3 Canopy, 4 Fixtures

E. Insight

F. Philips

1. PW01L30SAU-LED-6W-3000K-120+SG02L, S1 Wall Mount, 2 Fixtures

2.02 FLUORESCENT

A. ADA

1. CSS2030-1-FC12T9-32W / 835-14, 1/2 inch to 3 inch, S2, 1 Fixture

B. ALKO

1. TAB125-ASY-120-BA/AL-CL+LS, F1 Surface Mount, 8 Fixtures

PART 3 - EXECUTION (Not Used)

END OF SECTION 26 51 00

SECTION 26 56 00

EXTERIOR LIGHTING

PART 1 – GENERAL

- 1.01 SECTION INCLUDES
 - A. Exterior House Lighting

1.02 RELATED REQUIREMENTS

A. 26 06 50 Schedules for Lighting

1.03 REFERENCE STANDARDS

A.UL listing

1.04 SUBMITTALS (Not Used)

PART 2 – PRODUCTS

2.01 HOUSE LIGHTING

A. Lumiere

- 1. 904-12WLEDN-3000K-12-BK-NBR, T2 Canopy, 9 Fixtures
- 2. 213-12WLEDW-3000K-12-BK-NBR, T1 Canopy, 2 Fixtures

PART 3 - EXECUTION (Not Used)

END OF SECTION 26 56 00

DIVISION 27 - COMMUNICATIONS

SECTION 27 21 00 DATA COMMUNICATION NETWORK EQUIPMENT

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. DATA LOGGING EQUIPMENT B. RELATED SYSTEMS

- 1.02 RELATED REQUIREMENTS
- 1.03 REFERENCE STANDARDS

A. NFPA 70, Article 100, 2008 NEC

1.04 SUBMITTALS

A. Product datasheets

- PART 2 PRODUCTS
- 2.01 Manufacturers
 - A. Powerhouse Dynamics
 - **B.** Solectria Renewables

2.02 Dataloggers

- A. eMonitoring System for energy consumption monitoring and logging.
- B. Solrenview for PV production monitoring and logging, with revenue grade and weather station options.
- C. For technical data on these products, CLICK HERE.

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Comply with product installation manual and related NEC codes
 - B. Connect the device to all the monitored sensors and systems

END OF SECTION 27 21 00

SECTION 27 21 33

DATA COMMUNICATION WIRELESS ACCESS POINTS

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. WIRED DATA CONNECTIVITY EQUIPMENTB. WIRELESS DATA CONNECTIVITY EQUIPMENT

1.02 RELATED REQUIREMENTS

A. Data communication modem and switch

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 Manufacturer

A. DLink

- 2.02 DIR-632 8 Port Wireless n Router
 - A. 802.3z, 10/100/1000 Mbps wired network access
 - B. 802.11n, for wireless standard
 - C. For datasheet on this product, CLICK HERE.

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Comply with product installation manual and related NEC codes
 - B. Service is used by all the devices connect to the Ethernet port and WIFI

END OF SECTION 27 21 33

SECTION 27 22 26

DATA COMMUNICATION LAPTOP

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. PERSONAL COMPUTER

1.02 RELATED REQUIREMENTS

REFERENCE STANDARDS

A. Electrical Components, Devices and Accessories Listed and labeled as defined in NFPA 70, Article 100

1.04 SUBMITTALS

A. Product datasheet: Manufacture specification sheets for all the products listed under products

PART 2 – PRODUCTS

2.01 Manufactures

A. Hewlett-Packard

2.02 Laptop

- A. HP Pavilion dv7 Notebook PC
- B. To view this product's datasheet, CLICK HERE.

PART 3 - EXECUTION

3.01 INSTALLATION

U.S. D.O.E. Solar Decathlon 2011

- A. Comply with product installation manual and related NEC codes
- B. Connect the device to the communication network device

END OF SECTION 27 22 26

SECTION 28 31 46 SMOKE DECTION SENSORS

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Smoke detectors

1.02 RELATED SECTIONS

A. 27 15 00 COMMUNICATIONS HORIZONTAL CABLING

1.03 REFERENCE STANDARDS

A. UL 268, National Fire Alarm Code, NFPA 72, Article 760 NEC

1.04 SUBMITTALS

PART 2 – PRODUCTS

2.01 ALARM-INITIATING DEVICES

A. Kidde Firex i5000 Smoke detectors: UL-listed, 120 - Vac with 9-Vdc back-up, ionization type, hardwired.

1. For this product's technical data, CLICK HERE.

2.02 NOTIFICATION APPLIANCES

A. Built-in piezoelectric horn rated at 85 decibels at 10 feet.

2.03 WIRE AND CABLING

- A. General: UL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install and test systems per manufacturer's instructions, NFPA 72 and NEC Article 760.
- B. Wiring Method: Install wiring interior to walls and ceilings as indicated in schematics.
- C. Wire all alarms to a single, continuous (non-switched) power line, not protected by a ground fault interrupter.

END OF SECTION 28 31 46

SECTION 28 31 49 CARBON MONOXIDE DETECTION SENSORS

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Carbon monoxide detector

1.02 RELATED SECTIONS

A. 27 15 00 COMMUNICATIONS HORIZONTAL CABLING

1.03 REFERENCE STANDARDS

A. UL 268, National Fire Alarm Code, NFPA 72, Article 760 NEC

1.04 SUBMITTALS

PART 2 - PRODUCTS

2.01 ALARM-INITIATING DEVICES

- A. First Alert C05120BN Carbon Monoxide Alarm
 - 1. For this product's technical data, CLICK HERE.

2.02 NOTIFICATION APPLIANCES

A. Built-in piezoelectric horn rated at 85 decibels at 10 feet.

2.03 WIRE AND CABLING

A. General: UL listed and labeled as complying with NFPA 70, Article 760.

U.S. D.O.E. Solar Decathlon 2011

Published 03/22/2011

B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.

- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install and test systems per manufacturer's instructions, NFPA 72 and NEC Article 760.
- B. Wiring Method: Install wiring interior to walls and ceilings as indicated in schematics.
- C. Wire all alarms to a single, continuous (non-switched) power line, not protected by a ground fault interrupter.

END OF SECTION 28 31 49

SECTION 31 05 00 SOILS FOR EARTHWORK

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Sand for Temporary Footings

1.02 RELATED SECTIONS

A. 02 05 19.13 Geotextiles for Existing Conditions B. 05 50 00 Metal Fabrications

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

PART 2 – PRODUCTS

A. Quikrete 50 pound All Purpose Sand

PART 3 - EXECUTION

END OF SECTION 31 05 00

SECTION 32 90 00 PLANTING

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Plants

B. Planters

1.02 RELATED REQUIREMENTS

A. 32 06 90 Schedules for PlantingB. 26 56 00 Exterior Lighting

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS

A. Care and Maintenance Instructions

PART 2 - PRODUCTS

2.01 PLANTS

A. Blue Sedge

- **B.** Feather Reed Grass
- C. Maiden Pink

2.02 PLANTERS

A. Custom, mobile style to be determined

PART 3 - EXECUTION

3.01 INSTALL

A. Furnish appropriate soil and nutrient mixtures for plantings

END OF SECTION 32 90 00

SECTION 48 19 16

ELECTRICAL POWER GENERATION INVERTERS

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Photovoltaic inverter system

1.02 RELATED SECTIONS

A. Section 26 31 00 – Photovoltaic Generation

1.03 REFERENCE STANDARDS

A. UL 1741 – Inverters, Converters, Controllers and Interconnection System Equipment for use with Distributed Energy Resources; 2007.

1.04 SUBMITTALS

A. Electrical wiring diagram.

1.05 QUALITY ASSURANCE

A. Conform to requirements of NFPA 70.

B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum 10 years experience.

C. Products: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

PART 2 – PRODUCTS

2.01 MANUFACTURERS

A. Solectria Renewables

2.02 COMPONENTS

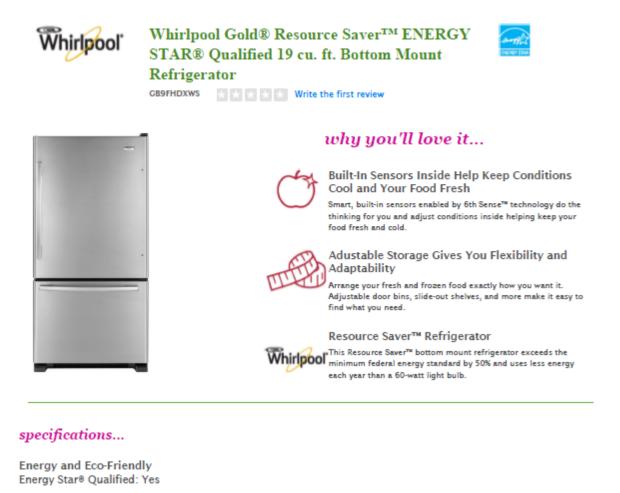
A. Solectria inverter model PVI 4000

1. Product Data

- a. DC Specifications
 - 1. Continuous Power: 4100 Watt
 - 2. Recommended Maximum PV Array Power, STC rating: 4900 Watt DC
 - 3. Maximum Input Voltage: 600 Volt
 - 4. Maximum Input Current: 20 Amp
- b. AC Specifications
 - 1. Continuous Power: 3900 Watt
 - 2. Nominal Voltage: 240/208 Volt
 - 3. Continuous Current (Max.): 16.5 Amp
 - 4. Frequency: 60 Hz; ±1 percent
 - 5. Distortion Factor (THD): <3 percent
 - 6. Maximum Efficiency: 96.7 percent
- c. Mechanical Specifications
 - 1. Aluminum housing, NEMA 3R, rainproof enclosure.
 - 2. Dimensions (L W H): 28.8 inch x 17.75 inch x 6.75 inch
 - 3. Weight: 50.7 pounds
 - 4. Ambient Temperature Range (full power operation): -13 degrees F to +131 degrees F
- d. To view this product's technical data, CLICK HERE

PART 3 - EXECUTION

3.01 INSTALLATION


- A. Provide fire-resistive plywood backing as necessary to support the power conditioning unit.
- B. Solectria Installation Manual: PVI4000 Installation Manual

END OF SECTION 48 19 16

Appendix Product Data Sheets

Division 11 – Residential Appliances

Refrigerator/Freezer

Style and Extras Lighting: 1 - 40 Watt Blue	Shelves: Spillproof	Refrigerator Pantry Door: 13" Standard	
Icemaker Type: Factory Installed	Control Type: Electronic 1-7	Standard	
Capacity			
Total Capacity: 18.5 Cu. Ft.	Refrigerator Capacity: 12.9 Cu. Ft.	Freezer Capacity: 5.6 Cu. Ft.	
Dimensions			
Depth: 33 3/8	Depth Closed Including Handles: 33 3/8	Depth Radius: 59 Width: 29 5/8	
Height To Top Of Cabinet: 65 1/2	Height: 66 15/16	-	

Published 03/22/2011

Description Specifications

Description

- 18.5 Cu. Ft. Bottom Freezer Refrigerator (Color: Stainless Steel) ENERGY STAR
- ENERGY STAR® qualified
- · Electronic temperature controls: easily navigate with just a touch to instantly adjust refrigerator and freezer temperatures
- · Factory installed automatic ice maker
- · Freezer light illuminates the freezer compartment for easier access to all your frozen items
- · Lower wire freezer basket
- Smooth door finish
- · Reversible door swing allows door swing to be changed to accommodate user preference
- Resource Saver™ refrigerator exceeds the minimum federal energy standard by 50% and uses less energy each year than a 60-watt light bulb
- Adaptive Defrost System (ADS): depending upon usage, ADS models can have fewer defrosts, saving energy and
 preserving food more efficiently
- Accu-Chill™ Temperature Management System
- Humidity-controlled crispers helps you preserve the freshness of your favorite fruits and vegetables with controlled humidity levels in the clear, extra-deep crisper
- · Half-width adjustable slide-out shelves
- Adjustable door bins (1 gallon size) give you the flexibility to store beverages anywhere in the refrigerator door by moving bins where and when you need them
- · Drawer freezer door: generous storage baskets in the drawer slide out for easy access to items in the back
- . Upper slide-out freezer basket makes it even easier to quickly spot and grab what you're looking for

Specifications

Appliance Color/Finish	Stainless steel	CEE Tier Qualified	CEE Tier III
Dispenser Options	N/A	Height to Top of Case (Inches)	65.5
Child Safety Locks	No	Height to Top of Door Hinge (Inches)	66.9375
Water Filter Indicator	No	Width (Inclhes)	29.625
Door Alarm	No	Depth (Including Handles) (Inches)	33,375
Dispenser Light	No	Freezer Capacity (Cu. Feet)	5.6
ice Maker	Single	Depth (Excluding Handles) (Inches)	30.875
Space-Saving In-Door Ice	No	Depth (Less Door) (Inches)	28.125
Air Filtration	No	Depth with Door Open (Inches)	59.0

Dual Evaporator Cooling System	No	Cabinet Color	Black	
Refrigerator Interior Lighting	Incandescent	Door Handle(s) Color	Stainless	
Overall Capacity (Cu. Feet)	18.5		steel	
Electronic Temperature Control	Yes	Manufacturer Color/Finish	Stainless steel	
Shelf Options	Glass shelves	Toe Grille Color	Black	
Temperature Controlled Drawer	Yes	Reversible Door	Yes	
Snack/Deli Drawer	Yes	Custom Door Kit Compatible	No	
Pantry Drawer	No	Lowe's Exclusive	No	
Door Shelves	3.0	Door Finish	Smooth	
Gallon Door Storage	Yes	Manufacturer's Warranty (Labor)	Limited 1-year	
Humidity-Controlled Crispers	2 Manufacturier's Wa	Manufacturer's Warranty (Parts)	Limiled	
Freezer Door Bins	0	manufacturers mananty (Parts)	1-year	
Freezer Door Shelves	0	Color/Einish Family	Steel.	
Refrigerator Capacity (Cu. Feet)	12.9		Stainless	
Freezer Baskets	2	CSA Safety Listing	No	
Freezer Shelves	0	ETL Safety Listing	No	
Freezer Door Style	Pull-out	UL Safety Listing	Yes	
	diawei	Door Style	Flat	
Frost-Free	Yes	Hidden Hinge	No	
ENERGY STAR Qualified	Yes	Handle Type	Standard	
		Water Filtration	No	

PERFORMANCE DATA SHEETS

Interior Water Filtration System Model UKF8001AXX-750 Capacity 750 Gallons (2839 Liters)

System tested and certified by NSF International against NSF/ANSI Standard 42 for the reduction of Chlorine Taste and Odor, Particulate Class IP; and against NSF/ANSI Standard 53 for the reduction of Lead, Mercury, Atrazine, Benzene, p-Dichlorobenzene, Carbofuran, Toxaphene, Cysts, Turbidity, Asbestos, Tetrachloroethylene and Lindane.

This system has been tested according to NSF/ANSI Standards 42 and 53 for the reduction of the substances listed below. The concentration of the indicated substances in water entering the system was reduced to a concentration less than or equal to the permissible limit for water leaving the system, as specified in NSF/ANSI Standards 42 and 53.

Substance Reduction Aesthetic Effects	NSF Reduction Requirements	Average Influent	Influent Challenge Concentration	Maximum Effluent	Avorago Effluent	Minimum% Reduction	Average% Reduction
Chlorine Taste/Odor Particulate Class I	50% reduction 85% reduction	2.00 mg/L 14,000,000 #/mL	2.0 mg/L ± 10% At least 10,000 particles/mL	0.06 mg/L 370,000 #/mL**	0.050625 mg/L 196,666 #/mL	97.00% 97.40%	97.52% 99.00%
Contaminant Reduction	NSF Reduction Requirements	Average	Influent Challenge Concentration	Maximum Effluent	Average Effluent	Minimum% Reduction	Average% Reduction
Lead: @ipH 6.5 Lead: @ipH 8.5	0.010 mg/L 0.010 mg/L	0.150 mg/L ¹ 0.150 mg/L ¹	0.15 mg/L ± 10% 0.15 mg/L ± 10%	< 0.001 mg/L < 0.001 mg/L	< 0.001 mg/L < 0.001 mg/L	>00.30%	>00.30%
Marcury: @ pH 6.5 Marcury: @ pH 8.5	0.002 mg/L 0.002 mg/L	0.006 mg/L 0.0069 mg/L	0.006 mg/L ± 10% 0.006 mg/L ± 10%	0.0006 mg/L 0.0018 mg/L	0.0003 mg/L 0.00073 mg/L	91.70% 69.20%	95.00% 88.10%
Benziene	0.006 mg/L	0.0133 mg/L	0.015 mg/L ± 10%	0.0006 mg/L	0.0005 mg/L	96.10%	96.30%
p-Dichloroberzene	0.075 mg/L	0.210 mg/L	0.225 mg/L ± 10%	< 0.0005 mg/L	< 0.0005 mg/L	>99.80%	>99.80%
Carboluran	0.040 mg/L	0.0753 mg/L	0.08 mg/L + 10%	0.027 mg/L	0.008 mg/L	64.60%	73.45%
Toxaphene	0.003 mg/L	0.015 mg/L	0.015 + 10%	< 0.001 mg/L	< 0.001 mg/L	>93.3%	>93.3%
Atrazine	0.003 mg/L	0.0102 mg/L	0.009 mg/L ± 10%	0.0027 mg/L	0.00105 mg/L	76.30%	89.40%
Asbestos	>00%	126.5 MF/L	10 to 10 fibers/L"	< 0.17 MF/L	< 0.17 MF/L	>99.99%	>00.00%
Live Cysts ¹ Turbidity	>99.95% 0.5 NTU	122,500 #/L 10.5 NTU	50,000/L min. 11 ± 1 NTU	< 1 (AL) 0.30 NTU	< 1 (VU) 0.125 NTU	>00.00% 97.30%	>99.99% 98.80%
Lindane	0.0002 mg/L	0.0019 mg/L	0.002 + 10%	< 0.00016 mg/L	0.000035 mg/L	91.80%	97.90%
Tetrachioroethylene	0.006 mg/L	0.015 mg/L	0.015 mg/L ± 10%	< 0.0005 mg/L	< 0.0005 mg/L	>96.6%	>06.6%

Test Parameters: pH = 7.5 ± 0.5 unless otherwise noted. Flow = 0.78 gpm (2.9 Lpm). Pressure = 60 psig (413.7 kPa). Temp. = 68°F ± 5°F (20°C ± 3°C).

- It is essential that operational, maintenance, and filter replacement requirements be carried out for the product to perform as advertised.
- The disposable water filter should be replaced at least every 6 months.
- The filter monitor system measures the amount of water that passes through the filter and alerts you to replace the filter. When 90% of the filter's rated life is used, the yellow (Order) light comes on. When 100% of the filter's rated life is used, the red (Replace) light comes on, and it is recommended that you replace the filter overy 6 months. Use replacement filter model UKF8001AVX-750. 2011 suggested retail price of \$44.99 U.S.A/\$49.95 Canada. Prices are subject to change without notice.
- The product is for cold water use only.
- Do not use with water that is microbiologically unsafe or of unknown quality without adequate disinfection before or after the system. Systems certified for cyst reduction may be used on disinfected waters that may contain filterable cysts.

- Refer to the "Water Filtration System" section for the Manufacturer's name and telephone number.
- Refer to the "Warranty" section for the Manufacturer's limited warranty.

Application Guidelines/Water Supply Parameters

	City or Wall 35 - 120 psi (241 - 827 kPa) 33" - 100"F (1" - 38"C)
Service Flow Rate	0.78 gpm (2.9 L/min.) 🖗 60 psi

*Class I particle size: >0.5 to <1 um

"Test requirement is at least 100,000 particles/mL of AC Fine Test Dust.

"These contaminants are not necessarily in your water supply. Performance may vary based on local water conditions. "Fibers greater than 10 um in length

Based on the use of Cryptosporidium parvum oocysts

@ NSF is a registered trademark of NSF international.

TO GO BACK, CLICK HERE

Fisher&Paykel

Dishwashing

Single DishDrawer®

DD24SCX6V2 EZKleen Stainless Steel Single

Key Features

- Flow through detergent dispenser
- Folding tines
- Key lock and child lock option
- Three stage flood protection

Dimensions

H 16 3/32 x W 23 9/16 x D 22 7/16

Product Info

We imagined the ideal dishwasher...and the concept of the DishDrawer was born. Years of research and refinement have created an appliance that offers a compelling blend of form and function. Each drawer is independently operated, allowing you to wash small loads as economically as large ones. DishDrawer lets you match the wash programme to the contents, so dishes are better cared for.

Finishes

open in browser PRO version Are you a developer? Try out the HTML to PDF API

pdfcrowd.com

Consumption Data

Energy RatingENERGY STAR rated

Features

Quiet operation

Performance Features

- 163° F temperature in final rinse
- Choice of wash programmes9
- Economical eco option
- · Flow through detergent dispenser
- · Heating element in each drawer Rinse aid dispenser
- Uses as little as 1.95 gallons of water per drawer

Usability Features

- Accomodates long stemmed wine glasses
- · Easy to use, primary and secondary (concealed) control panels with single touch programming
- End of cycle beeps
- Energy saving, delay start option up to 12 hours
- Flexible racking system
- Flood protection built in
- Folding tines
- Fully adjustable racking system
- Holds 6 place settings
 Holds plates up to 11 1/2 inches
- Intelligent load sensing for optimum performance
 Key lock and child lock option
- Rinse aid indicator light
- Self diagnostics for servicing

open in browser PRO version Are you a developer? Try out the HTML to PDF API

pdfcrowd.com

- · Smart Drive intelligent technology
- Three stage flood protection
- · Wash progress and time remaining display

Warranty

• 1 year parts & labor warranty

Wash Programmes

- Delicate Delicate Eco
- Fast
- Fast Eco
- Heavy
 Heavy Eco
- Normal Normal Eco
- Rinse

Dimensions

- A- Overall Height of product16 3/32
 B- Overall Width of Product23 9/16
 C- Overall Depth of Product22 7/16
 D- Depth of Draw (open)20 1/2

Contact Details

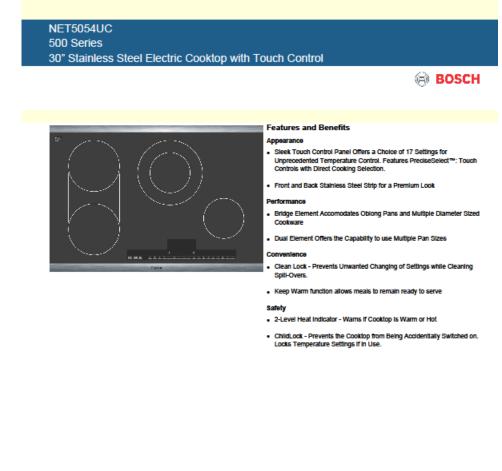
Fisher & Paykel Appliances Inc. 5900 Skylab Road

Huntington Beach CA 92647 USA Phone: 1.888.936.7872 Fax: 1.800.547.1971

open in browser PRO version Are you a developer? Try out the HTML to PDF API

pdfcrowd.com

Continued on next page..


Description

23.6-Inch Drawer Dishwasher (Color: Stainless Steel) ENERGY STAR

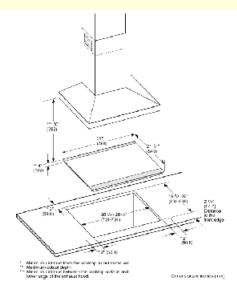
- · Single drawer offers perfect ergonomics no more bending
- · Nine cycles for every washing need
- Superior washing performance incorporates the world's first flow through detergent dispenser detergent burn so your dishes last longer
- · The drawer is a carbon impregnated polymer tub which is seamless, stain resistant, and odor resistant

Specifications			
Lowe's Exclusive	No	Rinse and Hold Cycle	No
Removable Top Rack	No		The first
Fold-Down Tines	Lower rack only		dishwasher with variable
Removable Silverware Basket	Yes		water
Silverware Basket Covers	No		pressure.
Stemware Holder	Yes	Unique or Exclusive Cycle	"Scrub" clean on
Air Dry	Yes	Onique of Excidence Cycle	the heavy
Automatic Temperature Control	Yes		duty and
Direct Feed	Yes		wash gently on
Number of Drawers	1.0		the
Hi-Temp Wash Option	No		delicate
NSF Certified Sanitization Option	No	Number of Custor	cycle 9.0
Self-Cleaning Filter	No	Number of Cycles Number of Wash Levels	
Steam Option	No		1.0
Targeted Scouring Module		Number of AHAM Place Settings	5.0
Targeted Silverware Wash Module	No	Sound Rating (Decibels)	47.5
	The world's	Cycle Status Lights	Yes
	first	Rinse Aid Dispenser Indicator	Yes
	variable water	Control Panel Color	Stainless
	pressure	Control Panel Style	Hidden
Wash System	and flow	CEE Tier Qualified	CEE Tier I
	through detergent	Control Type	Electronic
	dispenser	Custom Door Panel Color	N/A
	and 163 F	Custom Door Panels	No
	sanitizing temperature	Tub Height	Standard
	remperature	Height (Inches)	16.1

Wash System Type	Direct feed	Width (Inches)	23.6
Water Filtration	No	Depth - Door Shut (w/ Handle) (Inches)	24.1
Control Lock/Child Lock	Yes	Depth - Door Shut (w/o Handle) (Inches)	24.1
Manufacturer Color/Finish	Stainless	Depth with Door Open (Inches)	44.1
	Steel	Fill and Drain Hose Included	Yes
Hard Food Disposer or Filtration	Filtration	Rack Material	PVC
Sensor Wash Cycle	Yes	Power Cord Included	Yes
Advanced Sensor Wash Cycle	No	Manufacturer's Warranty (Labor)	Full 1-year
Gentle Wash Cycle	Yes	Manufacturer's Warranty (Parts)	Full 1-year
Heated/Hi-Temp Dry	No	Only Einish Earth	Steel-
Heavy/Pots and Pans Cycle	Yes	Color/Finish Family	Stainless
Normal Cycle	Yes	ETL Safety Listing	No
Pre-Soak Cycle	No	CSA Safety Listing	No
Quick Rinse Cycle	Yes	UL Safety Listing	Yes
Quick Wash Cycle	Yes	Tub Material	Gray
ENERGY STAR Qualified	Yes	Tub Material	plastic
		Adjustable Upper Rack	No
		Rack Options	Culinary and utility racks

Notes: All height, width and depth dimensions are shown in inches. "Please refer to installation instructions prior to making cutout. BSH reserves the absolute and unrestricted right to change product materials and specifications, at any time, without notice.Consult the product's installation instructions for fluid dimensional data and other details. Applicable product warranty can be foundin a companying product literature or your any contact your account manager for further details.

For more information on our entitle line of products, go to boochappliances.com or call 1400-044-2004. Copyright 62008 BBH Home Appliances Corporation. All rights reserved. Bosch is a registered trademark of Robert Bosch OmbH Litho Dete: 022009


U.S. D.O.E. Solar Decathlon 2011

NET5054UC

500 Series

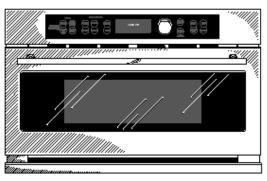
30" Stainless Steel Electric Cooktop with Touch Control

BOSCH

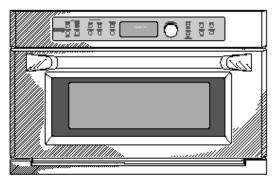
Knob Material	
Sealed Burners	No
Burners with booster	
Type of grate	
Natural Gas Connection Rating (BTU)	
LP Gas Connection Rating (BTU)	
Dimension of 1st heating element (in)	7"
Power of 1st heating element (kW)	1.8;4
Power of 1st burner (BTU)	
Dimension of 2nd heating element (in)	7"
Power of 2nd heating element (kW)	1.8
Power of 2nd burner (BTU)	
Dimension of 3rd heating element (in)	
Power of 3rd heating element (kW)	1.1;2.5
Power of 3rd burner (BTU)	
Dimension of 4th heating element (n)	9"6"
Power of 4th heating element (kW)	1.2
Power of 4th burner (BTU)	
Dimension of 5th heating element (n)	6"
Power of 5th heating element (kW)	
Power of 5th burner (BTU)	
Power of 5th burner (BTU) Dimension of 6th heating element (n)	
Dimension of 6th heating element (n)	
Dimension of 6th heating element (n)	
Dimension of 6th heating element (n) Technical Specification UPC code	825225867623
Dimension of 6th heating element (n) Technical Specification UPC code	825225867623 Black
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product	
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas (type	Black
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas (type	Black
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas type Alternative gas type	Black
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas type Alternative gas type Watts (W)	Black Electric 7700 32
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas type Alternative gas type Watts (W) Current (A)	Black Electric 7700
Dimension of 6th healting element (n) Technical Specification UPC code Main color of product Energy source Gas type Alternative gas type Watts (W) Current (A) Votts (V)	Black Electric 7700 32
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas type Alternative gas type Watts (W) Current (A) Volts (V) Frequency (Hz) Approval cettificates	Black Electric 7700 32 240/208
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas type Alternative gas type Watts (W) Current (A) Volts (V) Frequency (Hz) Approval cettificates	Black Electric 7700 32 240/208 60
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas type Matins (W) Current (A) Votis (V) Frequency (Hz) Approval certificates Power cord length (n)	Black Electric 7700 32 240/208 60
Dimension of 6th healting element (n) Technical Specification UPC code Main color of product Energy source Gas type Mattes (W) Current (A) Votts (V) Frequency (Hz) Approval certificates Power cord length (n) Plug type Required cufout size (HxWxD) (n)	Black Electric 7700 32 240/208 60 CUL
Dimension of 6th healting element (n) Technical Specification UPC code Main color of product Energy source Gas type Mattes (W) Current (A) Votts (V) Frequency (Hz) Approval certificates Power cord length (n) Plug type Required cufout size (HxWxD) (n)	Black Electric 7700 32 240/208 60 CUL No plug
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas type Alternative gas type Watts (W) Current (A) Voits (V) Frequency (Hz) Approval certificates Power cord length (n) Plug type Required cutout size (HxWxD) (n) Minimum distance from counter front (n)	Black Electric 7700 32 240/208 60 CUL No plug 4* x 27 7/8* x 20*
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas type Alternative gas type Watts (W) Watts (W) Current (A) Yolts (V) Frequency (Hz) Approval certificates Power cord length (n) Plug type Required cutout size (hxtWxD) (n) Minimum distance from counter front (n) Minimum distance from cavail (n)	Black Electric 7700 32 240/208 60 CUL No plug 4* x 27 7/8* x 20* 2 1/4* 2*
	Black Electric 32 240/208 60 CUL No plug 4* x 27 7/8* x 20* 2 1/4* 4* x 31* x 21 1/4
Dimension of 6th heating element (n) Technical Specification UPC code Main color of product Energy source Gas type Matis (W) Current (A) Votis (V) Frequency (Hz) Approval certificates Power cord length (n) Plug type Required cutout size (HxWxD) (n) Minimum distance from counter front (n) Minimum distance dimensions (HwWXD) (n) Minimum certificates (HxWXD) (n) Minimum certificates (HxWXD) (n) Minimum distance from rear wail (n) Vereil appliance dimensions (HwWXD) (n)	Black Electric 7700 32 240/208 60 CUL No plug 4* x 27 7/8* x 20* 2 1/4*

Note: All height, which and depth dimensions are shown in Incines. "Yease refer to installation instructions profit to making culturul 55H reserves the absolute and unrestricted right to change product materials and specifications, at any time, without notice.Consult the product's installation instructions for final dimensional data and other details. Applicable product werranty can be found in a commanylos product literature or you may contact your account manager for further details.

For more information on our entire line of products, go to boschappliances.com or call 1-300-344-3204. Copyright 20209 BSH Home Appliances Corporation. All rights reserved. Bosch is a registered trademark of Robert Bosch GmbH. Lino bate: 02209


ZSC1201NSS/ZSC1202NSS GE Monogram[®] Built-In Advantium[®] 120 Oven

Features and Benefits


- Remarkable Versatility Multiple cooking options create four ovens in one—Speedcook, True European convection, sensor microwave and warming ovens—to bake, broil, brown, roast and warm and proof foods
- Speedcook Technology Halogen light system combines with microwaves and speedcooks your favorite foods to delicious perfection in minutes, with no preheating
- Powerful Performance Oven-quality foods cook up to four times faster than a conventional oven, with no preheating required
- Spacious Interior Large 1.7-cu.-ft rounded oven cavity with 16" turntable allow full and continual rotation of a 9" x 13" casserole dish; removable oven rack offers the convenience of multi-level cooking
- Installation Flexibility Ovens can be installed in 30" wall cabinet and can also be installed below a countertop or below a GE Monogram electric radiant or gas-on-glass cooktop—models ZEU36R, ZEU30R and ZEU36K
- Sophisticated Styling Integrated models make a singular architectural impression with sleek, horizontal lines set off by a tubular handle and stainless steel control knob
- Professional Styling Professional models exude power with a premium-grade stainless steel exterior, chamfered edges and a die-cast control knob
- Model ZSC1201NSS Integrated stainless steel
- Model ZSC1202NSS Professional stainless steel
- Optional Accessory Storage Drawer ZX2201NSS (for use with ZSC1201NSS only)

For answers to your Monogram,[®] GE Profile[™] or GE[®] appliance questions, visit our website at ge.com or call GE Answer Center[®] service, 800.626.2000.

Integrated

Professional

Specification Created 11/08

130316

Continued on next page

ZSC1201NSS/ZSC1202NSS GE Monogram[®] Built-In Advantium[®] 120 Oven

Dimensions and Installation Information (in inches)

Installation Flexibility

The Monogram Advantium 120 built-in oven can be installed directly into a wall, or a 30° wide wall oven cabinet. Install it alone, with a wall oven, a microwave oven or a warming drawer.

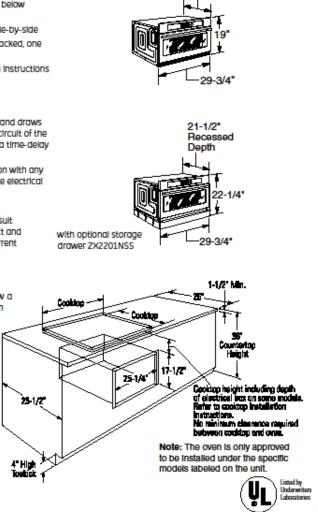
- This oven may be installed below a cooktop or below a countertop
- Two Advantium 120 ovens may be installed side-by-side
- Two Advantium 120 ovens may be installed, stacked, one over the other

Aways refer to each specific product installation instructions for details.

Electrical Requirements

Product rating is 120-volt, 60 Hz, 15 amp circuit and draws 1.8 kilowatts. It must be connected to a supply circuit of the proper voltage and frequency and protected by a time-delay fuse or circuit breaker.

 An Advantium 120 oven installed in combination with any other appliance must be supplied with separate electrical connections.

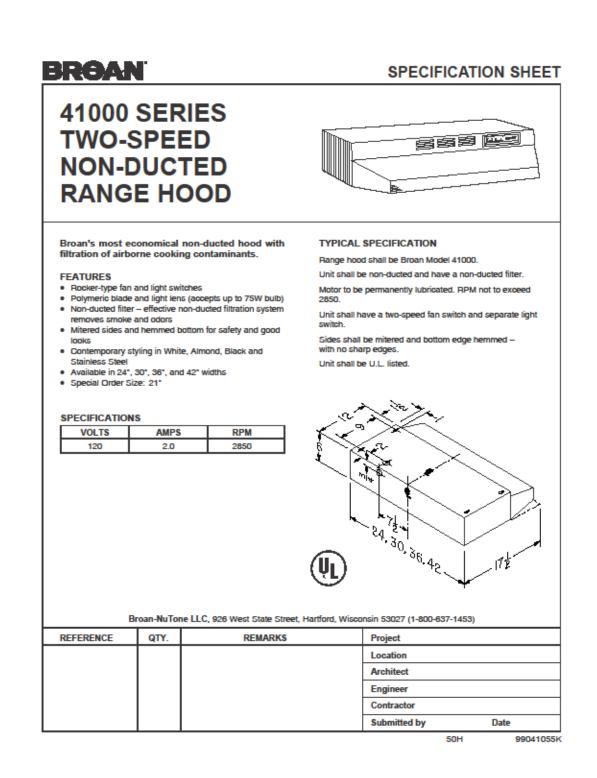

Installation Information – before installing, consult installations instructions packed with the product and available on-line at www.monogram.com for current dimensional date.

Installation below a 30" or 36" cooktop

This Advantulm 120V oven can be installed below a countertop or beneath a 30 or 36° GE Monogram electric radiant or gas-on-glass cooktop. Models Include ZEU36R, ZEU30R and ZEU36K. Install the oven in a 36° or wider base cabinet.

For answers to your Monogram,® GE Profile" or GE® appliance questions, visit our website at ge.com or call GE Answer Center® service, 800.626.2000.

21-1/2"


Depth

Recessed

Specification Created 11/08

TO GO BACK, CLICK HERE

130316

HIGHLIGHTS Ventless Condensing Dryer SenseClean[™] LoDecibel[™] Quiet Operation

FEATURES

2.7 cuft. Capacity (IEC) Direct Drive Motor (10 year Warranty) 1300 RPM LoDecibel^{IM} Quiet Operation Highly Energy and Water Efficient SenseClean^{IM} 9 Washing Cycles 6 Drying Cycles 5 Temperature Levels Sanitary Cycle Delay Wash (up to 19 hours) Upfront Electronic Control Panel with LED Display and Dial-A-Cycle^{IM} Chrome Rimmed Door with Glass

IS IT A WASHER? OR SOMETHING BETTER?

LG's all-In-one washer and dryer combo does it all in just one machine. It's great for those who want to be able to do laundry at home but do not have an external venting source which conventional dryers require. Perfect for homes, apartments, businesses and vacation homes where space is valuable.

Available colors: White Silver

Continued on next page

LAUNDRY

WM3455HW WM3455HS Front Load Compact Washer/Dryer Combo

CAPACITY	
Capacity*	IEC 2.7 cu.ft.
APPEARANCE	
Design Look	Front Control
ntelligent Electronic Controls	
with LED Display	•
Dial-A-Cycle™	•
ENERGY	
Energy Star Compliant	•
WASH/DRY PROGRAMS	
Wash Cycles	Cotton/Normal, Perm. Press, Delicates
	Hand Wash/Wool, Drain & Spin.
	Baby Wear, Speed Wash, Sanitary,
	Bulky/Large
5 Dry Cycles	Speed Dry, Sanitary, Cotton/Normal,
	Perm, Press, Baby Wear, Drain & Spin
5 Wesh/Rinae Temps	Extra Hot/Cold, Hot/Cold,
	Warm/Warm, Warm/Cold, Cold/Cold
Spin Speeds	Extra High (1300 max), High,
apin apeeds	Extra High (1300 max), High, Medium, Low, No Spin
No. of Mintee Longin	
No. of Water Levels	Automatically adjusts to size of load
Optiona	Prevesh, Extra Rinse, Stain Cycle,
	Rinse & Spin, Water Plus, Tub Clean,
	Delay Wash (up to 19 hours),
	Child Lock , Custom Program
FABRIC CARE FEATURES	
Antiess Condensing Drying System	•
SenseClean™ System	•
Sensor Dry	•
CONVENIENCE FEATURES	
3 Tray Dispenser	Prewsah, Main Weah, Softener
oDecibel [™] Quiet Operation	•
End of Cycle Beeper	•
Child Lock	•
Auto Suda Removal	•
Forced Drain System	•
Status Indicator(s)	
Internal Water Heater (1000W)	•
Leveling Lega	4 Adjustable Lega
MOTOR AND AGITATOR	a reparate cage
Motor Type	Direct Drive Motor
Motor Speed	Variable
Axia	Horizontel
MATERIALS AND FINISHES	The second se
NeveRust [®] Stainless Steel Drum	•
Neverluat ^{ee} Steinless Steel Drum Cebinet	Painted Steel
Control Panel	Plastic
Top Plate	LPM Board
Transparent Door Glass	•
Door Rim	Chrome
Available Colora	White (W), Silver (S)
POWER SOURCE	
Ratinga	CSA Listed
Electrical Requirements / Type	120V, 12 Amps / Electric
DIMENSIONS	
Product (WxHxD)	24" x 33 1/2" x 25 1/4"
	(45"D with door open)
Carton (WxHxD)	26"x 35 3/4"x 27 3/4"

UPC CODES			
WM3455HW	Combo Washer & Dryer - White	048231	010818
WM3455HS	Combo Weaher & Dryer - Silver	048231	011327

Control Panel

www.LG.com

LG Electronics U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffa, NJ 07632 Customer Service and Technical Support: (800) 243-0000

Dimensions and weights are approximate. Design, features and specifications subject to change without notice.

© 2010 LG Electronics USA, Inc. All rights reserved. "LG Life's Good" is a registered trademark of LG Corp. All other product and brand names are trademarks or registered trademarks of their respective companies. 04/7/10

Specifications

		TC-I	L37D2	TC-L42D2				
Pow	er Source	AC 110-127 V, 60 Hz						
Forer Consumption	Maximum Standby condition	130 W 0.3 W		1 37 W 0.3 W				
₽	Aspect Ratio	16:9						
spi	Visible screen size	37" class (37.0 inches	s mea sured diago nally)	42" class (42.0 inches measured diagonally				
Aspect Ratio 16.9 Visible screen size 37° class (37.0 inches measured diagonally) 42° class (42.0 inches measured (42.0 inches))))))))))))))))								
ē	(No. of pixels)	2.073.600 (1.920 (NV) × 1.080(H)) [5.760 × 1.080 dots]						
Sound	Speaker 1-way 2 speakers slim under SP System							
'n	Audio Output							
PCs	ignals	VGA, SVGA, XGA, W Horizontal scanning fi Vertical scanning freq	requency 31 - 69 kHz					
Char ATS (nel Capability- C/NTSC (Digital/Analog)	VHF/ UHF: 2 - 69, C/	ATV: 1-135					
Oper	rating Conditions	Temperature: Humidity: 20 % - 80	32 "F - 95 "F (0 "C - 3 % RH (non-condensing	5°C)				
	VIDEO IN 1-2		RCAPIN Type × 1 1.0 RCAPIN Type × 2 0.5					
Conn	COMPONENT IN	Y: 1.0 V (p·p) (including synchronization) Pis. Pis: ±0.35 V (p·p) AUD/0L-R: RCA-PIN Type ≥ 2.0.5 V (ms)						
COMPONENT IN Pit. Pit. ±0.35 V [pit] AUD IO L. R: RCA PIN Type × 2 0.5 V [mms] HDMI 1-3 TY PE A Connector × 3 e This TV supports "HDAVI Control 5" function. PC D-SUB 15PIN: R.G.B./0.7 V [p-p] (75 ©) HD, VD / 1.0 - 5:0 V [p-p] (high impedance) Dock for iPod DC 5V 500mAMAX								
Termi	PC D-SUB 15 PIN: R,G,B / 0.7 V (p-p) (75 Ω) HD, VD / 1.0 - 5.0 V (p-p) (high impedance)							
Dock for iPod DC 5V 500 mA MAX								
Card slot SD CARD slot × 1								
	DIGITAL AUDIO OUT	PCM / Dolby Digital, Fiber Optic						
FEAT	TURES	3D Y/C FILTER, CLO V-Chip, HDAVI Contro Vesa compatible, VIE	15					
Dimensions (W × H × D)	Including TV stand	35.1 " x 24.9 " x 11.3 " (917 mm x 632 mm 2		40.7 ° x 27.5 ° x 13.0 ° (1.032 mm x 697 mm x 329 mm)				
H× D)	TV Set only	36.1 " x 23.2 " x 1.7 " (917 mm x 590 mm x		40.7 ° x 25.8 ° x 1.5 ° (3.0 °) (1,032 mm x 655 mm x 39 mm (77 mm)				
Ma	Including TV stand	38.6 b. (17.5 🖎 NET		47.4 lb. (21.5 🔤) NET				
\$5	TV Set only	32.0 ib. (14.5 Kg) NET		40.8 lb. (18.5 MC) NET				
		[TC-L37D2]		[TC-L42D2]				
		361 ° (97 mm		40.7 (1,032 mm)				
Not	e)	1551 (mm (sec)	(17 mm) (11.2° (257 mm)	17,8" (460 mm) bit (7 mm) 12,0" (328 mm)				

Note

Design and Specifications are subject to change without notice. Mass and Dimensions shown are approximate.

52

-		can fall into such power lines or drouits. When installing an outside antenna system, extreme care should be ep from touching such power lines or circuits as contact with them might be fatal.
20)	Unplug this a. Who	LCD TV from the wall outlet and refer servicing to qualified service personnel under the following conditions: In the power cord or plug is damaged or frayed.
		uid has been spilled into the LCD TV.
		LCD TV has been exposed to rain or water.
	d. If the	LCD TV does not operate normally by following the operating instructions.
		Adjust only those controls that are covered by the operating instructions as improper adjustment of other
		controls may result in damage and will often require extensive work by a qualified technician to restore the LCD TV to normal operation.
		LCD TV has been dropped or the cabinet has been damaged. n the LCD TV exhibits a distinct change in performance - this indicates a need for service.
21)		cement parts are required, be sure the service technician uses replacement parts specified by the manufacturer that
	have the sa	me characteristics as the original parts. Unauthorized substitutions may result in fire, electric shock, or other hazards. : TO REDUCE THE RISK OF FIRE OR ELECTRIC SHOCK, DO NOT EXPOSE THIS APPARATUS TO RAIN,
		MOISTURE, DRIPPING OR SPLASHING. DO NOT PLACE LIQUID CONTAINERS (FLOWER VASES, CUPS, COSMETICS, ETC.) ABOVE THE SET (INCLUDING ON SHELVES ABOVE, ETC.).
23)	WARNING	SMALL PARTS CAN PRESENT CHOKING HAZARD IF ACCIDENTALLY SWALLOWED. KEEP SMALL PARTS AWAY FROM YOUNG CHILDREN.
		DISCARD UNNEEDED SMALL PARTS AND OTHER OBJECTS, INCLUDING PACKAGING MATERIALS AND PLASTIC BAGS/SHEETS TO PREVENT THEM FROM BEING PLAYED WITH BY YOUNG CHILDREN CREATING THE POTENTIAL RISK OF SUFFOCATION.
24)	CAUTION	The Power switch on this unit will not completely shut off all power from AC outlet. Since the power cord serve as the main disconnect device for the unit, you will need to unplug it from the AC outlet to shut down all power.
		Therefore, make sure the unit has been installed so that the power cord can be easily unplugged from AC out in case of an accident. To avoid fire hazard, the power cord should also be unplugged from the AC outlet when
25)	CAUTION	Infl unused for a long period of time (for example, when on vacation). TO PREVENT ELECTRIC SHOCK, DONOT USE THIS PLUG WITH A RECEPTACLE OR OTHER OUTLET UNLESS THE BLADES CAN BE FULLY INSERTED TO PREVENT BLADE EXPOSURE.
		USE WITH OTHER STAND MAY RESULT IN INSTABILITY POSSIBLY CAUSING INJURY. DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY REPLACED. REPLACE ONLY WITH THE SAME
28)	CAUTION	OR EQUIVALENT TYPE. This LCD TV is for use only with the following optional accessory. Use with any other type of optional accessories may cause instability which could result in the possibility of injury.
		(All of the following a coessories are manufactured by Panasonic Corporation) * Wall-hanging bracket: TY-WK3L2RW
		* There is a going character, in the transmission of transmission of the transmission of transmiss
		Aways be sure to ask a qualified technician to carry out set-up.
N		
N		Always be sure to ask a qualified technician to carry out set-up.
This Rule This instr in a by to mea	hous s equipment s. These is s equipment nuctions, ma particular in urning the e surves:	Always be sure to ask a qualified technician to carry out set-up. equipment is designed to operate in North America and other countries where the broadcasting system and AC a current are exactly the same as in North America. FCC STATEMENT It has be en tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC mits are designed to provide reasonable protection against harmful interference in a residential installation. generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the y cause harmful interference to radio communications. However, there is no guarantee that interference will not occus stallation. If this equipment does cause harmful interference to radio or television reception, which can be determined puppement off and on, the user is encouraged to by to correct the interference by one or more of the following
This Rule This instr in a by to mea ·	house s equipment es. These li s equipment nuctions, ma particular in urning the e sources: Reorient or Incre ase th Connect th	Always be sure to ask a qualified technician to carry out set-up. equipment is designed to operate in North America and other countries where the broadcasting system and AC a urrent are exactly the same as in North America. FCC STATEMENT It has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC mits are designed to provide reasonable protection against harmful interference in a residential installation, generates, uses and can mailate radio frequency energy and, if not installed and used in accordance with the y cause harmful interference to radio communications. However, there is no guarantee that interference will not comp sublation. If this equipment does cause harmful interference to ratio or television reception, which can be determined apprent off and on, the user is encouraged to try to correct the interference by one or more of the following relocate the receiving antenna. a separation between the equipment and receiver. a equipment into an outcut different from that to which the receiver is connected.
This Rule This in a by to mea	house s equipment es. These il sequipment nuctions, ma particular in urning the e saures: Reorient or lacre ase th Con nect the Con suit the s device con- cause harm	Always be sure to ask a qualified te chnician to carry out set-up. equipment is designed to operate in North America and other countries where the broadcasting system and AC a current are exactly the same as in North America. FCC STATEMENT It has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC mits are designed to provide reasonable protection against harmful interference in a residential installation, generates, uses and can maintee moli frequency energy and, if not installed and used in accordance with the generates, uses and can maintee moli frequency energy and, if not installed and used in accordance with the generates, uses and can maintee moli frequency energy and, if not installed and used in accordance with the generates uses and can maintee moli for operations. However, there is no guarantee that interference will not occus stallation. If this equipment does cause harmful interference to malio or television moreption, which can be determined upment of and on, the user is encouraged to by to correct the interference by one or more of the following relocate the receiving anterna. a separation between the equipment and receiver. a equipment find on a circuit different from that to which the receiver is connected. dealer or an experienced mole/TV technician for help. mplies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may ful interference, and (2) this device.
This Rule This in a by b mea	house sequipment settinese is sequipment sequipment runcitions, ma particular is urning the saures: Reorient or consult the s device cor cause ham lesized oper	Always be sure to ask a qualified te chnician to carry out set-up. equipment is designed to operate in North America and other countries where the broadcasting system and AC a current are exactly the same as in North America. FCC STATEMENT It has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC mits are designed to provide reasonable protection against harmful interference in a residential installation, generates, uses and can maintee moli frequency energy and, if not installed and used in accordance with the generates, uses and can maintee moli frequency energy and, if not installed and used in accordance with the generates, uses and can maintee moli frequency energy and, if not installed and used in accordance with the generates uses and can maintee moli for operations. However, there is no guarantee that interference will not occus stallation. If this equipment does cause harmful interference to malio or television moreption, which can be determined upment of and on, the user is encouraged to by to correct the interference by one or more of the following relocate the receiving anterna. a separation between the equipment and receiver. a equipment find on a circuit different from that to which the receiver is connected. dealer or an experienced mole/TV technician for help. mplies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may ful interference, and (2) this device.
This Rule This in a by b mea	house s equipment as. These is a equipment numbers, ma particular in particular in particular in particular in particular in Con sect the Consult the s device con cause ham esime open C Caution: a surve con en connect	Always be sure to ask a qualified technician to carry out set-up. equipment is designed to operate in North America and other countries where the broadcasting system and AC a current are exactly the same as in North America. FCC STATEMENT This be on tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC mits are designed to provide reasonable protection against harmful interference in a residential installation. generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the y cause harmful interference to radio communications. However, there is no guarantee that interference will not occur stallation. If this equipment does cause harmful interference to radio or television reception, which can be determine upperent off and on, the user is encouraged to try to correct the interference by one or more of the following relocate the receiving antenna. separation between the equipment and receiver. sequipment into an outlet on a circuit different from that to which the receiver is connected. dealer or an experienced main/TV technician for help. mplies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may ful interference, and (2) this devices must accept any interference received, including interference that may causa from.
This Rule This in a by b mea	house s equipment as. These is a equipment numbers, ma particular in particular in particular in particular in particular in Con sect the Consult the s device con cause ham esime open C Caution: a surve con en connect	Always be sure to ask a qualified te chnician to carry out set-up. equipment is designed to operate in North America and other countries where the broadcasting system and AC a current are exactly the same as in North America. FCC STATEMENT This as been tested and found to comply with the limits for a Class. B digital device, pursuant to Part 15 of the FCC mits are designed to provide reasonable protection against harmful interference in a residential installation. generates, uses and can mainter adio frequency energy and, if not installed and used in accordance with the y cause harmful interference to make cause harmful interference to make or television reception, which can be determine guipment off and on, the user is encouraged to by to corect the interference by one or more of the following relocate the receiving anterna. e separation between the equipment and receiver. e equipment into an a circuit different from that to which the receiver is connected. dealer or an experienced made/TV technician for help. mplies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may ful interference, and (2) this device must accept any interference received, including interfere ne that may cause ation.
This Rule This in a by b mea	house s equipment as. These is a equipment numbers, ma particular in particular in particular in particular in particular in Con sect the Consult the s device con cause ham esime open C Caution: a surve con en connect	Always be sure to ask a qualified te chnician to carry out set-up. equipment is designed to operate in North America and other countries where the broadcasting system and AC a urrent are exactly the same as in North America. FCC STATEMENT This be en tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rists are designed to provide reasonable protection against harmful interference in a reidential installation, generate, uses and can malate radio frequency energy and, if not installed and used in accordance with the y cause harmful interference to radio communications. However, there is no guarantee that interference will not express pulpment off and on, the user is encouraged to by to correct the interference by one or more of the following relocate the receiving antenna. e separation between the equipment and receiver. e equipment into an acticult different from that to which the receiver is connected. dealer or an experienced mail.off (V te chnician for help. rights with Part 15 of the FCC Rules. Operation instructions and use only shieled interface cables ing to compliance, follow the attached installation instructores and use only shieled interface cables ing to compliance, follow the attached installation instructores and use only shieled interface cables ing to compliance, follow the attached installation instructores and use only shieled interface cables ing to compliance, follow the attached installation instructores and use only shieled interface cables ing to compliance outly void the user's authority to operate this device. FCC Declaration of Conformity Model No. TC-13702, TC-14202 Responsible Party: Panasonic Corporation of NothAmerica
This Rule This in a by b mea	house s equipment as. These is a equipment numbers, ma particular in particular in particular in particular in particular in Con sect the Consult the s device con cause ham esime open C Caution: a surve con en connect	Always be sure to ask a qualified technician to carry out set-up. equipment is designed to operate in North America and other countries where the broadcasting system and AC a current are exactly the same as in North America. EXAMPLE 1 These been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC mits are designed to provide reasonable protection against harmful interference in a residential installation. generates, uses and can mainter adio frequency energy and, if not installed and used in accordance with the y cause harmful interference to radio communications. However, there is no guarantee that interference will not occus stallation. If this equipment does cause harmful interference to radio or television reception, which can be determined upprent off and on, the user is encouraged to try to corect the interference by one or more of the following relocate the receiving anterna. • equipment into an outlet on a circuit different from that to which the receiver is connected. dealer or an experienced m dio/TV technician for help. mplies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may dui interference, and (2) this device must accept any interference received, including interfere not that may cause ation. If nued compliance, follow the attached installation instructors and use only shielded interface cables ing to computer or peripheral devices. Any changes or modifications not expressly approved by rep. of North America could void the user's authority to operate this device. FCC Declaration of Conformity Model No. TC-L37D2, TC-L42D2

5

Safety Precautions (Continued)

AWARNING

CEA CHILD SAFETY NOTICES: Flat panel displays are not always supported on the proper stands or installed according to the manufacturer's recommendations. Flat panel displays that are inappropriately situated on dressers, bookcases, shelves, desks, speakers, chests or carts may fall over and may cause personal injury or even death.

The consumer electronics industry (of which Panasonic is a member) is committed to making home entertainment enjoyable and safe. To prevent personal injury or death, be sure to follow the following safety guidelines:

TUNE INTO SAFETY:

- · One size does NOT fit all. Follow the manufacturer's recommendations for the safe installation and use of your flat panel display. Carefully read and understand all enclosed instructions for proper use of this product.

- Dark allow children to that an an encode that the properties of the polytic of the polytic.
 Dor't place flat panel displays on furniture that can easily be used as steps, such as a chest of drawers.
 Romember that children can become excited while watching a program, especially on larger than life' flat panel displays. Care should be taken to install the display where it cannot be pushed, pulled over,
- or knocked down. Care should be taken to route all cords and cables connected to the flat panel display so that they . cannot be pulled or grabbed by curious children.

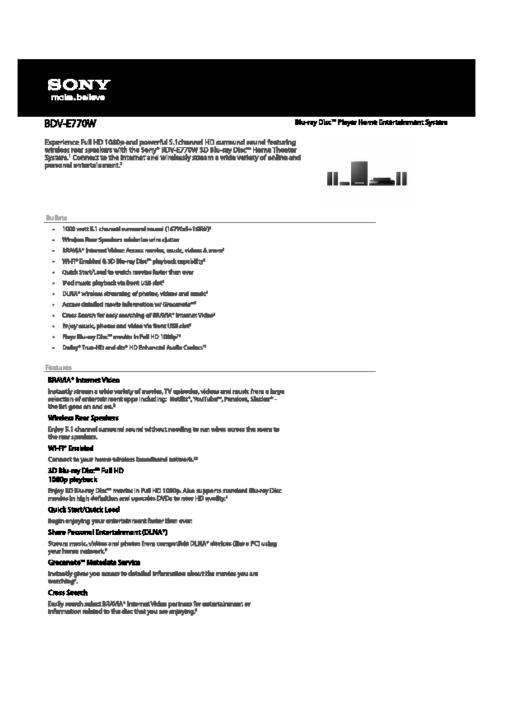
WALL MOUNTING: IF YOU DECIDE TO WALL MOUNT YOUR FLAT PANEL DISPLAY, ALWAYS: Use a mount that has been recommended by the displaymanufacturer and/or listed by an independent laboratory (such as UL, CSA, ETL).

- Follow all instructions supplied by the display and wall mount manufacturers.
 Flyou have any doubts about your ability to safely instal your flat panel display, contact your retailer about professional installation.
- Make sure the wall where you are mounting the display is appropriate. Some wall mounts are not designed to be mounted to walls with steel studs or old cinder block construction. If you are unsure, contact a profession al installer.
- Aminimum of two people are required for installation. Rat panel displays can be heavy

The American Academy of Pediatrics discourages television viewing for children younger than two years of age.

This product incorporates the following software:

This product incorporates the totowing so tware: (1) software developed independently by or for Panasonic Corporation, (2) software owned by a third party and licensed to Panasonic Corporation, (3) software licensed under the GNU General Public License, Version 2 (GPL v2), (4) software licensed under the GNU LESSER General Public License (LGPL) and/or, (5) open source software other than software licensed under the GPL and/or LGPL.


For the software categorized as (3) or (4), please refer to the terms and conditions of GPL v2 and LGPL, as the case may be at http://www.gnu.org/licenses/old-icenses/gpl-2.0.html and http://www.gnu.org/licenses/old-icenses/gpl-2.1.html In addition, software categorized as (3) or (4) is copyrighted by several individuals and/or entities. Please refer to the copyright notice of those individuals at http://www.am-linux.jp/d/DTV10UT/.

GPULGPL SOFTWARE IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT WITHOUT ANY WARRANTY, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE MPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

For at least three (3) years from delivery of products, Panasonic will give to anyone who contacts us at the address provided below, for a charge of no more than our cost of physically performing source code distribution, a complete machine-readable copy of the corresponding source code covered under GRL v2LGPL. distribution, a complete machine-re Contact Information

confequest@am-inux.jp Source code is also freely available to you and any other member of the public via our website below. http://www.am-linux.jp/dl/DTV10UT/

6

Blu-rey Disc" Audie Deceding

Experience round describe the way three captured with LPCM, Dollay" TruthD and db"-HD mester scale caders.¹¹

USB Input

Listan to your favorite marks or shore your bone videos or photos on the big screen. Simply cannect your (Pod, digital cannon, USB-enabled MPS physe, or USB stange device.⁹ Specifications

								
Amplifier			installand Outputs	Andread Aurika Internation	1,5149		Dailog* Digital	74
Ande Female	24151000	Yes	Separation -	Partnish Annih Enternor	Ten an Eligibal Adorido Print		Dalley" Digital Plan. Managersan	The last
	AAD. Spenderd	We .			Hone Treat Place:		945	
ingenie seul Angenie	Anning Autom	2 (44/28) 14(Person	Former Output	Contro 14740 Sumumi 16740 Weater 16790 Front FINE		Della*TruetO	74
Equilitar	And of Child	The local sectors and			Front Fill	HOME Anda	dir" bibdraam 1975	THE
Tener	Read .	FM	Test	Press Crannel	Ph/28		der-HD High	
Pencilee	ND hepd	Tes (Fissioni)	Pre-clim	STRATE	194		Second States	700
	Countril Audits Inspecific)	1 (Extended	incomercia Outputs	Specifier Transfer			dar-HD libeter Ande ide- derens ent	9 6
involution of	Company of the second s	1	Passoties	Tente Type	144410		DVD Uponing	THE REPORT
Betpetz	Compariso Vision Desparatel	1	Trace	Tening lange	File C7.5 Million Million Million Called	Yides	Room Maire Reduction	The local sectors and
	DCAC Ques	Yes Mone Mich	finishin	w	Yes	inerto-end Colgaria	Howen Compation Culputing	1 Palpat
Jurio	Planet	Yes BL/WAL/ SNC/SH-BRAD	The give work	Thight Septemb	Hile 18-12 (12-19)	Miles.	HDMP* Competional	The Child Hellow/12 Star / Starting Children
ingenie seel	PART NEEDA	Ym (0)	General			Indextion		
Traples and	Descriptory	17 in a 5 3/6 in a 18 1 2/6 in family	other	AV SNC She Synd	Yes (Dam- \$500ms/ 25ms stag)	diarani		LER ENG
	(Johna)	ALTE LA DE METER METERAL	Conventioner Perturbe	Jac. Weild Marriery Preside	2170 Bey	On-Schen Display	Language	
	Deby" Digital	The second second		Machille (antika) (Steller Tante (Steller Tante	BUMP NOC	Language Pallow	THE	
	Dellag ¹ Pro Logic ¹ B	Ne l			700		UPGB 3ch	Ter'in'te
	Delay Pro	Yes			The second second	HDM ^T Antin	LPCB Pdb	Tes Tes Tes
And in Permate.	Delay*Terror	The second second	Yeles	No. HE 2010 In COLUMN	Tes		UPCH Ach Grabbaration	Terlin
	der" Mater Derredeng	Yes Bridy BDB		NO: SE - LEWIS	Ter			-
	aits" Generaling	Net		Mark Holes	744	Video	ilary in Bein Raincian	THE
	44° 85	Ten Efrie II.		Nekotina		BUNK' byoc"	One-Brech Play	THE
	Decelling der VID	Yes	BINA' Space	Noteshan Treaders Symm	Tes		Perer Constanting	1.20
Reaction	DAD Hasterick	Te	Hear	Child Lock	194	Page		
Tenar	Petersel Filia	Yes (THE)	Viles	Composited	3hr		Repair training	125V AC, MAR
	All Arabas		-	Control for HEMII - Many Setting	96	ananis" aport	Barrets Castrol Page Transge	74
ingente avel Circipanie	Company	1 (Operate to Online) for CMUP		DESIGN Marks	1 M	Made		Ten Plannel / Galet Tenet
Annalis, Parmana.	UKIN	Via Cale / 5. Joh / 7. Joh	other	Dissuer	14 (De(DB)		Species Andre - Control	The second second
Jacomi Maste	All share	Anto-Monito' Manio Sporta' Hump Hanna Bach				BANNA' Spic"	Santtan Perster	74
		randylining mod.				96e	Thread	The Clinics

Division 22 – Plumbing

Fresh Water Storage Tank

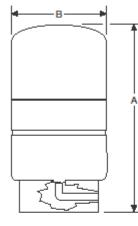
Product Description: 1,500 Gallon Potable Water Tank

Manufacturer: AIRE Industrial Products

Bladder Width	9	ft	Package Contents:
Bladder Length	13	ft	One (1) Bladder
Height	18	inches	One (1) Basic Repair Kit
Valves		J	One (1) Ground Pad
Tie Down Points	4	ea.	
Gal. Capacity	1500	gal.	Mfg Part #
Pad Area	117	Sq Ft	950-026500
Fabric	22 oz PVC		MFG Cage Code
Bladder Weight	70	lbs	1MDS4

Valve Upgrades available

U.S. D.O.E. Solar Decathlon 2011


Fresh Water Transfer Pump

Product Description	Specifications
3/4 hp Hydro-Glass®, Craftsman Professional Shallow Well Water Pump capable of pumping up to 10.9 GPM. Performance is based on depth to water of 20 ft. or less and a 40/60 pressure rating.	DIMENSIONS:
Built-in Check Valve - prevents pumped water from returning to source	
Built-in shallow well jet - eliminates additional purchase	
Dual voltage (115 or 230)	
Capacitor start motor - more efficient motor start	PRODUCT OVERVIEW
Dual discharge - simplifies hookup	
Draincock - simplifies draining and winterization	
Limited 3 year warranty	POWER:
Added on February 12, 2009	
	INSTALLATION REQUIR
	QUALITY:
	PUMP:
	PERFORMANCE AT 40

WELL-X-TROL®

Pre-pressurized diaphragm-type well tanks Stainless steel system connection piped to he stand

Model		ank ol	Max. Accept.	/ Hei	-	E Diam		Sys. Conn.	Factory Pre-charge	Working Pressure	Sh W	
No.	LIL	Gal	Factor	mm	ins.	mm	ins.	ins.	PSIG	PSIG ¹	kg	IDS.
WX-202P	76	20.0	0.57	803	31 ⁵ /a	390	15%	1	38	125	15.0	33
WX-202XLP	98.4	26.0	0.44	971.5	381/4	390.5	15%	1	38	125	16.3	36
WX-203P	121	32.0	0.35	1181	46%	390	15%	1	38	125	20.0	43
WX-205P	129	34.0	1.00	752	29 ⁵ /a	559	22	1%	38	125	28.0	61
WX-250P	167	44.0	0.77	914	36	559	22	1%	38	125	31.0	69
WX-251P	235	62.0	0.55	1187	46°/4	559	22	1%	38	125	41.0	92
WX-255P	306.6	81.0	0.41	1432	56°/a	558.8	22	1%	38	125	38.4	103
WX-302P	326	86.0	0.54	1200	47%	660	26	1%	38	125	56.0	123
WX-350P	450	119.0	0.39	1572	61 ⁷ /a	660	26	1%	38	125	75.0	166
125 PSIG I	125 PSIG is 862 kPa.											

Stand Models

Max. Operating Conditions

Operating Temperature 200° F (93° C) Working Pressure 125 PSIG (862 kPa)

Compiles with Low Lead Plumbing Law

Specifications

Description	Standard Construction
Shell	Steel
Diaphragm	Butyl
Liner	Polypropylene
System Connection	Stainless Steel NPTF

Job Name		Model No. Ordered			
Location		Pump Cut-In	PSI	Pump Cut-Out PSI	
		Pump GPM P	SI		
Engineer					
Contractor					
Contractor F	P.O. No				
Sales Repre	sentative				
Rev. 03/10 P/N 4400-003	Submittal data sheets can OALY be ordered as a "Submittal Data Si Individual basis, however each data sheet is available on the AATHC For the most updated technical specifications, please download she	L Web Site and can be down			

3

Published 03/22/2011

Grey Water Storage Tank Husky 1000 Gallon Potable Water Bladder Tank

Bladder tanks have unlimited practical uses including:

Providing drinking water storage for disaster area victims Additional fresh water for boats or RV Waste water containment Rain Water Collection for Irrigation Systems Pesticides and insecticides Nurseries Farming, watering livestock or treating with insecticides Fuel storage, diesel, gas, jet, etc. Gray water storage for pressure washing systems Fire Fighting Black Water (sewage) Flatbed Truck Tanks **Railcar Tanks** •Materials NSF-61 Approved (potable water) •25-75 gal. comes with a 3/4" Flange and Ball Valve •1 1/2" Flange and Ball Valve Standard on Sizes 100-1000 gal. •4" Fill Cap or 7" Diameter Fill Sleve •Easy to Handle, Folds down for Compact Storage

Part Number: HPC-BT-1000PW Capacity: 1000 Gallons Size: 108"L x 132"W x 16"H Weight: 60 lbs.

SELECT[®]High Efficiency High-Efficiency Residential Electric Water Heaters

New, Higher Energy Factor of .93, meets efficiency requirements for most electric utility

rebate programs – 2-1/2"-thick CFC-free foam insulation, heat trap nipples and other features produce performance that meets Energy Star Home Program recommendations.

Diffuser Dip Tube – Helps reduce lime and sediment buildup, maximizes hot water output. Made of State PEXAN," a cross-link PEX polymer that can withstand longterm exposure to water temperatures up to 400°F.

Aluminum Anode Rod - Helps protect against corrosion for longer life.

Durable Tamper-Resistant Brass Drain Valve

Glass-Lined Tank - For long-lasting protection against rust and corrosion.

Upgrade Tank Warranty to 10 Years - See details on page 2.

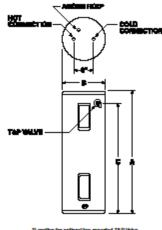
Certified and Rated Side-Mounted T&P Relief Valve – Top-Mounted T&P Relief Valve available as an option on some models.

6-Year Limited Tank and Parts Warranty

Code Compliance – meetsor exceeds federal minimum energy standards according to the latest edition of the National Appliance Energy Conservation Act (NAECA). Also complies with ASHRAE 90.1-2004 and current editions of ICC Codes and HUD Standards.

For more information on Select® contact: State Water Heaters 500 Tennessee Waltz Parkway, Ashland City, TN 37015 800-365-0024 Toll-free USA www.statewaterheaters.com SRESS00606 March 2008R

SELECT [®]High Efficiency High-Efficiency Residential Electric Water Heaters



	PEAK DEMAND OUTPUT (1st Hour Rating Gallons)		ELEMENT WATTAGE 240 VAC				DIMENSIONS IN INCHES			APPROX.	
MODEL Number		ENERGY	GALLON CAPACITY	STANDARD	MAXIMUM	RECOVERY 90°F RISE	R VALUE	A HEIGHT	B DIAMETER	c	SHIPPING WEIGHT (LBS)
TALL MODELS											
ES6 40 DOCT	54	.93	40	4500	6000	21	20	60	19	53-1/2	120
ES6 52 DOCT *	60	.93	50	4500	6000	21	20	56-1/2	21-1/2	47-1/2	135
ES6 66 DOCT	76	.92	66	4500	6000	21	20	61	23	53	180
ES6 80 DOCT *	87	.93	80	4500	6000	21	20	61-1/2	25	52	210
MEDI UM MODEL											
ES6 50 DOCS	62	.93	50	4500	6000	21	20	49	23	40-1/2	155

Recoveries are rounded to near est gallon

Water Connections - 3/4" male NPT on all models

For 10-Year Tank Warr anty change "6" to "X" in Model Number (ES 14000CT) "Models not available with too-mounted TaP Valve

*Location for optional top-mounted T&P Valv If available and ordered from factory.

For complete information on limited warranties, consult written warranty, or contact the State Customer Care Center, 1-800-365-0024.

State industries, inc. reserves the right to make product changes or improvements without prior notice.

Affordable, High Efficiency Water Heater

Making Your Water Heater Very Energy Efficient

Green Star water heaters replace the fuel burning heater in your water tank with a pump which uses solar heat in the air to heat your water. They produce more hot water per hour safely and more efficiently than other types of water heaters. According to Solar Energy International: "Heat Pump technology, when opplied to the water heating industry, provides the highest energy efficient water heaters in the country."

In addition to heating water, Green Star heaters emit cool, dry air which can providing additional savings by cooling your home in the summer (kit sold separately). Green Star heaters run on standard 110V and consume about as much energy as two coffee machines.

Compared to standard electric water heaters, Green Star heaters provide operating cost savings up to 70% while heating up to 29% more water per hour.

Utilities and other customers as well as articles such as Duke University's recently published article' on HPWH all conclude that the superior Green Star heater design makes it today's leading Heat Pump Solar Water Heater.

¹ Manufacturing Climate Solutions Carbon-Reclucing Technologies and U.S. Jobs Chapter Gélectric: Heat Pump Water Heaters

Features and Benefits

Highest Efficiency Water Heater

Instead of burning fuel, a Green Star Water Heater uses a heat pump to transfer solar heat from the surrounding air into your water tank. While the best fuel burning water heaters have a maximum efficiency of less than 95%, in warmer climates the efficiency of a heat pump water heater can exceed 300%. Even in 32°F air Green Star Water Heaters have an efficiency of 166%.

Retrofit for Existing Water Heater

A Green Star is mounted on top of or near an existing water heater and the its heat condenser is inserted into the heater tank. Green Star Water Heaters transfer solar heat from the surrounding air to the heat condenser which transfers the heat to the water in your tank.

Simplified Heat Control

Green Star heaters use a simple in-tank thermometer to directly measure the tank water temperature and maintain the water at the set temperature.

Low Cost & High Reliability

The simple, elegant design of the Green Star heater does not use any pumps, pump controllers or heat controllers making Green Star the most affordable, highest reliability water heater available – surpassing other type of solar water heaters which are much more expensive to buy and install.

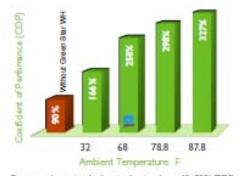
Easy to Install

A Green Star heater can be easily installed using basic pipe fitting skills.

Low Maintenance

Green Star water heaters are virtually maintenance free, thousands have been installed.

Quiet


At 52dB a Green Star heater is quieter than a small window air conditioner.

Dehumidification & Air Conditioning

Green StarTM removes moisture and cools air as it moves heat from the air to the water in the water heater tank.

4	

Green Star^{TB} Water Heater Efficiency

By comparison, standard water heaters have 65-95% COP

Green Star is a trademark of USI Green Energy SI GREENERGY GREEN

Noise Level AC Power

ENERG STAR

Specifications

Max Water

Temperature Efficiency

Energy Factor

I* Hour Rating

(40 gal tank) Output

Dimensions

Weight 48 64 bs: 52 52 dB 115 115 Volts Current 6 10 Amps Operating 12 20 Startup Amps Phase 1 1 60

WH 270

258

2.11

50+

7000

18x14x14

0

135

(10 between open and close)

WH 320

211

211

53+

12000

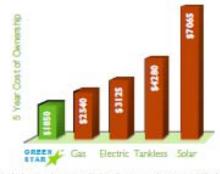
19x15x14

۰.

R.

Gallon

BTU


inches

60 Frequency Hz 1 Minimum 5 inches clearance required above 14 height

All measurements made using DOE testing standards at ambient temperature of 68°F.

Installation indoors near a drain (high humidity results in up to a quart of condensate daily) where ambient temperatures are above 35°F is recommended.

Estimated 5 Year Cost of Ownership

Includes purchase, installation, 5 years maintenance & fuel

DIDENDIA Phone: 610.439.2122 Fax: 610.439.8242 www.usigteenenergy.com

960 Bridle Path Rd, Allentown PA 18103

SunDrum® Solar SDM100-10, -21, & -30 Collector Assembly Guide, Rev 004

SDM100 - 10

SDM100 - 21

SDM100 - 30

Hybrid Solar Collector

Assembly Guide

Revision #	Description	Date	Author	Approved
001	Original Document	10/14/08	MGI	
002	Release to Publication	11/6/08	MGI	
003	Prepublication Format	11/6/08	MDS	
004	Added SDM100-21, Clarified step 15 and added stacking warning	2/11/09	MGI	PR

SunDrum[®] Solar, LLC all rights reserved. Specifications subject to change without notice. Page 1

U.S. D.O.E. Solar Decathlon 2011

SunDrum® Solar SDM100-10, -21, & -30 Collector Assembly Guide, Rev 004

PARTS LIST:

QTY	Description	Image
1	SDM100-10, -21, or -30 Collector	8
4	Brackets with clamps (3 with 2 clamps per bracket, and 1 with only one clamp)	No damp
2	Foil-Backed Insulation Panels	
2	Stainless Steel Compression Wedges (SDM100-10 only)	EE
1	Hardware kit: SDM100-10 & -30: #10-32 lock nut, #10 star washer, ¼"-20 bolt and nut, ¼" star washer SDM100-21: #10-32 bolt, 2 10-32 lock nuts, #10-32 star washer	

SunDrum® Solar, LLC all rights reserved. Specifications subject to change without notice.

TO GO BACK, CLICK HERE

Page 2

Steca Elektronik GmbH | 87700 Memmingen | Germany | Fon +49 (0) 8331 8558-0 | Fax +49 (0) 8331 8558-132 | www.steca.com

Steca TR 0301 U

3 inputs, 1 output

> The Steca TR 0301 U controller was specially developed for the North American market based on the Steca TR 0301 basic controller. With its special certification (ETL label) from a Nationally Recognized Testing Laboratory (NRTL) in the US, the controller meets the safety standards and minimum requirements of the North American market.

> A feature of the Steca TR 0301 series of controllers is the animated graphic display, which offers a complete visualisation of the solar energy system's operating status and solar circuit.

> The clearly arranged display ensures easy operation using pictograms. The controller was jointly designed with an internationally renowned design centre. The controller is used for monitoring and controlling solar thermal systems with one collector array and one storage tank. In addition, the controller performs important system monitoring and safety functions to ensure safe and long-lasting operation of the entire system. The numerous additional functions of the Steca TR 0301 U also include a maximum storage tank temperature function, a tube collector function, an anti-freeze function. a holiday and storage recool function as well as a choice of temperature indications in either degrees Celsius (°C) or Fahrenheit ("F). The operational safety of the system is supported by a sophisticated fault diagnosis. The multi-coloured LCD backlighting ensures quick and safe location of occurring errors and facilitates quick troubleshooting.

> The Steca TR 0301 U controller is supplied with a pre-fitted US mains connection cable and a preinstalled, pluggable pump output.

Product features

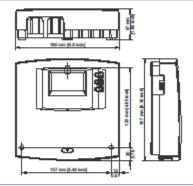
- Compact, multipart designer casing
- Maximum storage tank temperature
- High level of operational safety through fault diagnosis
- Temperature display *C / *F
- Collector overtemperature disconnection
- Spring clamp terminals allow rapid and easy installation

Displays

- Graphical LCD display with backlighting
- Animated representation of the systems and operating states

Operation

- Non-verbal menu navigation
- Side switch for manual, auto, off


Functions

- Holiday (storage tank recooling)
- Interval / tube collector
- Anti-freeze
- Display storage tank top

Wi

	TR 0301 U
System voltage	120 V ΔC, 60 Hz optional 240 V ΔC, 60 Hz
Own consumption	at 1 W [at 0.001 HF]
Inputs	3 3 x temperature (Pt1000)
Output	1 1 x switch output relay (#1), max. 400 W / 0.5 HP (120 V ΔC) or 800 W / 1 HP (240 V ΔC)
Line cord	75 inch, 5 x 18 ΔWG at 221 🖤
Turn-on temperature difference	167
Turn-off temperature difference	8 7
Ambient temperature	0 °C [+32 °C] +45 °C [+115 °C]
Degree of protection	IF 20 / DIN 40050
Dimensions (X x Y x Z)	160 x 157 x 47 mm [6.5 x 6.18 x 1.85 inch]
Weight	350 g [12.35 cs]
Temperature sensors 2 x Pt1000	1.5 m (59 inch) silicone cable with bushing (Measuring range up to + 180 °C (+356 °F))

Powered by the Impossible – The next generation of circulators

The Grundfos ALPHA will change the way you view circulators. With its permanent magnet motor design, this energy efficient circulator reduces power consumption by 50% or more. The unique patented AUTOADAPT™ feature controls pump performance automatically within defined performance range, ensuring lowest possible energy consumption without sacrificing comfort.

For installation, you now have the flexibility to use either our unique ALPHA Plug with line cord or the new ALPHA with terminal box for conduit connection applications. The choice is yours.

Cast Iron ALPHA 15-55F

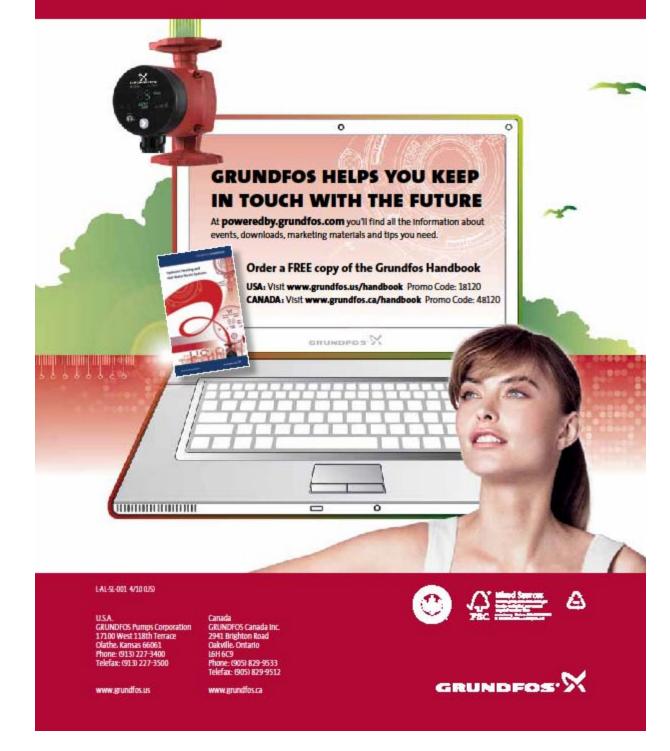
Stainless Steel ALPHA 15-555F/LC

Cast Iron ALPHA 15-55F/LC

BE>THINK>INNOVATE>

		E FEAT FOS A		
Unique ALPHA Plug with line cord	Erminal box for conduit connection applications	Watt GPM Large display shows current energy consumption in Watts	Large display shows estimated flow in gallons per minute	A one button, easy- to-use interface
2	Nut capture	Compact design	Stainless steel and cast iron pump housing available	Integrated check-valve (optional)
Â.			<u>B</u>	and a state
flexibility Plug w with terr	stallation, you now h to use either our unit this line cord of the ne minal box for conduit lications. The choice is	que ALPHA w ALPHA connection		-

	Per
0 to 21 GPM	(
0 to 19 Feet	1
1X115V	14
36°F (2°C)	1
150 PSI	
5-45W	1
0.654	H
0.0341	12
	-
	Desc
Cast iron fl	ange
Cast iron rotate	ed fla
	_
	_
Cont	ice Ki
JUIN	
Service	
	0 to 19 Feet 1X115V 36°F (2°C) 230°F (10°C) 150 PSI 5-45W 0.65A


 A
 B
 C
 D
 E
 F

 6-1/2
 6-3/16
 4-15/16
 3-13/16
 2-3/8
 3-7/1

U.S. D.O.E. Solar Decathlon 2011

BE>THINK>INNOVATE>

Being responsible is our foundation Thinking ahead makes it possible Innovation is the essence

TO GO BACK, CLICK HERE

Advanced Heating and Hot Water Systems

P.O. Box 420 - 120 Binley Road - Fast Linetown, MA 02717 - 508-763-8071 - Lax 508-763-3769

SSC Solar Water Heater Submittal Sheet

SuperStor Contender Solar Water Heaters with Boiler (SB Series) or Electric (SE Series) Back-Up

JOB NAME:

LOCATION:

ARCH./ENGR.:

WHOLESALER:

MECH. CONTRACTOR:

MODEL NUMBER:

BACK-UP WATER HEATING SYSTEM:

High Efficiency Solar Heat Exchanger

- Specially formulated Enamel Flow Coated steel solar heat exchanger provides maximum heat transfer of solar energy to domestic water and corrosion resistance
- Low pressure drop
- Gasketless heat exchanger design
- 1" NPT solar heat exchanger outlet size all models

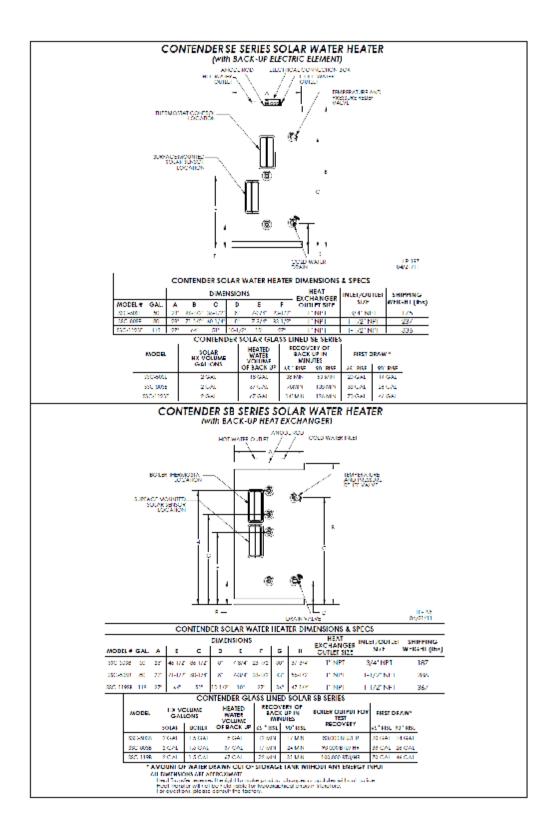
Glass-Lined Tank

- Specially formulated Enamel Flow Coat guarantees 100% tank coverage, ensuring no exposed welds
- Insulated with environmentally safe, CFC free, waterblown, extra thick foam insulation.
- Allows less than ½ degree Fahrenheit per hour heat loss
- Outer shell constructed of grey finished durable plastic for rust and impact resistance
- ½" NPT inlet and outlet domestic connection size for 50 gallon models – 1 ½" NPT for 80 and 119 gallon models
- Included temperature and pressure relief valve
- Surface mounted sensor for accurate current temperature measurement inside vessel

SB Series Solar Water Heaters

- Back-up Boiler Heat Exchanger provides back-up water heating from the boiler if the solar system fails to keep up with domestic hot water demand
- Specially formulated Enamel Flow Coated steel heat exchanger provides maximum heat transfer of boiler energy to domestic water and corrosion resistance
- Gasketless heat exchanger design
- 1" NPT boiler heat exchanger outlet size all models
- Tank mounted boiler thermostat to control back-up operation

SE Series Solar Water Heaters


- Back-up Electric Element 4500W / 240V electric element provides back-up water heating if solar system fails to keep up with domestic hot water demand
- Surface-mounted control provides accurate temperature measurement to timely activate the backup electric element

Additional Features

- Oversized anode rod protects tank from corrosion
- Limited warranty 7 years residential and 5 years commercial coverage
- SRCC OG-300 Certified applies to Federal Tax Credit when connected to a solar collector
- May qualify for additional State and Local incentives

 ask your installer for more information

LP-197.sub Rev. 5.11.11

Heat Recovery Ventilator

Model: ES100

EVE	VENTILATIO	N PERFOR	MANCE		ENER	GY PERFOR	MANCE	
EXT. STATIC	NET SUPPLY	GROSS	AIR FLOW	SUPPLY	NET	POWER	SENSIBLE	APPARENT
PRESSURE	AIR FLOW	SUPPLY	EXHAUST	TEMP.	AIR FLOW	CONSUMED	RECOVERY	SENSIBLE
inwg (Pa)	cfm (Vs)	cfm (Vs)	cfm (Vs)	%F (%C)	cfm (Vs)	Watts	EFFICIENCY	EFFECTIVENESS
0.1 (25)	147 (69)	150 (71)	172 (81)	+32 (0)	55 (26)	48	70	79
0.2 (50)	131 (61)	134 (63)	153 (72)	+32 (0)	66 (31)	52	68	76
0.3 (75)	118 (56)	121 (57)	135 (64)	+32 (0)	40 (86)	72	65	73
0.4 (100)	104 (49)	107 (50)	123 (58)					
0.5 (125)	91 (43)	93 (44)	111 (52)	13 (-25)	64 (30)	58	56	80
0.6 (150)	76 (36)	78 (37)	92 (43)					
0.7 (175)	64 (30)	66 (31)	79 (37)					
0.8 (200)	52 (24)	53 (25)	64 (30)					

CABINET/CORE: The case is constructed of 0.032 painted aluminum with a white enamel finish. The cabinet is fully insulated with 1-inch polyurethane. The unit is equipped with a cross-flow heat exchange core.

ELECTRICAL: 120V/1/60 Hz. 84W, 0.7A

BLOWERS: Two backward curve impellers using PSC motors and permanently sealed bearings.

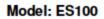
CERTIFICATION: HVI, CSA C22.2

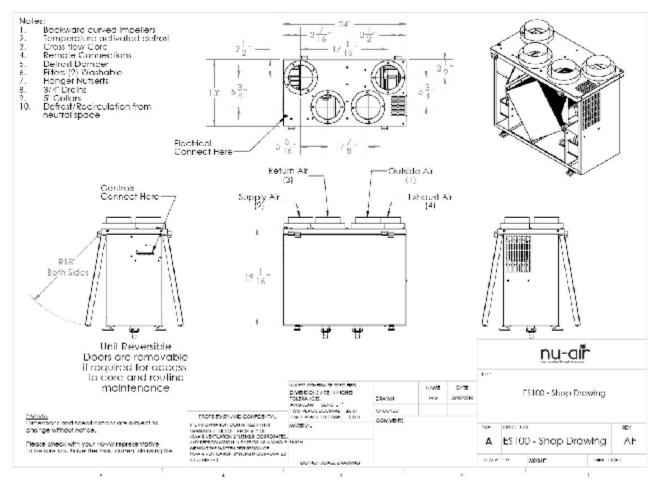
REVERSIBLE: internal components can be accessed front or back

- ADDITIONAL FEATURES: > Built in furnace interlock options: commands furnace blower when HRV is on or just on high speed.
- Intelligent defrost adjusts to outdoor conditions below -5° C (23° F)
- Independent speed adjustment of either supply or exhaust motor in BOTH high and low speed
- > 24V circuit protection with self resetting fuse
- Drain, hanger kit, polyester air filters included
- 12 VDC AND/OR 24 V connection for remote control with mechanical switch or the following Nu-Air controls:

ES Series: Unlimited numbers. Series or parallel.	WINDSOR Series
ES-M1: Off/ Stby/ Lo/ Hi	DSTAT-1: Humidity control
ES-M2: Off/ Stby/ Lo/ 20 Lo-40 Stby	Win-1: Humidity control/ OFF/ STBY/ Continuous/
ES-M3: Off/ Stby/ Lo/ 20 Lo-40 Recirculation	Intermittent/ Full-time high speed
ES-T1: 20-40-60-minute timer	WIN-20: 20-minute timer (up to 6)

Defrost: When outdoor temperature is below -5° C (23° F), a defrost cycle is initiated for a fixed duration. The fresh air motor will go to high speed and the exhaust air motor will go to low speed. A damper will shut off the cold supply port, directing ambient air through the core for defrosting. The unit will resume normal operation for a fixed duration, then the processor will read outdoor temperature and initiate defrost as necessary. Defrost times and intervals will vary according to temperature below -5° C (23° F).

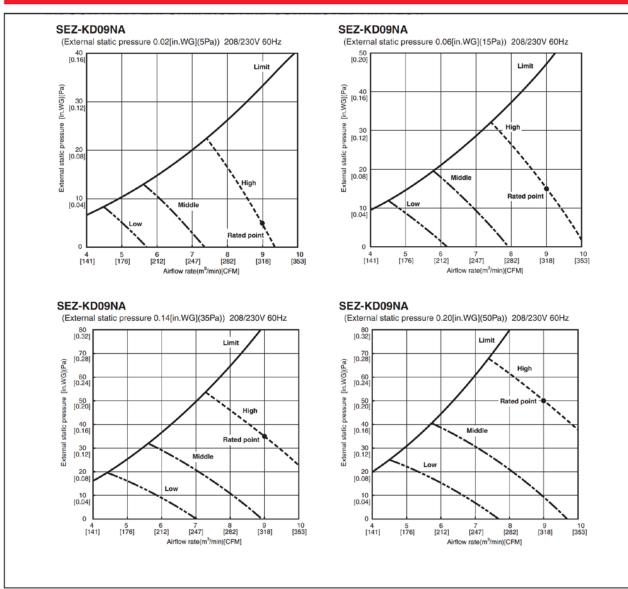

Warranty: There is a 5-year warranty on all internal components. The heat recovery core has a lifetime warranty.

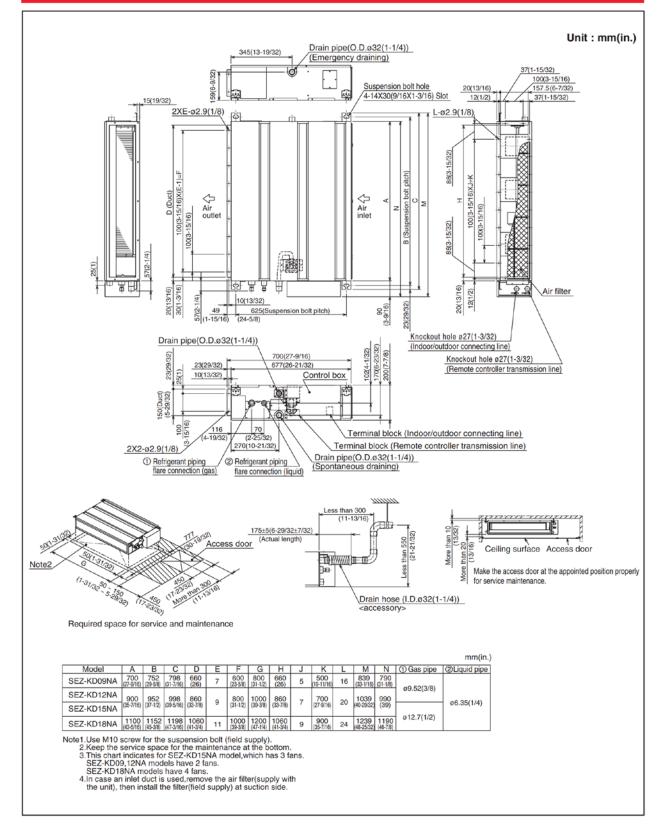

Notes:

This product earned the ENERGY STAR® by meeting strict energy efficiency guidelines set by Natural Resources Canada and the US EPA. It meets ENERGY STAR requirements only when used in Canada.

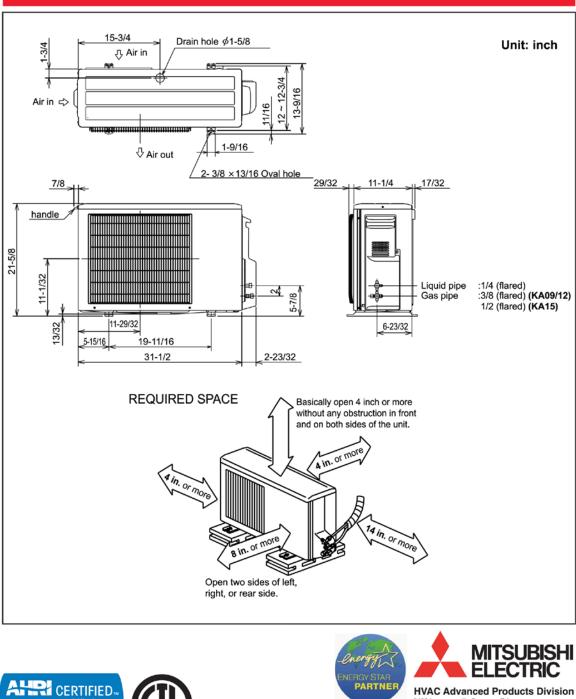
Nu-Air Ventilation Systems Inc. reserves the right to change specifications without notice.

TO GO BACK, CLICK HERE


U.S. D.O.E. Solar Decathlon 2011



IBMIT	TAL D	ATA: SEZ-KD0	9NA & SUZ-KA09N	IA 9,00	00 BTU/H HORIZONTAL-DUCTED HEAT-PUMP SYST	
Job Na	ime:			Location:	Date:	
Purcha	iser:			Engineer:		
Submit	ted to:			For Reference Approval Construction		
System	n Designat	tion:		Schedule No.:		
 Horizo Ultra tl Built-in Air filte Quiet o PAR-2 Indoor Autom Autore Limited 	hin body: 7 n drain med peration — 1MAA wire r unit power atic fan sprestart follow	d indoor unit for reside -7/8" high hanism for condensate ed with indoor unit - as low as 23 dBA ed remote controller is red from outdoor unit u eed control ving a power outage	e removal; lifts to 21-11/16"	Indoor Unit: SEZ-KD09N	A Remote Controller: PAR-21MAR	
OPTIOI Indoor • M-NE • Extern • CN24 • Three Outdoo • Drain	NAL ACCE Unit T Control A hal Heat Ad Relay Kit (-pole Disco or Unit Pan Heate	Adapter (MAC-399IF) lapter (PAC-YU25HT) CN24RELAY-KIT-CM) onnect Switch (TAZ-M or (MAC-640BH-U) AC-860DS)		Indoor Unit 1/ MCA 5irocco Fan X Fan Type x Quantity Direct-driven DC Brushless Moto Fan Motor Output 96 V Fan Motor 0.51 FLA Airflow (Lo - Med - Hi) 174 - 222 - 285 Wet CFM Air Filter Polypropylene Honeycom External Static Pressure 0.02 - 0.06 - 0.14 - 0.20°WC Sound Pressure Level (Lo - Med - Hi) 23 - 26 - 30 dB(A)		
Drain	ODOKET (IM	(0-00020)		DIMENSIONS	UNIT INCHES / MM	
				W		
Cooling	l [*]		8 400 Dt./h	D	27-9/16 / 700	
Capacity	v Range		8,100 Btu/h 3,800 - 10,900 Btu/h	Н	7-7/8 / 200	
SEER .			15.0	Weight		
				External Finish	Galvanized-steel Shee	
Heating	at 47°F*			Field Drainpipe Siz	ze O.D1-1/4" / 32 m note Controller	
Rated C	apacity			vvall-mounted Rem	see Data Submittal Shee	
	y Range	••••••	4,800 - 14,100 Btu/n		(see Data Submittal Shee	
Total Inp	out			Outdoor Unit		
Heating	l at 17°F*				DC Inverter-drive	
Rated C	apacity		6,700 Btu/h	MOCP		
Rated To	otal Input .			Fan Motor		
Maximu	m Total Inp	ut		Sound Pressure Le	evel 	
Rating Co	onditions (Coolin	ng) - Indoor: 80°F (27°C) DB, 67	PF (19°C) WB; Outdoor: 95°F		50 dB	
Heating at 4	75°F (24°C) WE 47°F) - Indoor: 70	5. ºF (21ºC) DB, 60ºF (16ºC) WB; Ou	tdoor: 47°F (8°C) DB, 43°F (6°C) WB. door: 17°F (-8°C) DB, 15°F (-9°C) WB.	-		
			door: 17°F (-8°C) DB, 15°F (-9°C) WB.	DIMENSIONS	INCHES / MM	
Electric	al Require	ments		W	31-1/2 / 800	
Preaker	Size		8 / 230V, 1-Phase, 60 Hz 	D	11-1/4 / 285	
Voltage			IJA	Н	21-5/8 / 550	
ndoor -	Outdoor S	1-S2	AC 208 / 230V			
Indoor -	Outdoor S2 Remote Co	ontroller	DC 12-24V DC 12V	Weight External Finish Refrigerant Type	. 66 lbs. / 30 ł Munsell No. 3Y 7.8 / 1 	
OPERAT	ING KANGE			Gas Side		
		Indoor Intake Air Temp.	Outdoor Intake Air Temp.	Liquid Side	ipe Length	
	Maximum	90°F (32°C) DB,	115°F (46°C) DB	Max. Refrigerant P	tipe Length	
Cooling		73°F (23°C) WB 67°F (19°C) DB,		Connection Method	d	
	Minimum	57°F (14°C) WB	14°F (-10°C) DB			
	1	80°F (27°C) DB,	75°F (24°C) DB,			
	Maximum	87°E (10°C) 1MD	85°E (19°C) M/D			
Heating	Maximum Minimum	67°F (19°C) WB 70°F (21°C) DB,	65°F (18°C) WB -4°F (-20°C) DB,			


SEZ-KD09NA INDOOR FAN PERFORMANCE AND CORRECTED AIR FLOW CHARTS

DIMENSIONS: SEZ-KD09NA

DIMENSIONS: SUZ-KA09NA

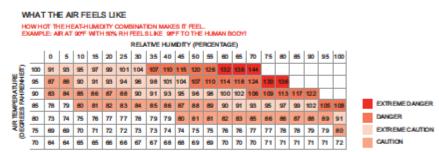
C SD - SEZ-KD09NA & SUZ-KA09NA - 201003 © MITSUBISHI ELECTRIC / HVAC 2010

HVAC Advanced Products Division 3400 Lawrenceville Suwanee Rd Suwanee, GA 30024 Tele: 678-376-2800 • Fax: 800-889-9904 Toll Free: 800-433-4822 (#3) www.mehvac.com Specifications are subject to change without notice.

TO GO BACK, CLICK HERE

About the TrueDRY™ DR65 Dehumidifier

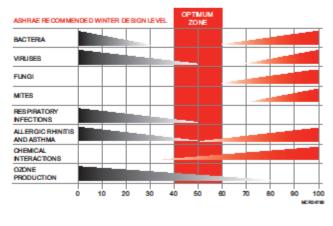
The Honeywell TrueDRY DR65 ensures the home is maintained at proper humidity levels through its high performance and efficiency.


Benefits

- Removes up to 65 pints (30.8 I) of water per day from the indoor air.
- Built-in humidity control requires no additional wiring to an external control. Just plug in and go! Choice of external control options also available for centrally ducted control.
- Feedback on operation and maintenance provided via intuitive on-board LED light interface.

Maintaining Ideal Humidity

Dew points and relative humidity (RH) affect the way your body senses heat. Higher humidity levels cause the air to feel much hotter than the actual temperature. When maintained properly, your cooling equipment may not run as much because dehumidified air feels cooler.



SOURCE: TEMPERATURE - HUMIDIVINDEX WAS DERIVED BY R.G. STEADMAN, JOURNAL OF APPLIED METEORICLOGY, JULY 1979. 187328

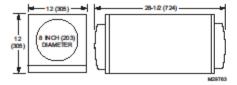
Ideal humidity is defined by industry experts* as being between 40-60% on an average annual basis. When indoor humidity exceeds 60%, the home is more susceptible to mold and mildew growth. TrueDRY DR65 safeguards against excessive humidity in the home year-round.

*American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).

TrueDry DR65 Dehumidification System 69-2089EFS-11

2

Specifications


Install TrueDHY DH65 according to National Electric Godes.

Dry-Bulb Temp	Intake Humidity	Capacity (Pints/Day)
80°F (26.7°C)	60% RH	65
70°F (21.1°C)	60% RH	42
60°F (15.6°C)	60% RH	21

Home Size	Dehumidifier Capacity	Dehumidifier Capacity Required to Maintain Desired Indoor RH*					
(square ft)	60% RH Indoor (pints/day)	50% RH Indoor (pints/day)	40% RH Indoor (pints/day)				
2080	49-54	55-58	71–78				
2600	6168	65-72	90–97				
3120	75-82	79–86	95–110				

* Based on extreme climates where outdoor humidity is 70-90% RH. For less extreme climates, larger homes can be adequately served with less capacity. Actual requirements may vary.

Dimensions in inches and (mm):

Product weight: 55 lb (25 kg)

Shipping weight: 65 lb (30 kg)

Shipping dimensions: 16 in. H x 15 in. W x 31 in. L

Media Filter: MERV 11, 9 in. H x 11 in. W x 1 in. D Drain connection: 3/4-in. threaded female NPT connection, with attached 3/4-in. male connection.

Duct connections: 8-in. round inlet and outlet. ABS plastic, compatible for connection to rigid or flexible ducting with sheet metal screws and/or tape.

Cabinet: 20 gauge galvanized steel powder-coat painted.

Insulation: R value 1

Compressor: Rotary-style, 5.8 KBTU

Refrigerant: R-410A, 15 oz.

Operating Temp Range (outside cabinet): 34°F to 135°F (1.1°C to 57.2°C) Operating Humidity Range: 0-99% RH

Airflow versus external static pressure (0–1 in. water pressure) with collars attached

0 in.	160 CFM
0.2 in.	140 CFM
0.4 in.	120 CFM
0.6 in.	100 CFM

Input ratings

- Electrical input voltage: 120 VAC, 60 Hz nominal
- Input current: 5.2 A

Output ratings

- Power transformer to R/C terminals: 24 VAC, 0.85 A
- Energy Performance: 2.22 liters (4.7 pints) per kilowatt hour (KWH)

Standards and approval body requirements

ETL Tested per standard UL 474 ducted dehumidifier.

ENERGY STAR rated.

.....

TrueDry DR65 Dehumidification System 69-2089EFS-11

Published 03/22/2011

TO GO BACK, CLICK HERE

4

Division 26 – Electrical

Grounding Rods

ERITECH®

ERITECH® Copperbonded Ground Rods

In a grounding system, the ground electrode provides the physical connection to the earth and is the instrument used to dissipate current into it. There are two main types of electrodes.

"Natural" electrodes are intrinsic to the facility and include metal underground water pipe, the metal frame of the building (if effectively grounded), and reinforcing bar in concrete foundations.

"Made" electrodes are installed specifically to improve the performance of the grounding system and include wire meshes, metallic plates, buried copper conductor and rods or pipe driven into the ground.

The ground rod is the most widely used grounding electrode. ERICO® is the world's largest manufacturer of ground rods and offers a complete line of rods and accessories to meet the needs of every user.

Features

Copperbonded Ground Rods

- Resist corrosion better than galvanized rods allowing for a 30-year service life in most soils
- State of the art manufacturing process ensures uniform plating thickness
- Average tensile strength of 80,000 psi and straightness tolerance of .010" per linear foot
- Exceed the requirements of ANSI®/UL® 467-1984, CSA®, and ANSI/NEMA® GR-1

Pointed Copperbonded Ground Rods

- Manufactured of high strength 1035 cold drawn steel
- The ERICO preferred ground rod

Compression Couplers for Pointed Rods

For use when coupling pointed rods

Sectional Copperbonded Ground Rods

- For use when it is necessary to deep-drive rods
- Cold-rolled threads stronger than cut threads

Threaded Couplers for Sectional Rods

For use when coupling sectional rods

Drive Studs for Sectional Rods

· Screws into threaded coupler while rod is being driven

Applications

ERICO has a complete line of ground rods and accessories to meet the needs of every user.

More Information

View product information by region: North & Latin America · Europe · Asia & Australia

Product Information - North & Latin America Return to Top

		Connecto		
Pointed	Sectional	Compression Coupler for	Threaded Coupler for	Drive Stud for
Ground Rod	Ground Rod	Pointed Rods	Sectional Rods	Sectional Rods

Pointed Copperbonded Ground Rods

Part No.	Plating Thickness (mil)	Diameter (In)	Length (ft)	Standard Package	Weight per 100
613852	5	3/8	5	5	160
613862	5	3/8	6	5	198
613880	10	3/8	8	5	270
611255	5	1/2	5	5	296
611265	5	1/2	6	5	310
611285	5	1/2	8	5	482
611380"	10	1/2	8	5	553
611205	5	1/2	10	5	557
611300"	10	1/2	10	5	738
615850	10	5/8	5	5	420
615860	10	5/8	6	5	509
615880"	10	5/8	8	5	680
615883"	13-REA	5/8	8	5	680
615800"	10	5/8	10	5	844
615803"	13-REA	5/8	10	5	844
615812"	10	5/8	12	5	1000
615815"	10	5/8	15	5	1275
613460	10	3/4	6	5	750
613480"	10	3/4	8	5	1000
613483"	13	3/4	8	5	1000
613400"	10	3/4	10	5	1240
613412"	10	3/4	12	5	1480
613415"	10	3/4	15	5	1850
614400"	10	1	10	5	2204

" UL Listed

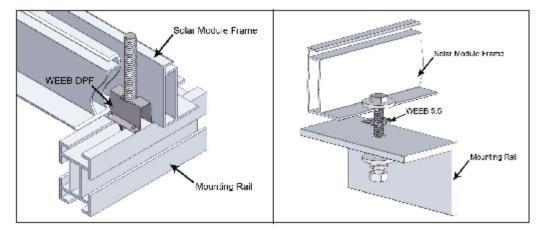
Note: the following listing document applies to all of the WEEB devices in this project manual.

Product:	Bonding Devices
Models:	Bonding Devices Model numbers WEEB-9.5, WEEB-9.5NL, WEEB-CL, WEEBL-8.7, WEEBL-8.2, WEEBL-8.0, WEEB-DMC, WEEB-PMC, WEEB-CMC, WEEB-SMC, WEEB-Bonding Jumper-8.7, WEEB-Bonding Jumper-8.0, WEEB-Bonding Jumper-8.2, WEEB-KMC, WEEB-UGC2, WEEB-UMC, WEEB-DPF, WEEB-11.5, WEEB-WMC, WEEB-CSG, Double Wedge Solar Giant, WEEB-SSF, WEEB-JJR, WEEB-WMR1, WEEB-WMR2, WEEB-UIR.

ATM for Report 3096176-002

Page 1 of 1

ATM Issued: 14-Jul-2011 ED 8.9.4 (8-Jan-10) Mandatory

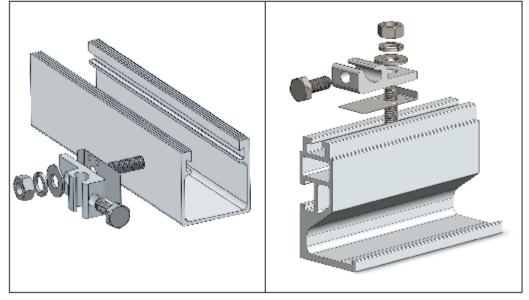


WEEB Washer, Electrical Equipment Bond

The WEEB line of products is designed to bond solar PV modules to mounting structures and create an electrical path to ground. WEEBs eliminate the need for older, more costly grounding methods and greatly reduce the amount of labor and materials used in installations. The innovative WEEB design removes the need to run ground wire to each individual module and eliminates the need for surface preparation on anodized aluminum components. To install, WEEBs are placed between PV modules and mounting rails at clamping points or at bolted connections. When anti-seize is applied and the hardware is tightened down to the appropriate torque spec, the WEEBs' specialized teeth embed into anodized aluminum, galvanized steel, or any electrically conductive metal to establish a gas tight electrical connection.

- Material: 304 stainless steel
- · Listed to ANSI-UL 467 by Intertek ETL for use in Canada and the USA
- · Maximum electrical equipment ground conductor size when used with
 - 2 WEEBs contacting each module in an assembly: 6 AWG
 - Outdoor rated

Contact us at: 845.247.4708 www.we-llc.com

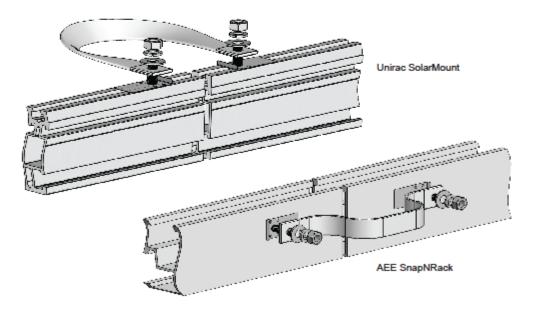


WEEB Lug

The WEEB Lug consists of a WEEB (Washer, Electrical Equipment Bond), lay-in lug, and hardware. It is used with one solid or stranded copper wire (6AWG to 14AWG), or two copper wires (10AWG to 12AWG) to provide a continuous ground on roof or ground mounted solar systems. Unlike traditional lay-in lugs, the WEEB Lug does not require surface preparation on rail or module to install. The WEEB Lug is installed using a 1/4-20 stainless steel screw which tightens the WEEB, allowing the specialized teeth to embed into anodized aluminum, galvanized steel, or any electrically conductive metal to establish a gas tight electrical connection. The tin-plated Lug assures minimum contact resistance and protection against corrosion. The copper wire is clamped by a 1/4-28 stainless steel screw, which is horizontal to the tang for easy access when mounted under a PV module. The low profile of the WEEB Lug allows it to be installed in a variety of positions and comes with hardware to mount it to a rail or through a 1/4 inch clearance hole.



- Material: 304 stainless steel, tin-plated copper, outdoor rated
 Low profile design
- Multiple equipment ground conductor allowance:
 One 14 AWG to 6 AWG or two 10 AWG, two 12 AWG
- Listed to ANSI/UL 467 by Intertek ETL


Contact us at: 845.247.4708 www.we-llc.com

The WEEB Bonding Jumper is used to create an electrical connection between two pieces of anodized aluminum, galvanized steel, or any electrically conductive metal which has been mechanically spliced. Long spans of mounting rails are sometimes constructed from two shorter rail sections. Manufacturers may recommend that a floating splice be used to allow for thermal expansion. A floating splice is rigidly attached to only one rail, and allows the rails to expand and contract in line with each other. In such cases, via NEC code, it is also necessary to make an electrical splice, which can be done with a WEEB Bonding Jumper. The Bonding Jumper is constructed of tin plated, braided copper wire with a WEEB attached at each end of the Jumper. The WEEBs provide a reliable, gas tight electrical connection, and the braided copper wire allows for thermal expansion. The examples below illustrate two ways to install the WEEB Bonding Jumper.

Contact us at: 845.247.4708 www.we-llc.com

ALLIED KWIK-FIT® EMT

For Faster, Easier Installation... Make It Kwik-Fit[®] EMT

KWIK-FIT[®] EMT is manufactured from high quality steel with a BUILT-IN set-screw coupling, eliminating the need to purchase, inventory, and install separate couplings.

On the job site, installation is much faster and you've reduced both material and labor costs. Even clean-up after installation is easier – no clutter of extra couplings and empty boxes!

- No separate couplings to purchase, store, carry or install
- High grade durable and ductile steel for long life
- Corrosion Resistant
 exterior and interior finishes
- UL listed and manufactured in accordance with ANSI C80.3
- Available in trade sizes 1 ¹/₄ 4

Patent No. US 7,404,582 B2

2. Tighten set screws.

No separate couplings to purchase, store, carry or install! You always have the right type and size coupling with you – attached at the end of the EMT!

Contact your local Allied Tube & Conduit electrical distributor, or visit www.alliedeg.com.

ALLIED ELECTRICAL" Group

Electrical Infrastructure Solutions"

www.alledeg.com

ALLIED KWIK-FIT[®] EMT

KWIK-FIT® EMT Specifications

KWIK-FIT[®] SIGNIFICANTLY REDUCES INSTALLATION COST

Each 10' length of KWIK-FIT EMT has an integral steel set-screw coupling. These built-in couplings significantly reduce installation time, and eliminate the need to purchase, store, and install separate couplings. Simply insert the plain end of the KWIK-FIT into the coupling end and tighten the set-screws.

SUPERIOR STRENGTH & CONSTRUCTION

KWIK-FIT EMT is all steel for superior strength, performance and excellent ground return path. Allied EMT is hot galvanized using Allied's patented in-line Flo-Coat^e process. This process combines zinc, a conversion coating, and a clear organic polymer top-coat to form a triple layer of protection against corrosion and abrasion. The interior of KWIK-FIT EMT is protected with Allied's superior EZ PULL* coating. This interior coating makes wire-pulling even easier with a 30% lower coefficient of static friction.

AVAILABLE SIZES

KWIK-FIT EMT is available in 10' lengths, trade sizes from 1 ¹/₄ – 4.

UL LISTED & APPROVED

KWIK-FIT EMT is listed to UL Standard 797 Electrical Metallic Tubing – Steel, and to UL 514B Conduit, Tubing and Cable Fittings. KWIK-FIT EMT is manufactured in accordance with ANSI Standard C80.3.

	ade Size		Approx. Wt. Per 100 Ft.		Nominal Outside		Nominal Wall		Master	Bundles	
	gnator		.5M)		neter	Thick		Qua	ntity	Appro	x. Wt.
J.S.	Metric	lb.	kg	in.	mm	in.	mm	ft.	m	lb.	kg
11⁄4	35	101	45.8	1.510	38.4	0.065	1.65	840	256.0	720.0	326.6
1 1/2	31	116	52.6	1.740	44.2	0.065	1.65	720	219.4	812.0	368.3
2	53	148	67.1	2.197	55.8	0.065	1.65	500	152.4	706.0	320.2
21/2	63	216	98.0	2.875	73.0	0.072	1.83	350	106.8	756.0	343.0
3	78	263	119.3	3.500	88.9	0.072	1.83	300	91.5	789.0	357.9
31/2	91	349	158.3	4.000	101.6	0.083	2.11	250	76.3	872.5	395.8
4	103	393	178.2	4.500	114.3	0.083	2.11	250	76.3	982.5	445.5

Allied Tube & Conduit - Electrical

16100 S. Lathrop Avenue, Harvey, IL 60426 Tel. 708-339-1610 800-882-5543 Fax 708-339-0615

ALLES ELECTRICAL" Grou

www.allledeg.com

Allied Tube & Condult · AFC Cable Systems* · Power-Strut* Metal & Fiberglass Framing · Cope* Cable Tray

Kwik-FI, E-Z Pul, Alled Tube & Conduit, AFC Cable Systems, Power-Shut, Cope, and Alled Biothical Group are instematics or neglisized instematics of Type International, and its afflictics in the United States and in other countries. All other brand names, product names, or trademarks belong to their espective owners. © 2007-De Alled Tube & Conduit, Primed in U.S.A. ATC-L-1735-De12

ALLIED RIGID STEEL CONDUIT

Quality Long Lasting GRC (Rigid) Steel Conduit...

Allied Rigid Steel Conduit is precision manufactured for dependable, longlasting value and ultimate protection for electrical conductors. Highly resistant to damage from impact, it can be installed in all occupancies and in all locations, including Class I Division 1 hazardous locations.

Rigid steel conduit, covered by Article 344 in the National Electric Code* (NEC), is recognized as an equipment grounding conductor in Article 250-118 of the NEC and also provides excellent shielding from electromagnetic fields.

 Hot-dip galvanized to inhibit white rust and increase corrosion resistance

- High strength ductile steel for long life and easy bending
- Provides smooth, continuous raceways for fast wire-pulling
- UL listed to UL 6, manufactured in accordance with ANSI C80.1
- Available in trade sizes 1/2 6

Kwik-Couple[®] for Faster Installations Get the Kwik-Couple[®] Connection

Innovation from the conduit leaders at Allied.

Allied's patented' Kwik-Couple rigid steel conduit cuts threaded conduit installation time and cost significantly. Kwik-Couple comes installed right on the conduit or elbows, right where you need it.

Just line up the ends, spin the coupling forward onto the next piece and wrench tighten. It's that easy! Irade sizes 2-1/2 - 4.

Contact Allied for details.

* U.S. Patent Numbers 4258936,4547004.

Contact your local Allied Tube & Conduit electrical distributor, or visit www.alliedeg.com.

Electrical Infrastructure Solutions*

www.alliedeg.com

ALLIED RIGID STEEL CONDUIT

Quantity in

Master Bundle

m

762.5

610.0

381.3

274.5

244.0

183.0

112.9

91.5

76.3

61.0

45.8

30.5

ft.

2500

2000

1250

900

800

600

370

300

250

200

150

100

Ouantity In

Master Bundle

400 122.0

m

91.5

76.3

ft.

300

250

Nom ha

Wall

Thickness

mm

2.60

2.70

3.20

3.40

3.50

3.70

490

520

5.50

5.70

6.20

6.80

in.

0.104

0.107

0.126

0.133

0.138

0.146

0 193

0.205

0.215

0.225

0.245

0.266

Nominal

Wal

mm

5.20

5.50

Thickness

in.

0.205

0.215

Allied Rigid Steel Conduit Specifications

Manufactured from high-strength steel, Allied RIGID source in the second se

Alied RIGID is hot-dipped galvanized inside and out. It's hop-coated with a compatible organic layer to inhibit white rust and increase corrosion resistance. It is impact and crush resistant for maximum conductor protection. The 3/4" taper NPT threads (ANSI B1.20.1) are full out and

hot galvanized after cutting. Color coded end-cap thread protectors keep the threads clean, sharp and also provide instant trade size recognition. Trade sizes are color-coded blue, 1/2 trade sizes black, and 1/4 trade sizes red.

Alied RIGID is very effective in reducing electromagnetic field levels for encased power distribution dircuits, shielding computers and other sensitive electronic equipment from the effects of electro-magnetic interference. Visit www.steekconduit.org/gemil.htm to before the CPU (Computers and Electrom proposition) obtain the GEMI (Grounding and Electro-magnetic Interference) software analysis program.

Alied RIGID is covered by article 344 of the National Electrical Code. It is listed to Underwriters Laboratories Safety Standard UL, 8, and is manufactured to ANSI C80.1, both of which have been adopted as Federal Specifications in lieu of WWC 581. Allied RIGID is recognized as an equipment grounding conductor by NEC Article 250. Installation of Rigid Metal Conduit shall be in accordance with the National Electrical Code and UL General Information card #DYIX. Master bundles conform to NEWA standard RN2.

RIGID Metal Conduit shall be hot-dip galvanized steel equal to that manufactured by Allied Tube & Conduit Corporation. Threads shall be hot galvanized after cutting. RIGID shall be produced in accordance with UL Safety Standard #8 and ANSI C80.1 and shall be listed by a nationally recognized testing laboratory with follow-up service. Where Kwik-Couple' Rigid is used it shall also meet UL Safety Standard 514-B. It is noted that these UL standards have been adopted by the federal government and separate military specifications no longer exist.

Allied Tube & Conduit* - Electrical

16100 S. Lathrop Avenue, Harvey, IL 60426 Tel. 708-339-1610 800-882-5543 Fax 708-339-0615

Electrical & Support Division

www.alliedeg.com ed Tube & Conduit" • AFC Cable Systems" • Power-Struft & Unistruft Metal & Fiberglass Framing • Cope" Cable Tray

Weights and Dimensions for Galvanized Rigid Tubing

kg

37.2

49.4

73.0

98.9

119.3

158.7

253.5

3297

399.1

467.1

634.9

834.5

NOTE: Length = 10 ft. (3.05m) with a tolerance of +/- .25 in. (6.35mm). * NEMA Standard

Approx. Wt. Per Nominal Outside

Diameter*

559 253.5 2.875 73.0 0.193 4.90

4 103 1030 467.1 4.500 114.3 0.225 5.70 200 61.0 Outside diameter tolerances: +/- .025 in. (.64mm) *For information only; not a spec requirer

88.9

101.6

kg in. mm

3.500

4.000

Weights and Dimensions for Kwik-Couple* Rigid

329.7

399.1

For more information, contact Allied at (800) 882-5543. or visit our website at www.alliedeg.com

100 FL (30.5M)

Ib.

727

880

Nominal Outside

Demeter

mm

21.3

26.7

33.4

42.2

48.3

60.3

730

88.9

101.6

114.3

141.3

168.3

in.

0.840

1.050

1.315

1.660

1.900

2.375

2 875

3,500

4 000

4,500

5.563

6.625

Approx Wt" Per

100 FL (30.5M)

Ib.

82

109

161

218

263

350

559

727

880

1030

1400

1840

¹ For more information only; not a spec requirement

Trade Stre

Design at or

U.S.

1/2

3/4

1 1-1/4

1-1/2

2

2-1/2

3 3-1/2

4

5

6

Trade Size

Designator

U.S. Metric

2-1/2 63

78

91

3

3-1/2

Metric

16

21

27

35

41

53

63

78

91

103

129

155

The badiamarks, bigus, and sarvice marks displayed on this brochure are owned or licensed by Tyco Int. or its subsidiaries, and others (collectively "Redemarks"). All Redemarks not owned by Tyco Int. are the property of their respective owners, and are used with permission or allowed under applicable bars.

© 2007-09 Tyco International, All rights reserved. ATC-L-1749-0912

ELECTRICAL CONDUIT

SUBMITTAL AND DATA SHEET

SCHEDULE 40 AND SCHEDULE 80 CONDUIT NSF NRTL* ANSI/UL 651 AND NEMA TC-2

RIGID NON-METALLIC CONDUIT FOR USE IN BOTH ABOVE GROUND AND UNDERGROUND INSTALLATIONS

SCHEDULE 40 CONDUIT

Rated for 90°C Conductors

SIZE	AVERAGE O.D.	NOM. I.D.	MIN. T.	APPROX. WT/100 FT
1/2	0.840	0.622	0.109	18
3/4	1.050	0.824	0.113	24
1	1.315	1.049	0.133	33
1-1/4	1.660	1.380	0.140	45
1-1/2	1.900	1.610	0.145	56
2	2.375	2.067	0.154	76
2-1/2	2.875	2.469	0.203	126
3	3.500	3.068	0.216	163
3-1/2	4.000	3.548	0.226	197
4	4.500	4.026	0.237	234
5	5.563	5.047	0.258	319
6	6.625	6.065	0.280	411
8::	8.625	7.942	0.322	622

Schedule 40 is furnished in standard 10' lengths with one bell end. 20' lengths are available upon request.

:: Non-UL or -NSF listed

SCHEDULE 80 CONDUIT

Rated for 90°C Conductors

	-			
SIZE	AVERAGE O.D.	NOM. I.D.	MIN. T.	APPROX. WT/100 FT
1/2	0.840	0.546	0.147	22
3/4	1.050	0.742	0.154	30
1	1.315	0.957	0.179	42
1-1/4	1.660	1.278	0.191	60
1-1/2	1.900	1.500	0.200	72
2	2.375	1.939	0.218	98
2-1/2	2.875	2.323	0.276	160
3	3.500	2.900	0.300	213
3 1/2	4.000	3.364	0.318	256
4	4.500	3.826	0.337	310
5	5.563	4.813	0.375	430
6	6.625	5.761	0.432	590

Schedule 80 is furnished in standard 10' lengths with one bell end. 20' lengths are available upon request.

* NATIONAL RECOGNIZED TESTING LABORATORY (NRTL) BY OCCUPATIONAL HEALTH AND SAFETY ADMINISTRATION (OHSA)

Product Data Sheet

HOM1632L200TC

LOADCTR HOM MLO 240V 200A 1PH 16SP NEMA1

by Schneider Electric List Price \$357.00 USD

61 Price \$357.00 USD

Availability Stock Item: This Item is normally stocked in our distribution facility.

Ampere Rating	200A
Bus Material	Tin Plated Aluminum
Enclosure Type	Indoor
Box Number	9
Enclosure Rating	NEMA 1
Grounding Bar	Factory Installed
Maximum Single Pole Circuits	32
Application	Designed to meet residential, commercial and industrial requirements to protect electrica systems, equipment and people.
Short Circuit Current Rating	10kA.
Maximum Tandem Circuit Breakers	16
Approvals	UL Listed
Main Type	Convertible - Factory Installed main lugs
Cover Type	Combination Flush/Surface
Marketing Trade Name	Homeline
Phase	1-Phase
Depth	3.75 Inches
Height	29.86 Inches
Spaces	16
Voltage Rating	120/240VAC
Wire Size	#4 to 250 AWG/kcmll (Al/Cu)
Wiring Configuration	3-Wire
Width	14.25 Inches
Shipping and Ordering	
Category	00045 - Load Centers, Type HOM 12 - 42 Circuit, NEMA1 Indoor
Discount Schedule	DE3C
GTIN	00785901309338
Package Quantity	1
Weight	27.2 lbs.
Availability Code	Stock Item: This Item is normally stocked in our distribution facility.
Returnability	Y
Country of Origin	US

As standards, specifications, and designs change from time to time, please ask for confirmation of the information given in this document.

Generated: 02/28/2011 12:08:08

© 2011 Schneider Electric. All rights reserved.

1

TO GO BACK, CLICK HERE

Product Data Sheet

QO612L100RB LOAD CENTER QO MLO 240V 100A 1PH 6SP

by Schneider Steamle

List Price \$143.00 USD

Availability Stock Item: This Item is normally stocked in our distribution facility.

Technical Characteristics

Short Circuit Current Rating	10kA
Main Type	Fixed - Factory Installed main lugs
Maximum Single Pole Circuits	12
Maximum Tandern Circuit Breakers	6
Phase	1-Phase
Spaces	6
Ampere Rating	100A
Voltage Rating	120/240VAC
Wire Size	#8 to 1 AWG(AI/Cu)
Wiring Configuration	3-Wire
Application	Designed to meet residential, commercial and industrial requirements to protect electrical systems, equipment and people.
Depth	4.27 Inches
Approvals	UL Listed
Height	12.65 Inches
Cover Type	Surface
Width	8.88 Inches
Bus Material	Tin Plated Aluminum
Enclosure Type	Outdoor/Rainproof
Box Number	2R
Enclosure Rating	NEMA 3R
Grounding Bar	Order separately

Notes:

70A (max) branch circuit breaker and 70A (max) back fed main circuit breaker.

Shipping and Ordering

Category	00101 - Load Centers, 1 Phase, NEMA1 & 3R, 2 - 8 Circuit, Type QO
Discount Schedule	DE3A
TIN	00785901785590
ackage Quantity	1
reight.	9.68 lbs.
valiability Code	Stock Item: This Item is normally stocked in our distribution facility.
Returnability	Y
country of Origin	MX

Generated: 04/17/2011 16:18:15

© 2011 Schneider Electric. All rights reserved.

TO GO BACK, CLICK HERE

It's all about SAFETY. HUBBELL SAFE.

Tamper-Resistant Receptacles

-the new standard in electrical safety.

Spring-loaded shutter mechanism allows plugs to enter—but resists access to single-pronged items like keys, hairpins, or nails.

The NEC[®] 2008 code:

NEO Article 408.11 requires tamper-resistant receptacles for dwelling units. "In all areas specified in 210.52, all 125 volt 15- and 20-ampere receptacles shall be listed tamper-resistant receptacles." Article 210.52 specifies where receptacles shall be installed.

What this means to you:

All 15- and 20-amp, 125 volt residential receptacles must be of a type classified and listed as Tamper-Resistant (TR). This includes duplexes, GFOIs, single receptacles, clock hangers, floor boxes, and other specialty products with outlets. Receptacles, even if dedicated to a specific use and not readily accessible, must be tamper-resistant.

This affects all new construction and major renovations for single- and multi-family homes. In some instances, hotel rooms and college dormitories are classified as dwelling units.

Why Tamper-Resistant?

The tamper-resistant code requirement is all about safety.

- Approximately 2,400 children per year suffer electrical outlet related injuries.
- For years, the design and use of tamper-resistant receptacles have been proven effective in pediatric areas and hospital installations nationwide. It makes sense to have them in homes.
- The additional cost per device is minimal and well worth it.
- Required by states that adopt 2008 NEO[®].

Tamper-Resistant Receptacles

	Standard Duplex Self-Grounding 15A 125V	Standard Duplex Quick Thread 15A 125V	Decorator Duplex Self-Grounding 15A 125V	Standard Duplex Cut Ears 15A 125V	Standard Single Receptacle 15A 125V	Standard Single Receptacle 20A 125V
Almond	RR15SALTR	RR15QALTR	RRD15SALTR	RR15KALTR	RR151ALTR	RR201ALTR
Black	RR15SBKTR	RR15QBKTR	RRD15SBKTR	RR15KBKTR	RR151BKTR	RR201BKTR
Brown	RR15STR	RR15QTR	RRD15STR	RR15KTR	RR151TR	RR201TR
Gray	-	-	RRD15SGYTR	-	RR151GYTR	RR201GYTR
vory	RR15SITR	RR15QITR	RRD15SITR	RR15KITR	RR151ITR	RR201ITR
ight Almond	RR15SLATR	RR15QLATR	RRD15SLATR	RR15KLATR	RR151LATR	RR201LATR
Vhite	RR15SWTR	RR15QWTR	RRD15SWTR	RR15KWTR	RR151WTR	RR201WTR

						•
	Decorator Single Receptacle 15A 125V	Decorator Single Receptacle 20A 125V	Standard Combo SP Switch 15A 120V Receptacle 15A 125V	Standard Combo 3W Switch 15A 120V Receptacle 15A 125V	Decorator Combo SP Switch 15A 120V Receptacle 15A 125V	Decorator Combo 3W Switch 15A 120V Receptacle 15A 125V
Almond	RRD151ALTR	RRD201ALTR	RC108ALTR	RC308ALTR	RCD108ALTR	RCD308ALTR
Black	RRD151BKTR	RRD201BKTR	-	-	RCD108BKTR	RCD308BKTR
Brown	RRD151TR	RRD201TR	RC108TR	RC306TR	-	-
Gray	RRD151GYTR	RRD201GYTR	-	-	RCD108GYTR	RCD308GYTR
lvory	RRD151ITR	RRD201ITR	RC108ITR	RC308ITR	RCD108ITR	RCD308ITR
Light Almond	RRD151LATR	RRD201LATR	RC108LATR	RC308LATR	RCD108LATR	RCD308LATR
White	RRD151WTR	RRD201WTR	RC108WTR	RC306WTR	RCD108WTR	RCD308WTR

betting the standard, wire to wire

BB

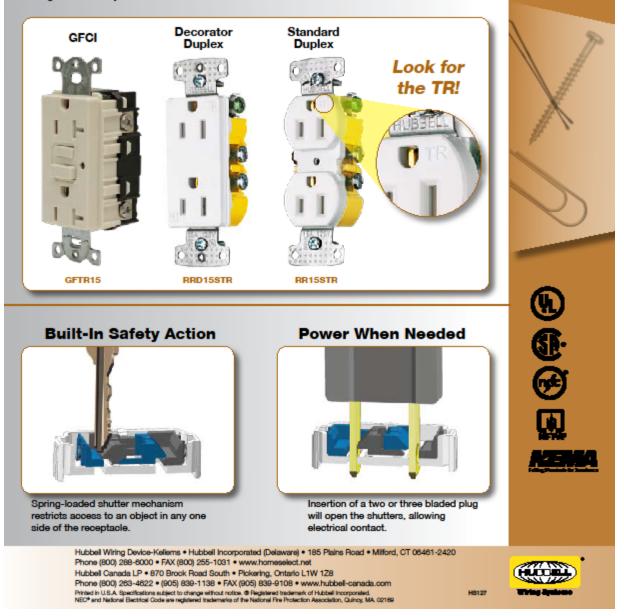
Increasing awareness of child electrical safety

Tamper-Resistant GECIs and Specialty Items

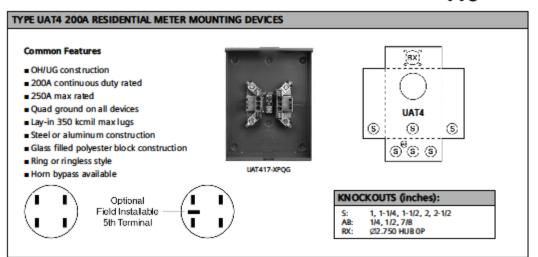
The National Electrical Manufacturers Association has developed a program titled *Real Safety* that identifies the dangers electrical receptacles may pose to children, educating users about tamper-resistant receptacle function. *Real Safety* targets electrical professionals, inspectors, distributors, builders and new homeowners. For more information visit the website at www.childoutletsafety.org.

lamper	-nesistant		a opecially	y items	
	GFCI Duplex 15A 125V	GFCI Duplex 20A 125V	GFCI Combo SP Switch 15A 120V Receptacle 15A 125V	JLOAD™ Multimedia Outlet 15A & Jacks	JLOAD™ Multimedia Outlet 20A & Jacks
Almond	GFTR15AL	GFTR20AL	GFSP15TRAL	RJ650ALTR	RJ620ALTR
Black	GFTR15BK	GFTR20BK	GFSP15TRBK	RJ650BKTR	RJ620BKTR
Brown	GFTR15	GFTR20	GFSP15TR	-	-
Gray	GFTR15GY	GFTR20GY	GFSP15TRGY	RJ650GYTR	RJ620GYTR
lvory	GFTR15I	GFTR20I	GFSP15TRI	RJ650ITR	RJ620ITR
Light Almond	GFTR15LA	GFTR20LA	GFSP15TRLA	RJ650LATR	RJ620LATR
White	GFTR15W	GFTR20W	GFSP15TRW	RJ650WTR	RJ620WTR

	Clock Hanger	Single Receptacle Floor Box	Duplex Receptacle Floor Box Matal	Duplex Receptacle Floor Box Steb-on-grade	Drop-in Floor Box
	15A 125V	15A 125V	15A 125V	15A 125V	15A 125V
Almond	-	-	RF515AL	RF406AL*	-
Black	-	-	RF515BK	RF406BK*	-
Brown	-	-	RF515BN	-	-
Ivory	RR151CHITR	-	-	-	-
White	RR151CHWTR	-	-	-	-
Brass	RR151CHBSTR	RF151TR	RF515BS	RF406BS*	RF151R*
Stainless	RR151CHSSTR	-	RF515SS	-	-


* Not CSA Approved

www.homeselect.net

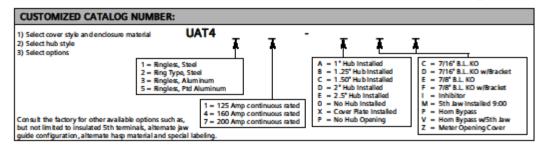

Residential Tamper-Resistant Performance

Protection is always there with the tamper-resistant receptacles. It is reliable, automatic and permanent. With attention to design and performance, Hubbell has developed a new shutter mechanism to enable tamper-resistance to be built into standard and decorator duplexes, single receptacles, floor boxes and other power devices. At Hubbell, performance is our history, safety is our goal—now for your home.

LANDIS & GYR Product Schedule 410

Cover Terminal			Dimension Hub		Hub	Hub Barrel Lock	5th Jaw	Catalog Number			
Style	Service	Connector	Bypass	w	H	D	Opening	Prov.	Kit #	Aluminum	Steel
Ringless	OHUG	#14-2/0	None	11.0	14.0	4.5	RX Cl. Plate	N/A	H659-0121		UAT411-XG (8)
Ringless	OHUG	#14-2/0	None	11.0	14.0	4.5	RX Cl. Plate	NA	H659-0121		UAT411-XVZ (8)
lingless	OHUG	#6-350 kcmil	None	11.0	14.0	4.5	RX Opening	NA	H659-0121	UAT434-0G	UAT414-0G (2)
Ringless	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	Blank Top	N/A	H659-0121	UAT434-PG	
Ingles	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Opening	N/A	H659-0121	UAT437-0G	UAT417-0G
Ingles	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Opening	N/A	H659-0121	UAT437-0GF	UAT417-0GF (1)
Ingles	OH	#6-350 kcmil	None	11.0	14.0	4.5	2" Hub Installed	N/A	H659-0121		UAT417-DG
lingless	OH	#6-350 kcmil	None	11.0	14.0	4.5	2.5" Hub Installed	NA	H659-0121		UAT417-EG
Ingles	UG	#6-350 kcmil	None	11.0	14.0	4.5	Blank Top	N/A	H659-0121	UAT437-PG	UAT417-PG
Ingles	UG	#6-350 kcmil	None	11.0	14.0	4.5	Blank Top	N/A	H659-0121	UAT437-PGF	UAT417-PGF ①
Ingles	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Cl. Plate	N/A	H659-0121	UAT437-XG	UAT417-XG
Ingless	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Cl. Plate	N/A	H659-0121	UAT437-XGF	UAT417-XGF ①
Ingless	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Cl. Plate	N/A	H659-0121	UAT457-XG	
Ingles	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Cl. Plate	7/16"	Factory Installed		UAT417-X0XA
Ringless	UG	#6-350 kcmil	None	11.0	14.0	4.5	Blank Top	7/16"	Factory Installed		UAT417-P0XA
lingless	OH/UG	#6-350 kcmil	Horn	11.0	14.0	4.5	RX Opening	NA	H659-0121		UAT417-0PZ
Ringless	OH/UG	#6-350 kcmil	Horn	11.0	14.0	4.5	RX Opening	NA	H659-0121		UAT417-0PQG
Ringless	OH/UG	#6-350 kcmil	Horn	11.0	14.0	4.5	RX Cl. Plate	7/1 6" or 7/8"	Factory Installed		UAT417-XQ (2)
Ringless	OH/UG	#6-350 kcmil	Horn	11.0	14.0	4.5	RX Cl. Plate	7/8"	Factory Installed		UAT417-XFP
ingless	OH/UG	#6-350 kcmil	Horn	11.0	14.0	4.5	RX Cl. Plate	7/8"	Factory Installed		UAT417-XFP (2)
Ingless	OH/UG	#6-350 kcmil	Horn	11.0	14.0	4.5	RX Cl. Plate	N/A	Factory Installed		UAT417-XVZ (2)
Ingless	OH/UG	#6-350 kcmil	Horn	11.0	14.0	4.5	RX Cl. Plate	N/A	H659-0121		UAT417-XPQG
Ingles	UG	#6-350 kcmil	Horn	11.0	14.0	4.5	Blank Top	N/A	H659-0121		UAT417-PPQG
ling	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Opening	N/A	H659-0121		UAT427-0G (S)
ling	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Cl. Plate	N/A	H659-0121		UAT427-XG (8)
ling	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Cl. Plate	N/A	H659-0121		UAT427-XGSP (
ling	OH/UG	#6-350 kcmil	None	11.0	14.0	4.5	RX Cl. Plate	N/A.	Factory Installed		UAT427-XMWR
ling	UG	#6-350 kcmil	None	11.0	14.0	4.5	Blank Top	N/A.	Factory Installed		UAT427-PB (S)

 (U) includes stainess steel latch and hasp.
 (a) Cover attaches via 2 brackets with screws behind meter.


 (b) includes camboard meter opening cover.
 (b) Cover attaches via 2 brackets with screws behind meter.

 (b) includes concentric 7/8* and 7/16* barnel lock K.O.
 (b) Catalog numbers listed include KO and bracket for barnel lock.

(8) De-rated to125 amps continuous.

LANDIS & GYR

Product Schedule 410

GENERAL IN FORMATION:							
Capacity:	200 ampere continuous, 600 volts a.c.						
Application:	Single phase, 3 wire, self-contained convertible to 5 terminal.						
Enclosures:	All enclosures shown here are ringless, NEMA Type 3R. All enclosures are available in either 16 gauge painted steel .063						
	aluminum in natural finish. (For painted aluminum enclosures, consult factory.)						
Block Assembly:	Block assemblies are arc and track resistant thermoset.						
Terminals:	Lay-in style, tin-plated, extruded aluminum 6061-T6.						
UL:	All sockets are UL listed unless otherwise indicated.						
ANSI-C12.7:	All sockets meet or exceed ANSI-C12-7 standards.						
Stud-Type:	Optional stud-type connectors are available, consult factory.						
Hubs:	Hubs conform to ANSI standard. 2.5" hub maximum.						
Barrel Lock Prov.:	Includes bracket and knockout.						

TO GO BACK, CLICK HERE

7

I-210+c[®] SmartMeter

SmartSynch's residential smart metering solution features a communications module that is integrated into the GE I-210+c electricity meter. The I-210+c SmartMeter communicates over an existing cellular network with the SmartSynch Transaction Management System™ (TMS) or other C12.21 head-end system (such as MV-90) and complies with ANSI C12.19 protocols for data storage and transmission.

The I-210+c SmartMeter is a single-phase electronic watt-hour meter for use in residential and light commercial service locations. The I-210+c's key features include Time of Use, Demand and Load Profile, Remote Connect/Disconnect, and C12.22/ C12.21 compatibility. The I-210+c SmartMeter also includes an optional ZigBee® wireless component for in-premise communications and an optional Badger ORION® wireless component for gas and water reads.

Functions & Features

Wireless Communications

- GPRS
- ZigBee[®]
- Badger ORION[®]

Advanced Metering Functionality

- Remote Disconnect/Reconnect
- Flexible Two-Way Data Retrieval
- Scheduled & On-Demand Reads
- Interval Reads (5, 15, 30, 60 minutes)
- Real-Time Interval Reads
- Automated Register, Self-Read & TOU
- Demand Resets
- Real-Time Meter Event & Alarm Retrieval
- Real-Time Power Outage & Restoration
- Service Diagnostics & Tamper Detection
- Tilt Detection
- Meter Clock Synchronization
- SmartMeter Status Display
- Automated Meter Registration
- Secure & Encrypted Data Transmissions
- Bi-Directional Metering
- Over-The-Air SmartMeter Module Firmware Upgrade

Supported Meter Forms

Class 20: 35, 45

4400 Old Canton Road Jackson, Mississippi 39211

Class 100: 15 1-888-362-1780

SmartSynch, Inc.

- Class 200: 25, 125, 255
- Class 320: 25
- ww.smartsynch.com See back page for Supported Forms with Remote Disconnect

Hardware Components

- Remote Disconnect/Reconnect
- Radio Control Module Board (RCM)
- Capacitor Storage Bank (CSB)
- GSM/GPRS Modem
- ZigBee Transceiver
- Badger ORION Receiver
- Internal Antenna

Operating Ranges

Temperature

- Operating: [-40°C, +85°C]
- Transmission (GPRS): [-40°C, +85°C]
- Humidity
- 0% to 95% non-condensing

Accuracy

Meets ANSI 12.20 for accuracy class 0.5%

Regulatory & Industry Specifications

- FCC Part 15 Class B
- ANSI C37.90.1 1989: (SWC)
- ANSI C12.20 (Class 0.5) 1998
- PTCRB Certifled
- Network Carrier Certifled
- Measurement Canada Certified

Hardware Specifications

Hardware Component	
	Description
Radio Control Module Board (RCM	32-bit ARM processor, 256K RAM, 512K flash
Capacitor Storage Bank (CSB)	Supplies peak power for data transmissions and all functions during power outages – no batteries required
GSM/GPRS Modem	GSM modem communicates with head-end using GPRS and SMS services
ZigBee Transceiver	Wireless component for in-premise two-way communications
Badger ORION Receiver	Wireless component for receiving gas and water reads
Internal Antenna	Flexible dual frequency GSM antenna for the modem
Temperature Ranges Operating: [-40°C, +85°C] Transmission (wireless): [-40°C, +85° Humidity Range 0% to 95% non-condensing Accuracy Meets ANSI 12.20 for accuracy class	Class 320: 25 Regulatory & Industry Certifications FCC Part 15 Class B ANSI C37.90.1 – 1989: Surge Withstand Capability (SWC) ANSI C12.20 (Class 0.5) – 1998
Input/Output Signal or Interface	e Definition/Values
Module Power Input Voltage	120 - 240 VAC
Meter Serial Interface	3.3V / TTL compatible asynchronous
Integration The SmartMeter module is a fully in is shipped as one complete unit, re	tegrated, under-the-cover option inside the I-210+c meter. The I-210+c SmartMeter eady for field deployment.
I-210+c Meter Firmware: La SmartModule: I-	mation upported meter forms, classes, and types, equipped with battery atest fully supported 210+c GPRS SmartMeter Module fersion 6.0 or higher
I-210+c Meter Hardware: Si I-210+c Meter Firmware: La SmartModule: I- SmartSynch TMS: V About SmartSynch: Headquarte solutions for the utility industry since 200 data over cellular networks (AT&T, Roge for 150 major North American utilities, w Unlike proprietary, closed-architecture : standards-based IP connectivity enable	upported meter forms, classes, and types, equipped with battery atest fully supported 210+c GPRS SmartMeter Module

Product Data Sheet

DU322RB

Stock Item: This Item is normally stocked in our distribution facility.

Safety Switch , 60A, Non-Fusible, 3-Pole

by Schneider Electric

List Price \$443.00 USD

Availability Stock Item: This Item is normally stocked in our distribution facility.

Technical Characteristics	
Number of Poles	3-Pole
Terminal Type	Lugs
Type of Duty	General Duty
Maximum Voltage Rating	240VAC
Wire Size	#10 to #2 AWG(AI) - #14 to #2 AWG(Cu)
Depth	3.75 Inches
Height	9.63 Inches
Action	Single Throw
Ampere Rating	60A
Width	7.25 Inches
Approvais	UL Listed File Number E2875
Enclosure Rating	NEMA 3R
Enclosure Type	Rainproof and Sleet/loe proof (Indoon/Outdoor)
Factory Installed Neutral	No
Disconnect Type	Non-Fusible
Mounting Type	Surface
Shipping and Ordering	
Category	00106 - Safety Switch, General Duty, 30 - 200 Amp, NEMA3R
Discount Schedule	DE1A
GTIN	00785901491767
Package Quantity	1
Weight	4.78 lbs.

As standards, specifications, and designs change from time to time, please ask for confirmation of the information given in this document.

Y

MX

Generated: 06/30/2010 15:50:45

Availability Code

Country of Origin

Returnability

© 2010 Schneider Electric. All rights reserved.

TO GO BACK, CLICK HERE

SUNPOWER

E19 / 240 SOLAR PANEL MAXIMUM EFFICIENCY AND PERFORMANCE

BENEFITS

Highest Efficiency

SunPower[™] Solar Panels are the most efficient photovoltaic panels on the market today.

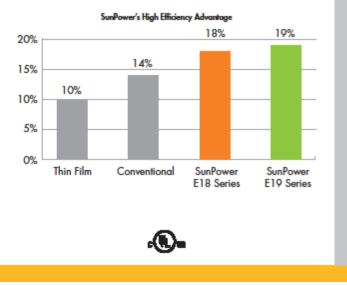
More Power

Our panels produce more power in the same amount of space—up to 50% more than conventional designs and 100% more than thin film solar panels.

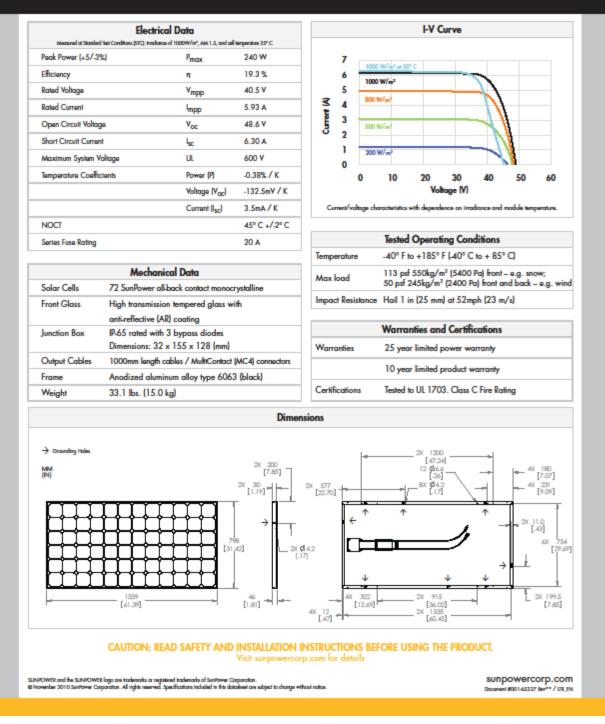
Reduced Installation Cost

More power per panel means fewer panels per install. This saves both time and money.

Reliable and Robust Design


Proven materials, tempered front glass, and a sturdy anodized frame allow panel to operate reliably in multiple mounting configurations.

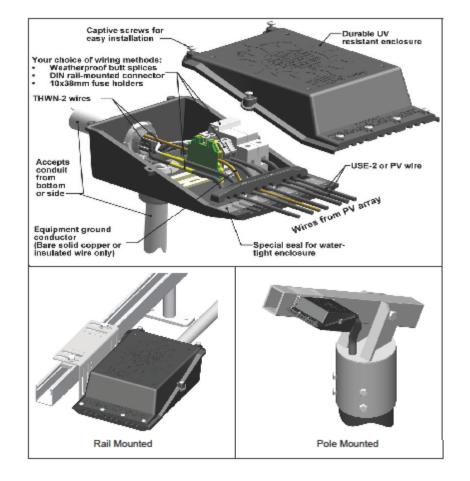
The SunPower™ 240 Solar Panel provides today's highest efficiency and performance. Utilizing 72 all back-contact solar cells, the SunPower 240 delivers a total panel conversion efficiency of 19.3%. The panel's reduced voltage-temperature coefficient, anti-reflective glass and exceptional low-light performance attributes provide outstanding energy delivery per peak power watt.


SPR-240E-WHT-D

SUNPOWER

E19 / 240 SOLAR PANEL

MAXIMUM EFFICIENCY AND PERFORMANCE



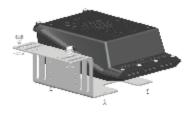
TO GO BACK, CLICK HERE

ACE Acme Conduit Entry Box

The ACE makes quick and simple transitions from USE-2 or PV array wire to conduit protected THWN-2 wire. The box features a compact two-piece UV resistant, NEMA3R rated, enclosure that allows ample wiring space and is compatible with any conduit type. The unique wire entry seals the enclosure even if entry slots are unused. Convenient side and bottom conduit drill out allow for easy conduit routing. The cover comes with captive screws for hassle-free assembly.

Contact us at: 845.247.4708 www.we-llc.com

Specifications


Input Wire Diameter Range	5.0 - 6.8 [0.20 -0.27in] 10-12 AWG USE-2/PV V
Maximum number of Input Conductor Slots	9
Maximum number of PV strings	4
Maximum number of Combined Strings	4
Equipment Ground Conductor Type	Bare solid or jacketed only
Equipment Ground Conductor Diameter Range	4.0-6.8mm [0.16-0.27 in]
Acceptable Conduit Sizes	19.05mm, 25.4mm [0.75in, 1.0in]
Internal Volume	1840cm [112 in]
Internal Height	72.0mm[2.83 in]
Drill Out	Side, Bottom

Configurations

ACE Part Number	ACE Configuration	Terminal Block	Terminal Block Internal Bus	Fuse Holder	Fuse Combiner Bus	Grounding Terminal	DIN Rail
ACE-PT	Pass-Through using Butt Splices/Wire Nuts	N/A	N/A	N/A	N/A	N/A	N/A
ACE-1P	1-String Pass-through	2	N/A	N/A	N/A	1	1
ACE-2P	2-String Pass-through	4	N/A	N/A	N/A	1	1
ACE-3P	3-String Pass-through	6	N/A	N/A	N/A	1	1
ACE-4P	4-String Pass-through	8	N/A	N/A	N/A	1	1
ACE-2C	2-Strings Combiner	4	2X 2-Pole	Not required for 2- string combiner	N/A	1	1
ACE-3C	3-Strings Combiner	3	1X 3-Pole	3	1X 3-Pole	1	1
ACE-4C	4-Strings Combiner	4	1X 4-Pole	4	1X 4-Pole	1	1

Mounting Bracket is included with the purchase of the ACE. It is made of lightweight, corrosion resistant, anodized aluminum. The mounting bracket assembly includes:

1X ACE Mounting Bracket 4X Mounting Screws 2x Bonding Washers

Contact us at: 845.247.4708 www.we-llc.com

AUTHORIZATION TO MARK

This authorizes the application of the Certification Mark(s) shown below to the models described in the Product(s) Covered section when made in accordance with the conditions set forth in the Certification Agreement and Listing Report. This authorization also applies to multiple listee model(s) identified on the correlation page of the Listing Report.

This document is the property of Intertek Testing Services and is not transferable. The certification mark(s) may be applied only at the location of the Party Authorized To Apply Mark.

Applicant:	WILEY ELECTRONICS	3, LLC	Manufacturer:	WILEY ELECTRONICS, LLC
Address: Country: Contact: Phone: FAX: Email:	P.O. Box 361 SAUGERTIES, NY 124 USA Mr. Brian Wiley (845) 247-2875 (845) 246-0189 btw@we-llc.com	177	Address: Country: Contact: Phone: FAX: Email:	1131 Kings Hwy SAUGERTIES, NY 12477 USA Mr. Brian Wiley (845) 247-2875 (845) 246-0189 btw@we-llc.com
Report Issuin	g Office:	Same as Manufacture Cortland, NY		en Sale
Control Numb	ber: <u> </u>	Authorized by:	for William	Ille Kake. n T. Starr, Certification Manager
	This document supersed	des all previous Author) US	or the noted Report Number.
This Authorization to Ma limited to the terms and i by the use of this Author restricted to the condition first be approved in writing	rk is for the exclusive use of intertek's C conditions of the agreement. Intertek as tzation to Mark. Only the Client is author ns laid out in the agreement and in this /	lient and is provided pursuant to the sumes no liability to any party, other trzed to permit copying or distribution Authorization to Mark. Any further use its and Follow up Services are for the the services are for the sum of the services are for the services are services are services are services and services are services are servi	Certification agreement betwee than to the Client in accordanc of this Authorization to Mark a e of the intertek name for the s e purpose of assuring appropri	en Intertek and its Client. Intertek's responsibility and liability are e with the agreement, for any loss, expense or damage occasione ad then only in its entirety. Use of Intertek's Certification mark is aler or advertisement of the tested material, product or service mu ale usage of the Certification mark in accordance with the
	Teleph	Intertek Testing 165 Main Street, C one 800-345-3851 or 60	ortland, NY 13045	7-756-6699
Standard(s):		nergy Resources, UL 1		d Interconnection System Equipment fo May 7th 1999, Including Revisions

Standard(s):	UL Standard for Safety for Inverters, Converters, Controllers and Interconnection System Equipment for Use with Distributed Energy Resources, UL 1741. First Edition, May 7th 1999, Including Revisions through November 7, 2005.).
Product:	PV Combiner boxes
Brand Name:	N/A
Models:	ACE-PT, ACE-1P, ACE-2P, ACE-3P, ACE-4P, ACE-2C, ACE-3C, AND ACE-4C

ATM for Report 3145135CRT-002

Page 1 of 1

ATM Issued: 23-Jul-2009 ED 16.3.15 (3/12/08) Informative

TO GO BACK, CLICK HERE

Division 27 – Communications

 Rev 1.2

1. Getting Started

NOTE: Installation should not be started until the qualified installer has read this entire Installation Guide.

Important Safety Information

The eMonitor is one of the first home energy management solutions that monitors all of the circuits in your home independently, and therefore is able to provide you with a detailed view of your electricity usage. In order to do this, sensors need to be installed on each circuit breaker inside your electrical panel. The installation is very straightforward, and every effort has been made to provide for the safe, secure installation of the eMonitor. However, the installation of the eMonitor requires the cover of the main electrical circuit breaker panel to be removed.

When this is done, there is the potential hazard of shock, burn, or even electrocution.

Even when the Main Circuit Breaker has been turned to the "OFF" position, there may still be areas within the circuit breaker panel that are electrified, or "hot". Installation should be performed by a licensed electrician.

This model of the eMonitor is suitable for installation with 120/240V single-phase 60Hz service,

normally found in North America (USA, Canada, Mexico and portions of the Caribbean). It is not suitable for 3-phase service, or for 230V 50Hz service commonly found in other regions of the world.

All wiring in the United States must be installed in accordance with the latest adopted edition of the National Electrical Code (ANSI/NFPA 70, NEC) and state or local requirements. All wiring in Canada must be installed in accordance with the latest adopted edition of the Canadian

Electrical Code (CSA C22.2 CEC, Part I) and any provincial or local requirements.

A typical installation of a 24-channel eMonitor unit should take approximately one hour.

One of my appliances is using a lot less power than I would have expected

- The first thing to check is whether the sensor that is attached to the circuit that has that appliance is tightly connected to the eMonitor
- If that is not the problem, it is possible that your circuit panel had the wrong label, and the
 eMonitor is not monitoring the appliance you think it is. The way to check that is to turn off
 the breaker which has the associated label, and see if the appliance turns off. If not, you
 will need to perform a little trial and error to find the correct circuit and channel.
- NOTE: before turning the breaker off, be sure to turn off any computers or medical devices on that circuit to avoid damage to them.

E. Specifications for the eMonitor

Communication Protocols

TCP-IP via Ethernet (802.3) 10/100base-T

Wireless ZigBee* (802.15) mesh networking

Local via high speed Serial port

Power Requirements

120 VAC Power, 60 Hz

Calibrated Adapter:

Input 120 VAC 60 Hz 7W

Output: 12VAC 1000mA

Dimensions

L x H x W: 8.80" x 4.25" x 1.75"

Hardware features

Scans circuit and outlet power consumption every second, records average every minute

Backlit display (128 x 64 graphics dot Matrix LCD)

3 LED status lights

4 button membrane keypad

Embedded Web server provides local data access

8MB memory supports 1 day of data storage

Firmware remotely upgradable

Environmental conditions

Operating Temperature: -10°C to +60°C (14°F to +140°F)

© 2010 Powerhouse Dynamics, Inc.

Page 39

When the product exhibits a distinct change in performance – this indicates a need for service.

Replacement Parts – When replacement parts are required, be sure the service technician has used replacement parts specified by the manufacturer or that have the same characteristics as the original part. Unauthorized substitutions may result in fire, electric shock, or other hazards and voiding of warranties.

Safety Check – Upon completion of any service or repairs to this product, ask the service technician to perform safety checks to determine that the product is in proper operating condition.

Heat – The product should be situated away from heat sources such as radiators, heat registers, stoves, or other products that produce heat.

Declaration of Conformity:

with FCC standards FCC Class B approval

Warranty

Powerhouse Dynamics warrants this eMonitor unit against defects in materials and workmanship for the length of the initially contracted monitoring service. For the first two (2) years from the date of purchase, Powerhouse Dynamics will replace any defective product at no charge. Thereafter, if applicable, there will also be a \$125 restocking charge for replaced products. The defective product must be returned to PowerHouse dynamics; please ensure that the unit is properly packed before shipping. Powerhouse Dynamics will not provide reimbursement for shipping, removal, or reinstallation.

This Warranty does not cover damage from accident, misuse or abuse, incorrect installation, installation at environmental conditions outside the specifications, lack of reasonable care, or the fixing of any attachment that did not come with the product or is not specifically authorized by Powerhouse Dynamics. Powerhouse Dynamics will not provide reimbursement for any non-approved repair services or for any damage caused by such services, which would invalidate this Warranty.

THE FOREGOING EXPRESS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. UNDER NO CIRCUMSTANCES WILL POWERHOUSE DYNAMICS BE RESPONSIBLE FOR ANY INDIRECT, CONSEQUENTIAL, SPECIAL OR INCIDENTAL DAMAGES, OR PROPERTY LOSS OR INJURY.

© 2010 Powerhouse Dynamics, Inc.

Page 41

TO GO BACK, CLICK HERE

Solrenview

SOLRENVIEW

FEATURES

- Inverter direct & revenue grade monitoring
- Performance charting
- Real-time status notifications
- Detailed system data
- Reliable, safe & secure data storage

OPTIONS

- Sub-array monitoring (SolZone)
- Weather station
- Kiosk View (Flash View)
- Automated agency reporting
- Sun Spec alliance compatible

WEB-BASED MONITORING

Solectria Renewables' SolrenView web-based monitoring solution is available for use with any residential, commercial or SMARTGRID Inverters, allowing for real-time, seamless recording and reporting of PV system production. The SolrenView gateway hardware provides data via Ethernet (standard) or cellular modem. The SolrenView hardware comes standard and fully-integrated within all commercial and SMARTGRID inverters and is available for residential use with LCD or LITE gateway systems. The complete SolrenView series features inverter direct monitoring, revenue grade monitoring, agency reporting, SolZone sub-array monitoring, Kiosk View (flash view) system and a weather station.

Built for the real world

SolrenView[™] Inverter Direct

STANDARD DATA MONITORING PACKAGE

SolrenView[™] Inverter Direct monitoring allows customers to see detailed inverter data (DC and AC) using a web browser. This standard package allows customers to view daily, weekly and monthly graphs up to 5 years in the past viewing single events or long-term performance trends. The package includes e-mail and cell phone alerts with detailed descriptions of system issues and a recommended course of action. This service is only available for the industry-leading Solectria PVI and SGI series inverters.

SolrenView™ Revenue Grade Energy Production

OPTIONAL MONITORING PACKAGE

SolrenView[™] Revenue Grade Energy Production monitoring package option keeps an accurate count of every kWh produced by a customer's PV system. The energy produced is automatically reported to a solar program agency for convenience, if the agency reporting option is chosen. This package option also includes e-mail alarms with detailed descriptions of system problems and a recommended course of action. This package option is available for systems 1kW – multi-MW utilizing any inverter make and model.

SolrenView[™] Weather Station

OPTION

The real-time weather package allows customers to view accurate readings for crucial environmental information. The weather station comes standard with a solar irradiance sensor as well as temperature sensors for ambient and module measurements. Wind speed and wind direction sensors are options that may be added to the weather station. This is a great educational tool and a must for PPAs.

Viewable Measurements:

- Solar Irradiance
- Ambient Temperature
- Module Temperature
- Wind Speed (optional)
- Wind Direction (optional)

SolrenView[™] SolZone[™] Sub-Array Monitoring

OPTION

While SolrenView[®] provides to the customer the ability to view the total system performance, SolZone[®] provides an extra level of granularity to see multiple sub-array DC currents.

SolZone" has the ability to compare individual PV zones against each other based on the number of sub-array fuses or 'zones' built into a Solectria factory-installed DC sub-combiner. Each sub-array zone may be monitored and compared against each other. The data collected, monitored and displayed via web browser is viewable in various modes. SolZone" is also compatible with many third party monitoring systems.

SolrenView[™] Agency Reporting

The SolrenView[™] Agency Reporting is an ideal option for customers that require Revenue Grade reporting to be sent to an agency such as PTS, SCE, CCSE and PGE. A report is generated from SolrenView[™] Revenue Grade outputs and sent directly to the agency of choice.

SolrenView[™] Kiosk View (Flash View) OPTION

The Kiosk View (Flash View) option provides customers with a clean, simple view and quick, easy access to a customer's PV system performance. This is a great tool for advertising and public viewing. This option includes custom Flash Programming only. The Kiosk View must be ordered in addition to a SolrenView[™] service package. This option requires a dedicated computer and monitor, purchased elsewhere (not available for purchase through Solectria Renewables).

TO GO BACK, CLICK HERE

D-Link

WHAT THIS PRODUCT DOES

Create a wireless network to share high-speed Internet access with computers, game consoler, and media players from greater distances around your horne.

BENEFITS OF A WIRELESS N ROUTER

This Wireless N & Port Roster uses powerful \$52.11e technology with multiple intelligent extenses to maximize the speed and range of your wineless signal to significantly susperform previous-generation Wineless C MIMO devices! The antennas on the Windess N 5-Part Router make use of your home's environment by bouncing multiple wireless signals off wells and codings to work around elastructions and help of minate dead spots.

> YOUR NETWORK SETUP INTERNET

CABLE/DSL MODEM

S DI NOARDS + EEE 802 II n + EEE 802 II g + EEE 802.3 + EEE 802.3a

DEVICE INTERFACE + 8 10/100 LAN Parts + 1 10/100 WAN Parts

SECURITY + Wi-Fi Platected Access (WPA, WPA2)*

ADMANCED BREWALL FEATURES + Nietkatk Addition Translation (NAT) + Stateful Pasket Inspection (SPI) + VPN Pass-Woogh / Multi-mexicons PPTP / L2TP / IPS ez

DEVICE MUNAGEMENT Internet Explorer® v7 of Leters; Machine FileFac® v3.8 of Leters; of other Java-making Baritonia

TECHNICAL SPECIFICATIONS

LED # + Power + WLAN (MitalezzConnection) + LAN (10/100) + Interfeat Status

CERTIFICATIONS + FCCClass B + 10 + W6-5P + Pv6 Bak

DMENSIONS + kane (W2DM): 8.1" x 5.4" x 1.3" (230nm x 150nm x 33nm) + Packaging (W2Dch): 8.4" x 2.6" x 8.1" (25.9nm x 65nm x 35.8nm)

NEIGHT + ban: 0.5 bs (822 gians) + Packaging:20 lbs (482 gians)

HARRANTY + I-Yest Limited

MANANIM SYSTEM REDUREMENTS Geopáineáin 4 Bindean 3 Mintea Maine, Ministein 7 52 1946: Ch-Shinki 4 Bana Balanna Challa 6 GANMINE 8 Natar Maintea 8 Natar Maintea 9 Natar Maintea 9 Gána Státhan 9 Gána Státhan

Schernickersethen klannet Santon Assident 57

Re Spites / Minister Park merces, mercelit + Minister N 200 052 Acheber | (2004-13), 01004-131, or 2004-140)

CONTRACTOR CONTRACTOR CONTRACTOR

PACKAGE CONTENTS PACAGE CONTENTS + Wrates N4 Act Actor + CATS Stream Catto + Description + Construct Catto - Construct - Instructure - Product Decumentation

Maximum window signal rais daried from ECE Bancket ECH synchrotizes. As last data throughy stellars, Nakeurt conditions and anicomental factors, including olane diselectratific, building antanta and constructing, and named animetal, lawer schalder himsplantink. Entiremental factors will advante black window signal face (Nakeur gregs and greed parks, pp. 1996). EVH (greed parks) (Nakeur gregs and greed parks, pp. 1996). EVH (greed parks) - Nanchalder Nateur Schalder Bancher Bancher Bancher - Nanchalder Nateur Nateur Schalder Bancher Bancher - Nanchalder Nateur Nateur Maximum Bancher Bancher - Nanchalder Nateur Nateur Maximum Bancher Bancher - Nanchalder Nateur Schalder Bancher - Nanchalder Nateur Maximum Bancher Hoggereichter zum - Nateur Bancher Bancher Bancher Hoggereichter zum

Alimiennous based and range melter comparison purposes only. Product specifications, size, and shape among both to base without noise, and advalgenduct appearances as poly in them indicated framine.

Randware Wastion AT

DIR-632

CLICK HERE TO GO BACK

HP Pavilion dv7t series

Processors Intel 2nd gen Core
Usage Business
Type THE ultimate entertainment and performance machine.
Battery Life Up to 5.25 hours of battery life (6 cell)+++
Memory card reader Multi-Format Digital Media Card Reader
Accessible memory slots 2
Maximum Memory Expansion 8GB
Ports 4 USB (2 USB 2.0 and 2 SuperSpeed USB 3.0), HDMI, VGA
Additional Ports RJ-45, HDMI
Chassis aluminum chassis in dark umber color (metal)
Hard Drive Protection HP ProtectSmart protects the hard drive & data
Audio Beats(TM) audio + HP Triple Bass Reflex Subwoofer
ENERGY STAR Qualified Yes
DLNA Certified Yes
Adapter 120W AC
Dimensions 16.38" (W) x 10.83" (D) x 1.24" (min H)/1.42" (max H)
Thinness 1.24"
Weight 6.72 lbs
Network Card 10/100/1000 Gigabit Ethernet LAN (RJ-45 connector)
Optical Drive Internal
Blu-ray Drive Optional
Webcam HP TrueVision HD Webcam
Fingerprint Reader Included
CoolSense Included
Security SW Norton Internet Security 60-day subscription
Included SW HP Games, Windows Live
Warranty 2-year hardware limited warranty

CLICK HERE TO GO BACK

Division 28 – Electronic Safety and Security

120V AC Wire-In Smoke Alarm

Slide Load Front Battery Door, Alkaline Battery, 10 Yr Warranty Model i5000

Ionization Sensing Technology

- Battery Backup (batteries included)
- Hush[®] Button
- Alarm Memory Indicator
- New 360" Mounting Plate with Tamper Resistance
- Front Load Battery Door

Description

The Kidde IS000 is an AC/DC powered, ionization smoke alarm that operates on a 120V power source with 9V alkaline battery backup.

This alarm uses ionization sensing technology. Ionization sensing alarms may detect invisible fire particles (associated with flaming fires) sooner than photoelectric alarms. Photoelectric sensing alarms may detect visible particles (associated with smoldering fires) sooner than ionization alarms.

Kidde strongly recommends that both ionization and photoelectric smoke alarms be installed to help insure maximum detection of the various types of fire that can occur within the home.

The front-loading battery door allows user to change the battery without removing the alarm from the mounting bracket making battery replacement easy and convenient. This smoke alarm is available in a 6-piece cut case with tray for easy display as well as a 6-piece bulk pack for contractors and property owners. This unit is a UL Listed product with a 10-year limited warranty.

Install Confidence:

Easy Installation

- · Front battery pull tab allows battery activation
- without removing alarm from mounting bracket. Large mounting base makes mounting easier, protects
- surface paint from dirt and covers imperfections. · Pre-stripped wiring harness with easy off cap does not require stripper tool. Tinned strands increase conductivity and wire nut grip.

Fewer Callbacks

- Large centrally located Test/Hush® alarm control button.
- Dust cover protects sensor from contaminates during construction reducing nuisance alarms.

- User-Friendly Features Easy access front loading battery door.
- · Battery backup provides protection in case of power failure.
- Interconnectable with up to 24 devices (of which 18 can be initiating) including smoke, CO and heat alarms. See user's quide for complete instructions.

120V AC Wire-In Smoke Alarm Slide Load Front Battery Door

Architectural and Engineering Specifications

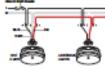
The smoke alarm shall be Kidde Model (5000 or approved equal. It shall be powered by a 120VAC, 60Hz source along with a 9V alkaline battery blackup. The unit shall incorporate an ionization sensor with nominal sensitivity of 0.50 to .924/WT. The temperature operating range shall be between 40°F and 100°F (4°C and 38°C) and the humibility operating range

between 40°-3 bit 100°-14°C and 38°C) and the numberly operating range shall be up to 85% relative humidity. The smoke alarm can be installed on any standard single gang electri-cal bea, up to a 4° octagon junction box. The electrical confined/on (to the alarm) shall be made with a plug-in connector. A meanium of 24 Klobe devices can be interconnected inf a multiple station arrangement. The interconnect system must not exceed the NFFA (NationaTrine Protection Association) limit of 18 initiating devices, of which 12 can be smoke alarms. With 18 initiating devices (Smoke, heat, CD, etc), interconnected, it is still possible to interconnect 6 strobe lights and/or neby modules. The alarm shall provide optional lamer resistance that delots removal of the unit shall provide optional tamper resistance that deters removal of the unit from the wall or ceiling. No additional pieces shall be required to activate this feature.

The atarm shall include an easy access battery compartment that is opened and closed by sliding the battery door. The 9V Sattery carrier will ensure proper battery backup protociond by not allowing the battery door to close if the battery is placed in the unit incorrectly or if a battery is not concerned. present.

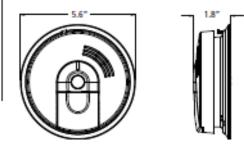
The unit shall include a piezoelectric horn that is rated at 85 decibels at 10 feet. The unit shall include the Smart HushTM feature that silences the unit for approximately 8 minutes if a nuisance condition occurs. The unit shall incorporate red and green LED indicators. The green

LED (when illuminated) indicates the presence of AC power. The red LED (located under the TEST/Hush button) has four modes of operation: Standby Condition: The red LED will flash every 30-40 seconds to indi-


Standby Condition: The red LED will flash every 30-40 seconds to indi-cate that the smoke alarm is operating property. Alarm Condition: When the alarm tensos products of combustion and does into alarm the red LED will fash one flash per second. The flashing LED and pulsating alarm will continue until the air is cleared. When units are interconnected, only the red LED of the alarm that senses the smoke or is being tested (the originating unit) will flash. All other units in the interconnected system will solure alarm alarm but their red LED's will NOT flash. Alarm Membry: This snoke alarm is equipped with an alarm memory, which provides a visual indication when an alarm has been activated. The find LED will illuminate for about 1.5 seconds every 16 seconds to indicate the memory condition. Smart Hash^M Mode: The red LED will illuminate for 1.5 seconds eveny 8 seconds, indicating the smoke alarm is in the Smart Hash^M Mode. The unit shall at a minimum meet the reoutiments of UL217. NEPA72.

The unit shall at a minimum most the requirements of UL217, NEPA72, and (hapter 11), The State of California Fire Marshall, NEPA101 (One and two family dwellings), Federal Housing Authority (FHA), Housing and Urban Development (HLD).

Installation of Smoke Alarm


Model 15000

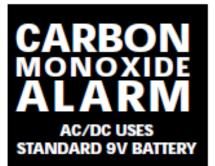
The service alarm should be installed to comply with all local codes having jurichiton in your area, Article XO of the Wathout Electric Code, and NYPA 72. Make cartain all alarms are wired to a single, continuous forwardship power line, which is not provided by a ground likel through the Amort mum of 1000 k, of wire can be card in the interconnect system. Use standard UL black household wire as required by code.

Technical Specifications

Model:	15000
UPC:	0-47871-07582-9
Power Source:	120VAC (IIImA Mie)
Sensor:	Ionization
Audio Alarm:	85dB at 10ft
Temperature Range:	40°F (4.4°C) to 100°F (37.8°C)
Humidity Range:	Up to 85% relative humidity (RH)
Size:	5.6" in diameter x 1.8" depth
Weight:	.5lbs
Interconnects:	Up to 24 Kidde devices
LED:	Green, receiving ac power
	Red, 4 modes of operation
Warranty:	10 year limited

Ordering Information

Dimensions (w x d z h inches) urc 1255 Pack Quantity Weight Skid 0-47871-07582-9 100-47871-07582-6 6.63 x 13.25 x 6.25 21007582 Cut Case (6 units) 3 lbs 1008 15000 Not for sale by individual unit


1016 Corporate Park Drive Mebane NC 27302 1-800-880-6788 www.Kidde.com

Distributed by:

CLICK HERE TO GO BACK

BRK ELECTRONICS®

NEW! CO5120B Series Carbon Monoxide Alarm

- Easier—Less time to install
- Sleek, low profile design

Cat. No. CO5120B

Features

Benefits

Centered "Quick-Conned" wiring harmon.	Provides quick and easy connection to AC power.
Universal Mounting Bracket.	Center mounts to any standard electrical junction box up to 4° octagonal without screw removal. Large opening for wining connects to unit every 60 degrees for easy alignment and quick installation. Does not warp due to drywall imperfections. Same size footprint as other BRK Electronics* smoke alarms.
Easy-opening, pivoting side-load 9V battery compartment.	No need to remove the unit from the ceiling to replace the 9V battery
9V bettery is pro-installed.	Just pull the myler tab from the battery drawer and the battery is connected.
Interconnectable-up to 12 multiple station CO51208 alarms	Unit that detects carbon monoxide identifies itself, and sends alarm signal to other units connected in series.
3rd Generation electronic CO sensing circuit	Low power consumption — .085 amps standby, .087 amps in atarm Reduces nubance atarms
Operates on 120WAC with 9V battery back-up.	Red LED indicates which power supply is active AC or DC
Laiching alarm indicator.	The latching alarm feature indicates which unit(s) in an interconnected series has/have) detected alarm levels of CO.
Single Test/Silence button.	Dual Function:

Tests all functions by electronically simulating the presence of CO

 Silences the alarm while the occupant(s) respond to an alarm. After the initial silence period, if levels of CO present still indicate a potentially dangerous situation, the alarm will sound again.

Cat. No. CO5120B

APPLICATION

BRX Electronics[®] Model CO5120B is a 120V, hard wired carbon monoside alarm with 9V-battery backup. It can be operated as a single station unit or interconnected to other BIX Electronics Carbon Menoside Alarms. A listching 5. The alarm unit must have a button that will test the alarm by simulating closer shows which alarm(s) in an interconnected series detected CO, and alarce arey rubance alarm. test/allence buttors during testing it will elactronically simulate the presence of carbon monetaria. Carbon devices a carbon more stated 85d8 at 10 ft. that provides a carbon more state. Carbon devices a carbon devices and the presence of carbon monoxide, causing the unit to alarm; during an alarm it will temporarily silence the horn while residents take corrective action.

The CO51208 has been fully tested and complies with Underwriters The CO alarm will have a latched ED that will indicate which CO Laboratories, hc. Safety Standard 2034 for single and multiple station carbon monositic alarm, and with model building codes published by ICBO.
 SBCCI, BOCA and CABO. The COS1208 have a repeating temporal horn pattern 4 beeps, pause. A beeps, pause. A beeps, pause. A beeps, pause. The statem with the intrustor of cubicity at that might on the sensing chamber.
 The CO alarm will indicate which CO Laboratories and multiple statem in the intrustor of cubicity at that might on the wes initiated to provent the intrustor of cubicity at that might on the sensing chamber. as, multi femily homes, sleeping rooms of hospitals, holeb, moleb, nitories, and other mixed occupancy dwellings as defined in standard horr NPFA 101. The sensor is a third generation mutal calde type. It is adjusted not to date: CO levels below 30 PPM. This unit will not alern when exposed to a constant level of 30 PPM for 30 days. It will alern at the following levels under 30% to 70% relative humidity (RH):

- 400 PPM CO between 4 and 15 minutes
- 150 PPM CO between 10 and 50 minutes
- 70 PPM CO between 60 and 240 minutes

According to Underwriters Laboratories Inc. UL 2034 section 1.2: "Carbon According to Under when Laborationa Inc. Us 2004 social II. Con-monoside alastimic covered by these requirements are interfeded to respond to the presence of Carbon Monoside from sources such as, but not initiated in, schaud from internal combuscion engines, alsommel operation of fus-fined appliances, and finiplecas. CO sharms are intended to starm at Carbon Monoside levels below those that could cause a loss of ability to react to the dangers of Carbon Monoside exposure." This CO altern moniton the air and is designed to altern before CO levels become life-threatening. This allows you precious time to leave the house and correct the problem. This is only possible if the alarma are located, installed, and maintained as described in the user's manual.

The Consumer Products Safety Commission (CPSC) recommends the use of al least one CO alterm per household, located near the sleeping area. For additional protection, install additional CO alterms on every level of the home, in each separate bedroom, and near each separate sleeping area. It is recommended that Model CO51208 CO alarms be interconnected. Refer to the Model CO51208 User's Manual for more informa proper location, placement, and installation of the CO51208. ution on the

ARCHITECTURAL AND ENGINEERING SPECIFICATIONS

The Carbon Monoside Alarm shall be BRK Electronics Model CO51208 or approved equal and shall provide, at a minimum, the following feature and functions:

- 1. A third generation sensor calibrated to meet UL 2034 October 1, 1998.
- 2. The unit should be 120V hard wired with 9V-battery back up
- In battery-back-up mode, the battery must last for 8 hr. minimum in standby and then 12 hour minimum in alarm.

DISTRIBUTED BY:

CARBON MONOXIDE ALARM **9V BATTERY POWERED**

4. The unit should be self-diagnostic and have a visual and audible alert to indicate a maifunction

- CO, and silknos any nuisance alarm
- 7. The alarm unit will have a red LED to indicate the status of the power supply (AC or DC).
- 8. The CO silem will have a latched LED that will indicate which CO alarm(s) in the series detected alarm levels of CO. Latch is manually reset.

 - 10. The unit shall be capable of operating between 40°F and 100°F (4'-38°C) and relative humidity of 30% to 70%.
 - 11. The CO alarm will be interconnectable with up to 12 units of its own type.

TECHNICAL SPECIFICATIONS

Alarm Circuit	100% Solid State
Operating Voltage	120WC; 9V DC back-up
Operating Ambient Temp. Range	407F(41C) to 1007F(38TC)
Operating Humidity Range	30% to 70% RH
Alarm Horn Rating	85d8 at 10PL
Alarm Rmail	Automatic when CO clears
Single Test/Silence Button	Tests all functions by electronically simulating the presence of CO.
	Rouses the twich feature.
	Siences the alarm while the occupantia) response to an alarm. After the initial silence ported, if levels of CO present still indicate a potentially dangerous situation, the alarm will sound ago
Alarm Status Indicators	
Bellery Stelan Indicator	Red LED flashes approx. once per minule when unit is operating on ballery power on Horn "chirps" once per minule when baller becomes low.
Service Status Indicator	If unit is not operating property. Red UZD Rashes Bree Erses in rapid succession (ever minule); horn chirps simultaneously.
CD Alerti Saka Indicelor	Red LED flooten repidly; horn sounds in repeating pattern (4 beeps, paster, 4 beeps pause) when the unit has detected enough CO to trigger an alarm.
Unit Dimensions	5 %"Dia x 1 %-"H (w/ bracket)
Unit Weight	.7 lbs.
NAED #	85617
Units For Case	12 units

FOR TECHNICAL HELP OR REPRESENTATIVE NEAREST YOU PHONE 1-800-323-9005

MANUFACTURED BY:

578. Electronica" 2007 Liberty Street Road Aurona, IL 62504-8122 ©200 BRK Bonds, Inc. Printed in USA

Published 03/22/2011

CLICK HERE TO GO BACK

PVI 4000 Inverters

STRING INVERTERS

PVI 3000 PVI 4000 PVI 5000 PVI 5300 PVI 6500 PVI 7500

FEATURES

- 96% CEC efficiency
- Wide input operating voltage window
- 208 VAC, 240 VAC or 277 VAC
- Fully-integrated design
- Detachable wiring box.
- Standard 10 year warranty
- RS232/RS485
 communications
- communications
- User interactive LCD display

OPTIONS

- Integrated panel assembly
- · Web-based monitoring

STRING INVERTERS

At 96% CEC efficiency, the Solectria Renewables string inverter series, ranging from 3.0 kW to 7.5 kW, is the most efficient transformer isolated string inverter on the market. The PVI 3000-PVI 7500 series of inverters consist of six power ratings to optimally match your grid-tied PV system, and boasts fully-integrated DC and AC disconnects, an LCD display, and a 3, 4, or 5 fuse string combiner all contained within a detachable wiring box. This feature allows for a clean, simple, and safe installation with easy serviceability. The integrated panel assembly option allows for this inverter series to be pre-wired and mounted on an industrial grade aluminum panel with kWh meter and optional AC visible-blade disconnect or circuit breakers on a two-inverter panel assembly.

Built for the real world

10

MPPT Input Voltage Range		PV13609	PV14000	PVI 5000	PVI 5360	PVI 6500	PVI 7590
Absolute Maximum Input Voltage MPPT Input Voltage Range Maximum Operating Input Current							
MPPT Input Voltage Range				600	VDC		
Maximum Operation Isout Current			200-5	SO VDC		230-5	00 VDC
		16 A	20 A	25 A	25 A	35.A	35 A
AC Output							
Nominal Output Voltage			206 or 2	240 VAC		208, 240	ar 277 WAC
AC Voltage Range (Standard)				-12%	-00%		
	208 WAC	2700W	3400W	4300W	4900W	6500 W	7500 W
Continuous Output Power	240 WAC	2900W	3900W	4900W	5300W	6500 W	7500 W
	277 WC				221111	6500 W	7500 W
	208 WAC	13 A	16.3 A	20.7 A	22.1 A	31-3 A	36.1 A
Continuous Output Current	240 WAC	13 A	16.3 A	20.7 A	22.1 A	27.1 A	31.3 A
	277 WC					23.5 A	27.1 A
Maximum Backfeed Current	277 1116				*	40-010	27.4 M
Nominal Output Frequency				+	e e e e e e e e e e e e e e e e e e e		
Output Prequency Range				59.3-6			
Power Factor							
Total Harmonic Distortion (THD)				Unity.			
				0	~		
Efficiency	200000				A.4. 34		
	208 WAC	96.4%	96.5%	96.4%	96.2%	\$6.0%	96.2%
Peak Efficiency	240 WAC	96.7%	96.7%	96.7%	96.4%	96.3%	96.5%
	277 WAC					\$6.7%	96.7%
	208 VAC	95.5%	95.5%	96.0%	95.5%		.5%
CEC Efficiency	240 WAC	26.0%	96.0%	96.0%	96.0%	94	.0%
						94	.0%
	277 VAC						
TareLoss	277 VAC			0.3	W		
	277 WC				W		
Integrated String Combiner	277 WKC	1	4		4 4	5	5
Integraled String Combiner Resed String Inputs	277 VAC	3		0.5		5	5
Integrated String Combiner Rused String Inputs Temperature		3	4	4	4	5	-13*F to +122*F
Integraled String Combiner Fused String Inputs Temperature Ambient Temperature Range (full po		3	4 -1345	0.5 4 to +131*F{-25*C to -	4		-13"F to +122"F (-25"C to +50"C)
Integraled String Combiner Funed String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range	wed	3	4 -1345	4 to +131"F (-25"C to - (-25"C to +55"C)	4 -55°C)		-13*F to +122*F
Integrated String Constituer Funed String Inputs Temperature Arabient Temperature Range (Juli po Storage Temperature Range Relative Humidity (non-condensing)	wed	3	4 -1345	4 to +131"F (-25"C to - (-25"C to +55"C)	4		-13"F to +122"F (-25"C to +50"C)
Integrated String Condition Fused String Inputs Temperature Ambient Temperature Range (full po Siorage Temperature Range Relative Humidity (non-condensing) Monitoring Options	wed)	3	4 -1345	0.3 4 to +131*F (-25*C to + (-25*C to +55*C) 5-9	4 55°C) 5%		-13"F to +122"F (-25"C to +50"C)
Integrated String Combiner Fused String Inputs Temperature Ambient Temperature Range (full po Storage Temperature Range Relative Humidity (non-condensing) Monitoring Options Web-based Monitoring (Invester Dir	wed)	3	4 -1345	0.3 4 to +131*F{-25*C to + {-25*C to +55*C) 5-9 Solitet	4 -55*C) 5%		-13"F to +122"F (-25"C to +50"C)
Integrated String Combiner Pased String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range Relative Humidily (non-condensing) Monitoring Options Web-based Monitoring (Invester Dis Revenue Grade Monitoring	wed)	3	4 -1345	0.3 4 to +131"F (-35"C to + (-35"C to +55"C) 5-9 Solve Exte	4 55°C) 5% Wilew mai		-13"F to +122"F (-25"C to +50"C)
Integrated String Combiner Funed String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range Relative Humidity (non-condensing) Monitoring Options Web-based Monitoring (Invester Dio Revenue Goade Monitoring Third Party-Compatibility	wed)	3	4 -1345	0.3 4 to +131"F (-35"C to + (-35"C to +55"C) 5-9 Solve Exte	4 -55*C) 5%		-13"F to +122"F (-25"C to +50"C)
Integrated String Combiner Function String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range Relative Humbility (Inon-condensing) Monitoring Options Web-based Monitoring Onvertee Din Revenue Good Monitoring Third Party Compatibility Testing & Certifications	wed)	3	4 -13*F -13*F to +131*F	0.3 4 to +131°F (-35°C to + (-35°C to +55°C) 5-9 Solive Eate Standard via	4 55°C) 5% Wiew resal R5233/R5485	-13*F to +149*	-13"F to +122"F (-25"C to +50"C)
Integrated String Combiner Funed String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range Relative Humidity (non-condensing) Monitoring Options Web-based Monitoring (Invester Dio Revenue Goade Monitoring Third Party-Compatibility	wed)	3	4 -13*F -13*F to +131*F	0.3 4 to +131"F (-35"C to + (-35"C to +55"C) 5-9 Solve Exte	4 55°C) 5% Wiew resal R5233/R5485	-13*F to +149*	-13"F to +122"F (-25"C to +50"C)
Integrated String Combiner Function String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range Relative Humbility (Inon-condensing) Monitoring Options Web-based Monitoring Onvertee Din Revenue Good Monitoring Third Party Compatibility Testing & Certifications	wed)	3	4 -13*F -13*F to +131*F	0.3 4 to +131°F (-35°C to + (-35°C to +55°C) 5-9 Solive Eate Standard via	4 55°C) 5% Wiew mail c5A C22.2#107.5,1	-13*F to +149*	-13"F to +122"F (-25"C to +50"C)
Integrated String Combiner Funed String Inputs Temperature Ambient Temperature Range (full po Storage Temperature Range Relative Humidity (non-condensing) Monitoring Options Web-based Monitoring (Invester Dio Revenue Goode Monitoring Third Party Compatibility Tenting Party Compatibility Tenting Party Compatibility	wed)	3	4 -13*F -13*F to +131*F	0.3 4 to +131°F(-35°C to + (-25°C to +55°C) 5-9 Salve Ents Standard via E 1547, IEEE 1547.1,	4 55°C) 5% Wiew mail c5A C22.2#107.5,1	-13*F to +149*	-13"F to +122"F (-25"C to +50"C)
Integraled String Combiner Funed String Inputs Temperature Ambient Temperature Range (full po Storage Temperature Range Relative Humidity (non-condensing) Monitoring Options Web-based Monitoring (Invester Dio Revenue Goode Monitoring Third Party Compatibility Teating & Certifications Safety Listings & Certifications Testing Agency	wed)	3	4 -13*F -13*F to +131*F	0.3 4 to +131"F (-25"C to + (-25"C to +55"C) 5-9 Sobre Extended Visi 5 to clard Visi E 1542, IEEE 1547.3, E	4 55°C) 5% Wiew mail c5A C22.2#107.5,1	-13*F to +149*	-13"F to +1.22"F (-25"C to +50"C)
Integrated String Combiner Funed String Inputs Temperature Ambient Temperature Range (full po Storage Temperature Range Relative Humidity (non-condensing) Monitoring Options Web-based Monitoring (Invester Dio Revenue Grade Monitoring Third Party Compatibility Testing & Centifications Safety Listings & Centifications Testing Agency Wareauty	wed)	3	4 -13*F -13*F to +131*F	0.3 4 to +131"F (-25"C to + (-25"C to +55"C) 5-9 Sobre Extended Visi 5 to clard Visi E 1542, IEEE 1547.3, E	4 555°C) 576 676 676 675 675 675 675 675 675 675	-13*F to +149*	-13"F to +1.22"F (-25"C to +50"C)
Integrated String Combiner Fused String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range Relative Humidity (Iron-condensing) Monitoring Options Web-based Monitoring (Invester Dio Revenue Gosé Monitoring (Invester Dio Revenue Gosé Monitoring Third Party Compatibility Testing & Certifications Safety Listings & Certifications Testing Agency Wannanty Standard Eaclonare	wed)	3	4 -13*F -13*F to +131*F	0.3 4 to +131*F(-35*C to + (-35*C to +55*C) 5-9 Solve Este Standard via E 1547, IEEE 1547.1, E 10 y	4 555°C) 576 676 676 675 675 675 675 675 675 675	-13*F to +149*	-13"F to +1.22"F (-25"C to +50"C)
Integrated String Combiner Fused String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range Relative Humidity (Iron-condensing) Monitoring Options Web-based Monitoring (Invester Dio Revenue Grade Monitoring Third Party Compatibility Testing & Certifications Safety Listings & Certifications Testing Agency Wannahy Standard Enclosure AC/UC Disconnects	wed)	28.0 in x 17	4 -13*F -13*F to +131*F	0.3 4 to +131°F(-25°C to + (-25°C to +55°C) 5-9 Solive Ente Standard via E 1547, IEEE 1547.4, E 10 y Standard, fully-ini	4 55%C) 5% Wilew real (5232/85405 CSA C22.2#107.1, 1 T, War reagnated (Internal) 9 In a (6, 3) In	-13"F to +649" FCC part 15 8 20.4 in x 1	-13"F to +1.22"F (-25"C to +50"C)
Integrated String Combiner Fused String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range Relative Humidity (non-condensing) Monitoring Options Web-based Monitoring (Invester Dio Revenue Grade Monitoring (Invester Dio Revenue Grade Monitoring Third Party Compatibility Testing A Certifications Safety Listings & Certifications Testing Agency Waranaty Standard	wed)	28.0 in x 17	4 -33*F to +431*F UL 1741/NED	0.3 4 to +131"F (-35"C to + (-35"C to +55"C) 5-9 Solve Eats Standard via E 1547, IEEE 1547.3, E Standard, fully-ini 28.0 in x 17 28.0 in x 17	4 55%) 5% Wiew enal 15533/R5405 C5A C32.39107.1,1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-13"F to +549" CC part 15 8 28.8 in x 15 (732 mm x 43	-33% to +122% (-3% to +5%) (-2% to +5%) (-2% to +5%) (-2% to +5%)
Integrated String Combiner Fused String Inputs Temperature Ambient Temperature Range (Juli po Storage Temperature Range Relative Humidity (non-condensing) Monitoring Options Web-based Monitoring (Invester Dio Revenue Grade Monitoring Third Party Compatibility Testing & Certifications Safety Listings & Certifications Testing Agency Wannaty Standard Enclosure AC/OC Disconnects Dimensions (H x W x D)	wed)	28.8 in x 17 (732 mm x 456	4 -33** to +432** UL 1741/100 UL 1741/100	0.3 4 to +131*F(-35*C to + (-35*C to +55*C) 5-9 Solve Este Standard via 1 E 1547, IEEE 1547.1, E 10 Standard, fully-in 28.8 in x 454 58.5 lbs (26.6 kg)	4 55%) 5% Wiew enal 15533/R5405 C5A C32.39107.1,1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-13"F to +549" CC part 15 8 28.8 in x 15 (732 mm x 43	-33% to +122% (-35% to +55%) (-25% to +65%) (-25% to +65%) 7,3 in ±8,2 in 1 mm ± 2011 mm)

CLICK HERE TO GO BACK