

Project Manual

U.S. Department of Energy Solar Decathlon 2013

SCI-Arc/Caltech

DALE

2013-08-22

Primary Student Contact: Matt Pool - matt_pool@sciarc.edu

Contents

COVER PAGE	1
SUMMARY OF CHANGES	3
2-14-2013 REVISION	
4-5-2013 Revision	
5-8-2013 Revision	
8-22-2013 REVISION	
RULES COMPLIANCE CHECKLIST	5
STAMPED STRUCTURAL CALCULATIONS	8
DETAILED WATER BUDGET	9
EXECUTIVE SUMMARY	
SUMMARY OF UNLISTED ELECTRICAL COMPONENTS	
SUMMARY OF RECONFIGURABLE FEATURES	
INTERCONNECTION APPLICATION FORM	
ENERGY ANALYSIS RESULTS AND DISCUSSION	
QUANTITY TAKEOFF OF COMPETITION PROTOTYPE HOUSE	
CONSTRUCTION SPECIFICATIONS	
DIVISION 03 – CONCRETE	
DIVISION 05 – METALS	
DIVISION 06 – WOOD, PLASTICS AND COMPOSITES	
DIVISION 07 – THERMAL AND MOISTURE PROTECTION	
DIVISION 08 – OPENINGS	
DIVISION 09 - FINISHES	
DIVISION 10 – SPECIALTIES DIVISION 11 – EQUIPMENT	
DIVISION 11 – EQUIPMENT DIVISION 12 – FURNISHINGS	
DIVISION 12 – FORMISHINGS DIVISION 21 – FIRE PROTECTION	
DIVISION 22 – PLUMBING	
DIVISION 23 – HVAC	
DIVISION 25 – INTEGRATED	
DIVISION 26 – ELECTRICAL	
DIVISION 27 – COMMUNICATIONS	
DIVISION 28 ELECTRONIC SAFETY AND SECURITY	
APPENDIX A: STAMPED STRUCTURAL DRAWINGS	
APPENDIX B: QUANTITY TAKEOFF	

Summary of Changes

Significant changes to the project manual that have occurred between submissions have been outlined below. The Construction Drawings should also be reviewed for relevant revisions.

2-14-2013 Revision

The Project Manual has been updated from the previous issue. Revisions include:

- We have removed one of the three modules making the total number of housing modules two. This reduced our total square footage to 622 sq.ft. as well as reduced the amount of MEP connections between modules to simplify the system and reduce costs.
- Our landscape and foundation designs have been modified. Our deck and landscape now exist strictly between the rails in order to reduce materials and costs as well as to focus jury and visitor attention on that interstitial space. Our foundation is no longer a series of individual piers but rather a continuous grade-beam footing that has been designed with both rapid assembly and timely removal in mind.
- Our canopy and PV integration have been modified and now appear geometrically more rectangular. Each canopy is installed on a series of drawer sliders allowing the canopies to telescope ten feet in both directions. So to summarize, there are two housing modules that move in the East/West direction on rails, and each module has its own canopy that telescopes in the East/West direction on large scale telescoping drawer sliders. As a result of these changes we have revised our safety system and information, as well as our tour and jury schedule in order for movement to occur around the competition schedule. This was done to gain energy and performance benefits.
- Our module delivery and operations strategy has been adjusted to meet our design changes. We are now using a more standard drop-deck transport with crane and spreader bar configuration. We plan to spend the first 3 full days of assembly building our foundation and landscape and then crane the two modules onto the rails around day 4.
- Our MEP systems have changed to respond to the design changes. The amount of plumbing and electrical cable reels was reduced due to the removal of a module from the design. The majority of the MEP system, with the exception of some of the sprinkler system and some electrical, has been focused to the East module, which is the mechanical and plumbing core. The HVAC system is only installed in this module with vents located at what is the center of the house when it is fully closed. We have sourced the appropriate electrical cable and hose types based on the unique requirements of our mobile system and have designed a typical maintenance schedule to be included in our larger narrative.
- Solar Thermal has been added to the South elevation of the East/core module, and is tied directly into our plumbing system. In order to maintain a level of symmetry in terms of design, we have designed in similar looking features on the South elevation of the West module (a hammock) and the North elevations of both modules (a deck to our mechanical room and a removable Thule rack for bike and surfboard storage.

4-5-2013 Revision

The Project Manual has been updated from the previous issue. Revisions include:

- Added hose reel specs.
- Added outdoor cable information.
- Added Plumbing Sheets.
- Added Instructions/Manuals for Macerator.
- Added Instructions/Manuals for D380 Inverter.
- Added hose reel specs as well as a water maintenance schedule to sheets E-603 and P-602.

5-8-2013 Revision

The Project Manual has been updated from the previous issue. Revisions include:

- Updated E601, E602 to correct indoor grounding wire size error and subpanel breaker rating to reflect NEC 705.12.
- Updated breaker information in Project Manual to include the 75 A breakers for the subpanel, rather than 100 A.

8-22-2013 Revision

The Project Manual has been updated from the previous issue. Revisions include:

- Added tour reconfiguration schedule to Summary of Reconfigurable Features
- Added Engineering Analysis Results and Discussion
- Added info on safety equipment
- Added info on motors
- Added info on motor controllers
- Updated PV Equipment using Hanwha and Tigo equipment
- Updated Mechanical Equipment using Mitsubishi equipment
- Replaced cable and hose reels with cable carriers
- Updated smart devices
- Added lights
- Updated bathroom fixtures
- Updated pipes now using CPVC pipes from Lubrizol
- Updated flexible hoses
- Removed West panelboard
- Updated electrical plans reflecting changes
- Updated main panelboard
- Updated insulation
- Added structural platforms to house on north and south

Rules Compliance Checklist

	RULE		
RULE	DESCRIPTION	LOCATION DESCRIPTION	LOCATION
		Drawing(s) showing the assembly and	
	Construction	disassembly sequences and the movement of	
Rule 4-2	Equipment	heavy machinery on the competition site	0-101
	Construction		
Rule 4-2	Equipment	Specifications for heavy machinery	0-101
		Drawing(s) showing the locations and depths	
	Ground	of all ground penetrations on the competition	S-401,
Rule 4-3	Penetration	site	XC-201
		Drawing(s) showing the location, contact area,	
	Impact within the	and bearing pressure of every component	
Rule 4-4	Solar Envelope	resting directly within the solar envelope	G-101
		Specifications for generators (including sound	
Rule 4-5	Generators	rating)	0-101
		Drawing(s) showing the locations of all	
		equipment, containers, and pipes that will	
Rule 4-6	Spill Containment	contain liquids at any point during the event	H-101
		Specifications for all equipment, containers,	
		and pipes that will contain fluids at any point	
Rule 4-6	Spill Containment	during the event	H-101
		Calculations showing that the structural	STAMPED
		design remains compliant even if 18 in. (45.7	CALCS
Rule 4-7	Lot Conditions	cm) of vertical elevation change exists	(ATTACHED)
		Drawing(s) showing shimming methods and	
		materials to be used if 18 in. (45.7 cm) of	
Rule 4-7	Lot Conditions	vertical elevation change exists on the lot	XC-201
		Drawing(s) showing the location of all house	
	Solar Envelope	and site components relative to the solar	
Rule 5-2	Dimensions	envelope	G-101
		List of solar envelope exemption requests	
	Solar Envelope	accompanied by justifications and drawing	N7 / A
Rule 5-2	Dimensions	references	N/A
		List of, or marking on, all drawing and project	
		manual sheets that will be stamped by the	
		qualified, licensed design professional in the	
		stamped structural submission; the stamped	CTAMDED
	Structural Design	submission shall consist entirely of sheets that	STAMPED
Rule 6-1	Structural Design	also appear in the drawings and project	CALCS
Kule 6-1	Approval	manual	(ATTACHED)

Finished Square FordageFinished Square rules officials to measure the finished square footage electronicallyG-101, A-100Rule 6-2FootageDrawing(s) showing all movable components that may increase the finished square footageA-100Rule 6-3FootagefootageG-101Rule 6-3RoutesDrawing(s) showing the accessible public tour vegetation and, if applicable, the movement of vegetation and, if applicable, the movement of vegetation designed as part of an integrated vegetation designed as part of an integratedCC-101Rule 7-1Placementmobile systemKC-101Rule 7-2Restrictionsof greywater irrigation systemsN/ARule 7-3Restrictionsof greywater irrigation systemsF-102Rule 8-1LimitationsSpecifications for photovoltaic components batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemM/AM/ARule 8-5Specifications for all primary and secondary batteries and stand-alone, PV-poweredM/ARule 8-4Desiccant SystemM/AM/ARule 8-5Village GridCompleted interconnection application for housing, service equipment, and grounding notaving, showing the locations of the phosing, service equipment, and grounding notaving, showing the locations of the phosing, service equipment, and grounding notaving, showing the locations of the phosing, service equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5 </th <th></th> <th></th> <th>Drawing(s) showing all information needed by</th> <th></th>			Drawing(s) showing all information needed by	
Rule 6-2Footagesquare footage electronicallyG-101, A-100Finished SquareDrawing(s) showing all movable components that may increase the finished square footageA-100Rule 6-2Footageif operated during context weekA-100Rule 6-3RoutesDrawing(s) showing the accessible public tour routeG-101Rule 6-3RoutesDrawing(s) showing the location of all vegetation and, if applicable, the movement of vegetation designed as part of an integratedC-101Rule 7-1Placementmobile systemXC-101Rule 7-2Restrictionsof greywater irrigation systemsN/APV TechnologySpecifications for photovoltaic componentsF-102Rule 8-1LimitationsSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemsSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-4Desiccant SystemsSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-4Desiccant SystemsSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-5Village GridCompleted interconnection application of the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansF-603Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s),				
Rule 6.2Finished Square FootageDrawing(s) showing all movable components that may increase the finished square footage if operated during contest weekA-100Rule 6.3RoutesrouteG-101Rule 6.43RoutesDrawing(s) showing the accessible public our vegetation and, if applicable, the movement of vegetation and, if applicable, the movement of vegetation designed as part of an integratedG-101Rule 7.1Placementmobile systemXC-101Rule 7.1Placementmobile systemXC-101Rule 7.1Placementof greywater irrigation systemsN/APV TechnologySpecifications for photovoltaic componentsF-102Rule 8.1LimitationsSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8.3BatteriesdevicesN/ARule 8.4Desiccant SystemsSpecifications for deligent of the devicesN/ARule 8.4Desiccant SystemsCompleted interconnection application for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansN/ARule 8.5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,F-102Rule 8.5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,F-102Rule 8.5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,F-102Rule 8.5Village GridSpecifications for the photovoltaics, inverter(s), terminal box,		-		
Rule 6-2Finished Squarethat may increase the finished square footageA-100Rule 6-3Entrance and ExitDrawing(s) showing the accessible public tour routeG-101Rule 6-3RoutesDrawing(s) showing the location of all vegetation and, if applicable, the movement of vegetation designed as part of an integratedKC-101Rule 7-1Placementmobile systemXC-101Rule 7-2Restrictionsof greywater irrigation systemsN/ARule 7-2RestrictionsSpecifications for photovoltaic componentsE-102Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesComponentsN/ARule 8-4Desiccant SystemComponentsN/ARule 8-5Village GridComponents of the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding inverter(s), terminal box, meter housing, service equipment, and groundingE-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5 <tdvillage grid<="" td="">One-line neterrice freeder</tdvillage>	Rule 6-2	Footage		G-101, A-100
Rule 6-2Footageif operated during contest weekA-100Rule 6-3Entrance and Exit routeDrawing(s) showing the accessible public tour routeG-101Rule 6-3RoutesDrawing(s) showing the location of all vegetation and, if applicable, the movement of vegetation and, if applicable, the movement of vegetation designed as part of an integratedG-101Rule 7-1Placementmobile systemXC-101Rule 7-2Restrictionsof greywater irrigation systemsN/ARule 7-2RestrictionsSpecifications for photovoltaic componentsE-102Rule 8-1LimitationsSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemcomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingARule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, inverter(s),				
Entrance and Exit Rule 6-3Drawing(s) showing the accessible public tour routeG-101Rule 6-3RoutesDrawing(s) showing the location of all vegetation designed as part of an integrated mobile systemG-101Rule 7-1Placementmobile systemXC-101Watering Rule 7-2Praving(s) showing the layout and operation of greywater irrigation systemsN/APV TechnologySpecifications for photovoltaic componentsE-102Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemsN/AN/ARule 8-5Village GridCompleted interconnection application for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansN/ARule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridCalculation of service/feeder net computed inverter(s), terminal box, meter housing, service feedipment, and grounding meansE-603Rule 8-5Village GridCalculation of service/feeder net computed iservice feeder net computedE-603Rule 8-5Village GridCalculation of service/feeder net computed iservice feeder net computed iservice feeder net computedE-603Rule 8-5Village Grid <td< td=""><td></td><td>Finished Square</td><td>that may increase the finished square footage</td><td></td></td<>		Finished Square	that may increase the finished square footage	
Rule 6-3RoutesrouteG-101Rule 6-3Routesprawing(s) showing the location of all vegetation and, if applicable, the movement of vegetation designed as part of an integratedXC-101Rule 7-1Placementmobile systemXC-101WateringDrawing(s) showing the layout and operation of greywater irrigation systemsN/ARule 7-2Restrictionsof greywater irrigation systemsN/APV TechnologyFectorologyE-102Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant Systemsdesiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-5Village GridCompleted interconnection application for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingA/ARule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridOne-line itervice/feeder net computed I and prounding meansE-603Rule 8-5Village GridSite plan showing the house, decks, ramps, Step lan showing the house, decks, ramps, Step lan showing the house, decks, ramps,	Rule 6-2	Footage	if operated during contest week	A-100
Image: second		Entrance and Exit	Drawing(s) showing the accessible public tour	
Null Picturevegetation and, if applicable, the movement of vegetation designed as part of an integratedXC-101Rule 7-1Placementmobile systemXC-101Rule 7-2Restrictionsof greywater irrigation systemsN/ARule 7-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-3BatteriesDrawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemSpecifications for desiccant systemN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding inverter(s), terminal box, meter housing, service equipment, and grounding, inverter(s), terminal box, meter housing, inverter(s), terminal box, meter housing, inverter(s), terminal box,	Rule 6-3	Routes	route	G-101
Null Pictorvegetation designed as part of an integrated mobile systemXC-101Rule 7-2PlacementDrawing(s) showing the layout and operation orgewater irrigation systemsN/ARule 7-2Restrictionsorgewater irrigation systemsF-102Rule 8-1LimitationsSpecifications for photovoltaic componentsF-102Rule 8-3BatteriesDrawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemM/ARule 8-5Desiccant SystemSpecifications for desiccant systemN/ARule 8-6Desiccant SystemM/ARule 8-7Village GridCompleted interconnection application form(ATTACHED)Rule 8-5Village GridInawing(s) showing the locations of the photovolatics, inverter(s), terminal box, meter housing, service equipment, and grounding inverter(s), terminal box, meter housing,F-102Rule 8-5Village GridGacultation of service/feeder net computed inverter(s), terminal box, meter housing,F-603Rule 8-5Village GridGacultation of service/feeder net computed inverter(s), terminal box, meter housing,F-603Rule 8-5Village GridGacultation of service/feeder net computed inverter(s), terminal box, meter housing,F-603Rule 8-5Village GridGacultation of service			Drawing(s) showing the location of all	
Rule 7-1Placementmobile systemXC-101Rule 7-2RestrictionsDrawing(s) showing the layout and operation of greywater irrigation systemsN/ARule 7-2Restrictionsof greywater irrigation systemsN/APV TechnologySpecifications for photovolatic componentsE-102Rule 8-1LimitationsSpecifications for photovolatic componentsE-102Rule 8-3BatteriesDrawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridSite plan showing the house, decks, ramps, Rule 8-5Site plan showing the house, decks, ramps, Site plan showing the meter housing, and E-102			vegetation and, if applicable, the movement of	
Watering Rule 7-2Drawing(s) showing the layout and operation of greywater irrigation systemsN/APV Technology Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-1LimitationsDrawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemsDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridSite plan showing the house, decks, ramps, Rule 8-5Site plan showing the house, decks, ramps, G-101			vegetation designed as part of an integrated	
Rule 7-2Restrictionsof greywater irrigation systemsN/APV TechnologySpecifications for photovoltaic componentsE-102Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-3BatteriesDrawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemsDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridGalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, Ste plan showing the house, decks, ramps, Ste plan showing the house, decks, ramps, Ste plan showing the meter housing, mainF-101	Rule 7-1	Placement	mobile system	XC-101
Rule 7-2Restrictionsof greywater irrigation systemsN/APV TechnologySpecifications for photovoltaic componentsE-102Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-3BatteriesDrawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemsDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridGalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, Ste plan showing the house, decks, ramps, Ste plan showing the house, decks, ramps, Ste plan showing the meter housing, mainF-101		Watering	Drawing(s) showing the layout and operation	
PV Technology LimitationsSpecifications for photovoltaic componentsE-102Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-3BatteriesDrawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridOne-line service/feeder net computedE-603Rule 8-5Village GridSite plan showing the house, decks, ramps, Gut paths, and terminal boxG-101	Rule 7-2	Restrictions	of greywater irrigation systems	N/A
Rule 8-1LimitationsSpecifications for photovoltaic componentsE-102Rule 8-3BatteriesDrawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant Systemdesiccant systemN/ARule 8-4Desiccant Systemsdesiccant systemN/ARule 8-4Desiccant SystemsomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingATTACHED)Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridGacluation of service/feder net computedE-603Rule 8-5Village GridGaluation of ser		PV Technology		,
IndexDrawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-poweredRule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant Systemsdesiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-601Rule 8-5Village GridGalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxE-102	Rule 8-1		Specifications for photovoltaic components	E-102
Rule 8-3Batteriesquantity of all primary and secondary batteries and stand-alone, PV-powered devicesN/ARule 8-3BatteriesSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant Systemsdesiccant systemN/ARule 8-4Desiccant Systemsdesiccant systemN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingKatteriesRule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-102Rule 8-5Village GridSpecification for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxE-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxE-603				
Rule 8-3Batteriesbatteries and stand-alone, PV-powered devicesN/ARule 8-3BatteriesSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridGalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, fuur paths, and terminal boxE-603				
Rule 8-3BatteriesdevicesN/ARule 8-3BatteriesSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridGalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxE-102				
Image: seriesSpecifications for all primary and secondary batteries and stand-alone, PV-poweredN/ARule 8-3BatteriesdevicesN/ARule 8-4Desiccant Systemsdesiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form(ATTACHED)Rule 8-5Village GridDrawing(s) showing the locations of the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridGervice equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridGalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, Gui paths, and terminal boxE-101	Rule 8-3	Batteries		N/A
Aule 8-3Batteriesbatteries and stand-alone, PV-poweredRule 8-3BatteriesdevicesN/ARule 8-4Desiccant Systemsdesiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxE-101	11010 0 0	240001100		
Rule 8-3BatteriesdevicesN/ARule 8-4Desiccant SystemsDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingATTACHED)Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101				
Rule 8-4Desiccant SystemsDrawing(s) describing the operation of the desiccant systemN/ARule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding(ATTACHED)Rule 8-5Village GridmeansE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101	Rule 8-3	Batteries	_	N/A
Rule 8-4Desiccant Systemsdesiccant systemN/ARule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form(ATTACHED)Rule 8-5Village GridDrawing(s) showing the locations of the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridmeansE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village Gridservice equipment, and grounding meansE-601Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101Rule 8-5Village GridSite plan showing the meter housing, and tour paths, and terminal boxG-101		Butterres		
Rule 8-4Desiccant SystemsSpecifications for desiccant systemN/ARule 8-5Village GridCompleted interconnection application form(ATTACHED)Drawing(s) showing the locations of the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridmeansE-102Rule 8-5Village Gridservice equipment, and grounding, inverter(s), terminal box, meter housing, service equipment, and grounding meansE-603Rule 8-5Village Gridone-line electrical diagramE-603Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101	Rule 8-4	Desiccant Systems		N/A
Rule 8-4Desiccant SystemscomponentsN/ARule 8-5Village GridCompleted interconnection application form(ATTACHED)Prawing(s) showing the locations of the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding-Rule 8-5Village GridmeansE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridService equipment, and grounding meansE-601Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridIoad per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101Rule 8-5Village GridElevation(s) showing the meter housing, tour paths, and terminal boxG-101	Rule o T	Desiceant by sterns		
Rule 8-5Village GridCompleted interconnection application form Drawing(s) showing the locations of the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding(ATTACHED)Rule 8-5Village GridmeansE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansE-603Rule 8-5Village GridService equipment, and grounding meansE-601Rule 8-5Village GridOne-line electrical diagramE-601Rule 8-5Village GridSite plan showing the house, decks, ramps, Site plan showing the house, decks, ramps,E-603Rule 8-5Village GridSite plan showing the meter housing, mainG-101	Rule 8-4	Desiccant Systems	-	N/A
Rule 8-5Village GridDrawing(s) showing the locations of the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and groundingE-102Rule 8-5Village GridmeansE-102Rule 8-5Village Gridservice equipment, and grounding meansE-603Rule 8-5Village Gridone-line electrical diagramE-601Rule 8-5Village GridOne-line electrical diagramE-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101		-		•
Rule 8-5Village Gridphotovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding meansE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing, inverter(s), terminal box, meter housing,E-603Rule 8-5Village GridService equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-601Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101	Rule 0-5	vinage unu		(ATTACILD)
Rule 8-5Village Gridhousing, service equipment, and grounding meansE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village Gridservice equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-601Rule 8-5Village GridIoad per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps,E-603Rule 8-5Village GridElevation(s) showing the meter housing, mainG-101				
Rule 8-5Village GridmeansE-102Rule 8-5Village GridSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,E-603Rule 8-5Village Gridservice equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-601Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101Rule 8-5Village GridElevation(s) showing the meter housing, mainG-101				
NoteSpecifications for the photovoltaics, inverter(s), terminal box, meter housing,Rule 8-5Village Gridservice equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-601Rule 8-5Village GridIoad per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101GentomElevation(s) showing the meter housing, mainG-101		Villago Crid		E 102
Aule 8-5Village Gridinverter(s), terminal box, meter housing, service equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-601Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101Rule 8-5Village GridElevation(s) showing the meter housing, mainG-101	Kule o-5	village Griu		E-102
Rule 8-5Village Gridservice equipment, and grounding meansE-603Rule 8-5Village GridOne-line electrical diagramE-601Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101GeridElevation(s) showing the meter housing, mainG-101			•	
Rule 8-5Village GridOne-line electrical diagramE-601Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101Rule 8-5Village GridElevation(s) showing the meter housing, mainG-101				E (0)
Rule 8-5Village GridCalculation of service/feeder net computed load per NEC 220E-603Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101GeridElevation(s) showing the meter housing, mainG-101		Ū		
Rule 8-5Village Gridload per NEC 220E-603Rule 8-5Site plan showing the house, decks, ramps, tour paths, and terminal boxG-101Elevation(s) showing the meter housing, mainG-101	Rule 8-5	Village Grid		E-601
Rule 8-5Village GridSite plan showing the house, decks, ramps, tour paths, and terminal boxG-101Elevation(s) showing the meter housing, mainG-101			· -	F (00
Rule 8-5Village Gridtour paths, and terminal boxG-101Elevation(s) showing the meter housing, main	Rule 8-5	Village Grid	-	E-603
Elevation(s) showing the meter housing, main				
	Rule 8-5	Village Grid	-	G-101
Rule 8-5Village Gridutility disconnect, and other serviceA-403			.,	
	Rule 8-5	Village Grid	utility disconnect, and other service	A-403

		equipment	
Rule 9-1	Container Locations	Drawing(s) showing the location of all liquid containers relative to the finished square footage	A-100
Rule 9-1	Container Locations	Drawing(s) demonstrating that the primary supply water tank(s) is fully shaded from direct solar radiation between 9 a.m. and 5 p.m. PDT or between 8 a.m. and 4 p.m. solar time on October 1	A-100
Rule 9-2	Team-Provided Liquids	Quantity, specifications , and delivery date(s) of all team-provided liquids for irrigation, thermal mass, hydronic system pressure testing, and thermodynamic system operation	N/A
Rule 9-3	Greywater Reuse	Drawing(s) showing the layout and operation of greywater reuse systems	N/A
Rule 9-4	Rainwater Collection	Drawing(s) showing the layout and operation of rainwater collection systems	N/A
Rule 9-6	Thermal Mass	Drawing(s) showing the locations of liquid- based thermal mass systems	N/A
Rule 9-6	Thermal Mass	Specifications for components of liquid-based thermal mass systems	N/A
Rule 9-7	Greywater Heat Recovery	Drawing(s) showing the layout and operation of greywater heat recovery systems	N/A
Rule 9-8	Water Delivery	Drawing(s) showing the complete sequence of water delivery and distribution events	0-102
Rule 9-8	Water Delivery	Specifications for the containers to which water will be delivered	0-102, P-104
Rule 9-9	Water Removal	Drawing(s) showing the complete sequence of water consolidation and removal events	0-102
Rule 9-9	Water Removal	Specifications for the containers from which water will be removed	0-102, P-104
Rule 11-4	Public Exhibit	Interior and exterior plans showing entire accessible tour route	G-101

Stamped Structural Calculations

Please See Appendix A for Stamped Structural Calculations.

Detailed Water Budget

	WATER USE	CALCUL	ATIONS	
FUNCTION	(GALLONS)	GAL	EVENTS	NOTES
Hot Water Draws	240	15	16	
Water Vaporization	6	1	6	
Dishwasher	24	6	4	
Clothes Washer	105	15	7	
Vegetation	20	20	1	
Fire Protection	50	50	1	
Thermal Storage				
Tanks	0	0	0	
Testing	0			
Initial Systems Fill	10	10	1	
Solar Thermal				
Collectors	25			
Aesthetic Purpose	185			185 gal. poured Directly Into Outdoor Water Feature
Radiant Flooring	0			
Safety Factor	320			
WATER REQUIRED	985	gallons		

Executive Summary

DALE, the Dynamic Augmented Living Environment, welcomes the Solar Decathlon 2103 to sunny southern California. Inspired by the region's wonderful climate, dramatic geography, and adventurous lifestyle, SCI-Arc/Caltech's net zero, rail-mounted, active dwelling system carries the architectural tradition of the adobe, bungalow, and Case Study Houses into the twenty-first century. Demonstrating advances in programmatic flexibility, climatic tuning, and size variability – made possible by its unique capability for multi-scale/axis movement – DALE sits lightly but lives large, requiring less space and no net energy consumption to match the unsustainably bloated lifestyle claims of the current investment-driven, supersized housing trends.

DALE is the product of needing a home that is designed to speak to the uniqueness of southern California: a home that is as active as the people who reside in it. Its design takes the residential outdoor connection from visible to tangible and allows the inhabitants the flexibility to configure it to fit their daily needs. DALE is comprised of two modules that work as well in unison as they do individually. These modules come together for conditioning and security purposes when needed but are designed to multiply inhabitable square footage and take advantage of southern California's ideal climate conditions. Varying configurations allow for the experience of multiple microclimates through drought-tolerant California native landscapes. DALE is an innovative, net-zero energy, solar powered home that will change the way homeowners interact with their environment.

DALE is a dynamic living environment running exclusively on solar power gathered through integrated photovoltaic panels on a performative second skin. This second skin rack telescopes on the same axis as the houses movement, creating a collection configurations that benefit the user both in terms of comfort and energy. The 5.5 kW system works in tandem with an evacuated tube solar thermal collection system for water heating that will ensure a net-zero outcome without sacrificing user comfort or expectations. DALE's flexibility allows the home to react to climate changes and optimize comfort level through passive systems that reduce its energy footprint. The electrical system relies on the use of day lighting and incorporates the use of energy efficient LED lighting, appliances, and electronics. A sophisticated home monitoring and control system meters every aspect of electricity and water consumption in real time and allows the home and users to regulate their behavior.

DALE learns from two classic California precedents: the super-sized suburban tract home and the compact, sufficient bungalow; amending one and expanding on the other to become a sweet new southern California typology. At 600 square feet it is a micro house with an unprecedented flexible interior that results in the program of a house three times the size. Suspended movable partitions in one module give the occupants two bedrooms, a living room, an office, or an open space for entertaining, while the other module provides a generous kitchen, sand-room, separate bathroom, and a mechanical room where the real energy-efficient magic happens. Couple this interior flexibility with the home's movement, and the options are nearly unlimited.

Summary of Unlisted Electrical Components

To our knowledge, there are no unlisted electrical components in the present design.

Summary of Reconfigurable Features

House Modules:

DALE is divided into two modules, both of which are situated on a rail system. This allows the house to exist as one connected whole or as separate segments capable of positioning themselves at different locations – across the long axis of the site – depending on the desired configuration or on the varying energy requirements of the house. This reconfigurable feature is supported by a user controlled, motorized end truck system complete with thermal seals and safety sensors between modules. All plumbing and electrical connections are housed in a durable, flexible cable carrier system that runs below the landscape grade at the north end of the site.

Interior Walls:

The West module contains two detachable moving partitions that allow the user to redeem multiple compartmentalized spaces from one larger space. Within each side of each partition is an integrated program surface, where different amenities unfold to accommodate different configurations. This flexible system allows DALE to perform like a house twice its size, all the while providing a comfortable one bedroom house layout when the partitions are in their default position.

Sliding Canopy:

Both the East and West modules of DALE are equipped with highly performative solar sliders that act as a sleeve on each unit. In their default positions, these second skin/canopies hug the modules on three surfaces; the top and the North and South short elevations. These components are installed on 2-way telescoping sliders, allowing them to extend one whole modules length in either direction, creating yet more potential in the variety of spaces in and around DALE, as well as adjusting shade at different times of the day, and on different days of the year. Hanwha photovoltaic panels are attached to the top of the sliders, thus creating comfortable amounts of shade while still allowing subtle rays of California sunshine to spill through. The housing modules can roll apart while the canopy sliders stay in place, creating an enclosed mid-yard and embracing the benign West-coast climate. Additionally, the sliders can move with the sun throughout the day to prevent solar thermal heat gain at the interior spaces. This feature compliments DALE's choreographic design, where residents benefit from the efficiency of a micro-home as well as the unprecedented flexibility of a purely dynamic housing typology.

Reconfigurations During Tour Hours

The team intends to showcase the motion of the home at various times during the day. To reduce tour interruptions, these movements will only take place at the opening and closing of the house and once during the middle of the day.

Morning: Open Modules

Modules start in closed configuration. Modules are then moved apart while watched by team members, temporary ramps are placed and secured, and then tours begin.

Afternoon: Reconfigure Modules

At about 2:25pm the tour line will be halted, and the last tour will exit the house. Team members will remove the temporary ramps. Team members will check to ensure that the area around the modules is clear, and another team member will control the modules to move. After the modules are moved back and forth, they will return to one of the tour configurations. Team members will them restore the temporary ramps, and continue tours. The entire process is expected to take 10 mins, and no more than 15 mins.

Evening; Close Modules

At the end of tours or at the end of a movie/dinner night, the house modules will be closed. Team members will watch the area to ensure it is clear during this process.

Movement Schedule:

	Open Modules	Reconfigure Modules	Close Modules
Day 11	11:00am	2:30pm	7:00pm
Day 12	11:00am	2:30pm	11:00pm
Day 13	11:00am	2:30pm	7:00pm
Day 14	11:00am	2:30pm	7:00pm
Day 18	11:00am	2:30pm	7:00pm
Day 19	11:00am	2:30pm	11:00pm
Day 20	11:00am	2:30pm	11:00pm
Day 21	11:00am	2:30pm	Disassembly

Interconnection Application Form

SCICAL – LOT 101

PV Systems

Module Manufacturer	Short Description of Array	DC Rating of Array (sum of the DC ratings)		
Hanwha	West Array	3040 W		
Hanwha	East Array	3040 W		
Total DC power of all arrays is 6.1 kW (in tenths)				

Total DC power of all arrays is _____6.1____ kW (in tenths)

Inverters

Inverter Manufacturer	Model Number	Voltage	Rating (kVA or KW)	Quantity	
SMA America	SB6000US	240	6 kW	1	

Total AC power of all inverters is _____6____ kVA or kW (in whole numbers)

Required Information

	Location
One-Line Electrical Schematic	E-601
Calculations of service/feeder net computed load and neutral load (NEC	E-603
220)	
Plan view of the lot showing the house, decks, ramps, tour paths, the	G-102
service point, and the distribution panel or load center	

Provide the Team's "Electrical Engineer" contact in the "Team Officer Contact Info" database on the Yahoo Group as required per Rule 3-2.

Energy Analysis Results and Discussion

I. Executive Summary

The typical southern California home consumes 40% less electricity than the typical American home (Figure 1), in part because California homeowners can take advantage of our state's mild climate to reduce HVAC use, but also because state legislature has taught us to be more energy-conscious. Building on the systems we designed for CHIP in the 2011 Solar Decathlon, the 2013 SCI-Arc/Caltech team has designed DALE to take southern California's green living practices a step further.

Figure 1 Comparison of average annual energy consumption by typical American homes,¹ typical southern California homes,² and DALE. Home entertainment includes televisions, settop boxes, video game consoles, desktop and laptop computers, monitors, speakers, printers, networking equipment, and uninterruptible power supplies. Miscellaneous includes small electric devices, heating elements, and motors (not electric vehicles).

The following report describes in detail the analysis and simulations we performed to determine our necessary energy production and the engineering strategies we used to minimize our energy consumption.

¹ U.S. Energy Information Administration, 2009

² California Energy Commission, 2009-2010

II. Electrical Systems

Since we attribute CHIP's success in the Energy Balance Contest in 2011 to a thorough energy analysis using historical weather data and modeling software and a carefully planned energy budget, we approached DALE's electrical systems in a similar manner.

A. Solar photovoltaic array

To earn full points in the Energy Balance Contest, DALE's solar photovoltaic (PV) array must generate all of the energy consumed by the home during the ten-day competition. After estimating the power use of every energy sink in the home to calculate the total energy consumption, we used a combination of modeling and simulation, field-testing, and product research to design our PV array. The resulting system is optimized to produce enough energy meet the Solar Decathlon's net-zero contest requirements in 95% of historical early-October weather conditions in Irvine, CA, while requiring a minimum of panels.

Since the competition will be held in southern California's dry, arid climate this year, we wanted to test the effect of that climate on solar panels. We suspected that these conditions could lead to a significant accumulation of dirt and debris on the panels; this soiling would block incoming light, possibly resulting in costly prephotovoltaic losses in energy production. We conducted field-testing on solar panels that were left outside to accumulate soiling for eight months and found that panels mounted at an angle saw a smaller decrease in energy production than panels that were flat (Figure 2.1). We thus concluded that tilting our array would be a passive, lowmaintenance means of reducing the effects of soiling.

Figure 2.1 Decrease in energy production due to soiling accumulated over eight months on flat panels and panels tilted by 15°.

Given that a panel's energy production is proportional to light intensity, which depends on the angle of incidence, tilting our array to the south provides the additional benefit of increasing the amount of direct sunlight hitting the panels. We used NREL's System Advisor Model (SAM) to determine that PV arrays should be tilted to the latitude of their location in order to optimize annual energy production (Figure 5.1). Our array would therefore perform best over the course of the entire year if we mounted it at a 33.7° angle toward the south. The competition is held in October, however, and the optimal southern tilt for the month of October is 45°. In either case, such a steep angle poses several problems: DALE's small roof would cause issues with shading and we have a strict 18 foot height limit for the competition. Given these constraints, we decided that

mounting our PV array at a 15° angle would best maximize direct sunlight and reduce the effects of soiling while preventing the array from shading itself and keeing the house under the height limit.

In order to properly size our tilted PV array, we compiled a rough, high-level energy budget to estimate the average daily energy consumption of the home. We then used SAM 2012.11.30 and a year of typical weather data to simulate the hourly energy production of the given array. To ensure that our array could perform as needed in any weather conditions, not just those of a typical year, we ran the simulation with 30 years' worth of data from Weather Analytics for the El Toro Marine base, located in Irvine, California (1982-2011). In addition, we compared the SAM results for CHIP's array in Washington, D.C., with the 2011 competition data and the SAM results for Caltech's Wilson array during the second half of 2011 with actual production data (Figure 2.2) to gauge the accuracy of our simulations and adjust them accordingly. We found that SAM typically overestimates the energy production of an array by 5-10%.

Figure 2.2 SAM predictions vs. actual energy production (a) CHIP array, September – October 2011 (b) Caltech's Wilson array, May 2011 – December 2011. Soiling effects were taken into account for the Wilson array, which had been washed at the end of July

After accounting for a margin of error in our energy budget and SAM results, we simulated the energy production for various array sizes and configurations (Table 2.1). We determined that a 32-panel, 5.5kW array mounted at a 15° angle would be net-zero over the course of a ten-day period in Irvine in early October approximately 95% of the time for our 23.1 kWh/day target.

			Sou	thern T	filt (deg	grees)		
sl		0	5	10	15	20	25	30
of Panels	24	10%	11%	14%	16%	18%	19%	20%
f Pa	26	37%	46%	53%	59%	64%	67%	68%
	28	67%	75%	81%	84%	86%	87%	87%
Number	30	87%	90%	92%	94%	94%	95%	95%
INN	32	93%	95%	96%	97%	97%	98%	98%
	34	97%	98%	98%	99%	99%	99%	100%
	36	98%	99%	100%	100%	100%	100%	100%

Table 2.1 Corrected SAM predictions for the likelihood of achieving net-zeroduring the competition with an array of Y panels mounted at X degrees.

In addition to minimizing pre-photovoltaic losses, we have attempted to reduce losses inherent to the solar panels themselves. PV cells are designed to capture as much sunlight as possible, which causes the panels to heat up drastically; this process increases current output but decreases voltage and overall power. We positioned the tilted PV array on DALE's canopies to take advantage of their ability to move and thereby reconfigure the array to maximize system efficiency throughout the day.

During our field-testing, we analyzed the effects of different air mass heights underneath the PV array. Since the array is mounted on mobile canopies, the panels can be located either one foot above the modules or ten feet above the ground (when the canopies are fully cantilevered). Thermal convection currents coupled with natural air currents produce different effects at these different heights: due to a wind-tunneling effect, airflow around the panels is greater when they are positioned above the house, keeping the panels cooler and resulting in a 2-4% greater efficiency than when the panels are ten feet above the ground.

Thus, the homeowner can optimize system performance by configuring the panels above the house in the early morning and late evening, when the effects of the air currents are greatest. During the day, the canopies can be moved to the inside of the modules to create a shaded area that will keep the space cooler and reduce the energy consumption of the HVAC system. In this way, positioning the PV array on the movable canopies allows us to optimally configure DALE for different environmental conditions while simultaneously increasing energy production.

Additionally, each panel is connected to a Tigo module maximizer, which regulates the output current of each PV module and helps boost energy production. Since the panels in each string of a PV system are wired in series, the current of each string is limited by the lowest current produced – one underperforming panel decreases the energy production of every panel in the string. Tigo module maximizers prevent this current capping by using impedance-matching technology to identify and deactivate underperforming panels.

B. Overview of energy production and consumption

Since we sized our array to be net-zero during October, it would actually produce more energy than the typical inhabitants consume over the course of an entire year in Los Angeles, CA.

Figure 2.3 DALE's monthly energy production and consumption in Los Angeles, CA. Energy production simulated using SAM; energy consumption based on Energy Star usage estimates.

According to SAM simulations, our 5.5 kW array should generate an average of 23.1 kWh per day during the competition. When we adjust this value to correct for SAM's overestimates, we find a more realistic value of 21.0 kWh per day during the competition. To leave ourselves a margin of error, we have budgeted a total of just under 20 kWh per day for the contests. (Figure 2.4).

Figure 2.4 Comparison of energy and point allocations by contest (a) Maximum possible points (b) Budgeted energy usage for competition.

Published 8/22/2013 19

Our strategy during the competition is based on an analysis of how many points we could earn in each contest and how much energy we would have to use in order to earn those points (Table 2.2). If we are running low on energy, we should stop conditioning the home and not participate and in the cooking contest. If we are running very low on energy, we should use as much energy as we need to maximize our points in the other contests: we would actually earn more points by participating in the other contests than we would lose by not being net-zero.

Table 2.2 Points earnedper kWh of energy used.

Contest	Points/kWh
Hot Water	6.2
Lighting	3.8
Washer	3.6
Dishwasher	3.3
Dinner Party	2.9
Home Electronics	2.7
Movie Night	2.5
Dryer	2.5
Refrigerator/Freezer	2.2
Energy Contest	2.0
Comfort Zone	1.9
Cooking	1.7

C. Home electronics, lighting, and appliances

To choose home electronics for DALE, we performed a cost-benefit analysis on a variety of products to find the ones that are least expensive and most efficient. We began by eliminating products that are not readily compatible with Control4 (our home control system) and those that have poor customer reviews (fewer than three stars). Then, using typical retail prices and converting manufacturer-specified maximum power consumptions to kWh, we calculated the average cost and average use cost for each type of device and the monetary and energy cost scores for each product. By selecting the products with the lowest total cost scores among each type of device, we have managed to stay within both our monetary budget and our energy budget for the competition.

We performed a similar cost-benefit analysis on a variety of light fixtures to find an appropriate balance between cost, energy efficiency, illuminance, and color temperature. We also took into consideration customer reviews (to ensure quality), product longevity (to reduce maintenance costs), and thermal output (to limit HVAC demand). In addition, after consulting with lighting experts, we decided to only use light fixtures with a color rendering index (CRI) greater than 80; this allows the homeowners to experience natural-looking light in the evenings and at night, complementing the natural light they enjoy during the day thanks to DALE's large windows.

Due to budgetary constraints, we had fewer options for our home appliances. Whenever possible, however, we chose appliances that exceed Energy Star requirements for energy and water consumption to keep DALE resource-efficient. For example, our dishwasher uses just 3.5 gallons of water per cycle.¹

¹ Energy Star certification requires \leq 4.25 gallons/cycle

III. Mechanical Systems

Unlike the typical energy-efficient home, which relies solely on static systems to save energy, DALE utilizes static systems as well as a dynamic mechanical system that embodies our team's ingenuity and showcases a variety of energy-saving innovations.

A. Module and canopy movement system

Southern California has an agreeable climate that begs homeowners to open their doors and windows and enjoy the pleasant weather. DALE takes this practice a step further by letting homeowners open up the entire house without sacrificing their privacy or shade. Our module and canopy movement system comprises a variety of hardware and software and is responsible for correctly positioning the modules and canopies according to user input while keeping the inhabitants and their belongings safe (please refer to sheet T-101 in the drawing set).

Module and canopy movement begins with the command center, where a touchscreen panel with an intuitive user interface (UI) feeds high-level commands to a programmable logic controller (PLC) located in the mechanical room. Using this touchscreen panel, the homeowner can select one of several preset module and canopy configurations, enter a new configuration manually, or program an additional configuration for the PLC to remember. The PLC checks this input for validity (Table 5.2), computes the necessary module and canopy moves and the order in which they should occur (Figure 5.2), and activates the safety equipment.

The homeowner can also use the command center's UI to operate the motorized louvers located on both sides of the canopies. Each set of louvers is independently controlled by pressing and holding a touchscreen button until the desired configuration is reached. With so many degrees of freedom, DALE's inhabitants are able to enjoy an energy-efficient, fully customizable, indoor/outdoor lifestyle.

To make these moves possible, each module is equipped with a variable-frequency drive (VFD) that gradually accelerates and decelerates a pair of one-horsepower end trucks, wheeled motors typically used in gantry cranes (Figure 3.1). This ramping provides two distinct advantages over single-speed operation: smoother starts and stops and less mechanical stress on the motors and modules. In addition, we chose end trucks that are rated for loads much heavier than the modules so they can better handle dynamic loading inside the house. Finally, the modules themselves protect the end trucks from the environment, further reducing maintenance and repair costs for this system. In the unlikely event that power is lost while the home is opened, the end trucks are equipped with a manual brake override to allow the inhabitants to manually close the home.

The modules can move along the entirety of the track's 54 foot length; the maximum separation between the modules is approximately 34 feet. The maximum separation between the modules during the competition, when we are limited by our solar envelope, is nearly the same at 32 feet.

Figure 3.1 Cutaway view of module with end truck wheel and track.

To make canopy movement possible, a three-stage, ball-based linear telescopic slide system made of stainless steel is attached to the roof support structure of each module (Figure 3.2). Movement during the first and second stages is accomplished by means of a spur gear articulating with a horizontal gear rack. Movement during the third stage is accomplished by means of a tensioned chain running along the sliding rails that is fixed at one point. As with module movement, a VFD gradually accelerates and decelerates a pair of half-horsepower motors equipped with speed reducers and provides the same reduction in maintenance and repair costs for this system. Each canopy slides parallel to the track and can cantilever approximately 10 feet from center in either direction.

Figure 3.2 Linear telescopic slide system for canopy movement.

Having two independently moving modules makes plumbing and electrical wiring difficult since the municipal water supply line and local microgrid are stationary. To accommodate the lines that run between these fixed points and the core module, a durable cable carrier mounted underneath the mechanical room guides flexible cables and hoses along the length of the rails. A second cable carrier mounted underneath each module accommodates the lines that run between them. As with the end trucks, we chose weather-resistant cable carriers and positioned them underneath the modules to protect the lines as much as possible from the environment, thereby reducing maintenance and repair costs. Having canopies that can move in two directions relative to the modules also makes wiring difficult, so we once again chose to use cable carriers. In addition to the solar photovoltaic panels mounted on top of the canopies, small motors for the louvers and various safety sensors are located on the canopies and also necessitate wires running from each module to its canopy.

The PLC uses input from two laser distance sensors to calculate the position of each module relative to the end of the rails, while a third laser distance sensor provides the distance between the

modules as a check. A cost-efficient makeshift encoder comprised of a sprocket and a proximity sensor is attached to each canopy motor; as the motor turns, the teeth of the sprocket spin past the proximity sensor, triggering a pulse. The PLC counts these pulses to calculate the position of each canopy relative its module. A limit switch located at the end of each rail prevents the modules from driving off the rails.

A second pair of limit switches ensures that the modules continue to move together until the gaskets mounted along the perimeters of the opening form an air- and water-tight seal between the modules. We tested the gaskets to determine the minimum compression needed to form an air- and water-tight seal; the limit switches require this amount of compression plus a margin of error. The gaskets have a manufacturer-reported R-value > 11.5, are fire retardant, and provide acoustic dampening.

To keep DALE's inhabitants and their belongings safe during module and canopy movement – and to limit potential liability should damage occur – we have carefully implemented a risk management strategy. We began by identifying the hazards associated with careful operation of our module and canopy movement system and compiling an initial set of safety sensors that address these hazards. We then closely analyzed the coverage of these safety sensors, looked for ways that they could be defeated, and compiled a more robust set of safety sensors. Finally, we consulted with an expert in the field of factory safety to gain a new perspective on our system and to learn about additional safety devices and practices.

The resulting risk management strategy comprises two types of safety measures: preventative and reactive (Table 3.1). Preventative safety measures are used to keep people and objects out of harm's way, while reactive safety measures are used to stop module and canopy movement in the unlikely event that contact is made. Together, these measures balance safety and cost considerations, offering excellent protection without becoming overly complicated or breaking the bank.

Consider the following scenarios:

- A homeowner parks close to the track and later decides to open DALE to spend a pleasant evening in the mid-yard. The canopy or multi-use platforms on the nearest module might hit the vehicle, possibly causing costly damage to the vehicle, the canopy or appendage, or both. While this scenario cannot be easily prevented by the movement system, our reactive safety measures limit the amount of damage that can occur by stopping all movement as soon as contact is made.
- A homeowner enjoys a picnic between the modules and forgets to move the table before closing DALE. One of the modules might hit the table, possibly pushing it over and causing a small amount of damage to the table, module, or both. While this scenario is unlikely to result in any real harm, it is a nuisance that our light curtains can easily prevent.
- A homeowner wants to move DALE in order to experience a different landscape and is unaware that the family pet is sleeping directly in the path of module movement. The module could run into the animal, possibly causing severe injury or even death. While we hope that this is the rarest of scenarios, we have included area access control sensors as a secondary preventative safety measure in the unlikely event that our light curtains fail to detect a small person, animal, or object.

B. HVAC and DHW systems

We designed DALE's HVAC and DHW systems to be compatible with module and canopy movement while achieving the same level of functionality and efficiency as the corresponding systems in a more typical home. We addressed our movement concerns by placing the equipment for both systems on just one of the modules – thereby avoiding the complexities associated with flexible, non-standard piping metals – and by choosing units that are well-suited for smaller homes.

Our ductless HVAC system comprises a dual zone heat pump with a single outdoor unit and two indoor units. The outdoor unit is among the most efficient in its size class, rated at a cooling seasonal energy efficiency ratio (SEER) of 18 and a heating seasonal performance factor (HSPF) of 8.9 at 47°F and the indoor units are rated at 15 SEER and 9.6 HSPF.¹ The heat pump cools/heats the refrigerant, R-410a, into a liquid/gaseous form and sends it to the two indoor units, which then drive air cooled/heated by the refrigerant piping into the house.

Since HVAC system size is such an important factor in energy efficiency, we sized our HVAC system to suit its typical load. Given that the majority of the work done by our HVAC system is correcting small temperature swings that are barely outside the desired indoor climate range, we looked for a smaller system that could handle these common loads efficiently. We also wanted our system to be strong enough to handle any larger cooling/heating loads adequately, so we chose ceiling units that can drive air in four directions. This ensures that our indoor units can quickly condition the entire home – no matter how the interior is configured – and keep DALE's occupants comfortable no matter where they are.

To keep the home conditioned while closed, DALE has fireproof floor, ceiling, and wall insulation that also dampens sound (Table 3.2). Our air exchange ventilator helps maintain proper indoor air quality in accordance with California's Title 24.

Surface	R value
Floor	24
Walls	23
Windows/Glass Walls	3
Roof	30

 Table 3.2 DALE's insulation.

DALE can be opened and closed at any time, so it is possible that the weather might sour while DALE is open. With this in mind, we designed our HVAC system to be capable of handling any inclement weather it might encounter. The system can take a worst-case load and condition the closed space to a comfortable target temperature in less than 30 minutes while still performing at least as efficiently as the typical green home HVAC system.

DALE's DHW system takes advantage of the cutting-edge heating technology in solar thermal energy collectors, which capture solar energy and convert it to thermal energy. We chose

¹ SEER and HSPF ratings as reported by manufacturer. Note that Energy Star does not currently certify ductless HVAC systems; Energy Star certification for split systems requires SEER \ge 14.5 and HSPF \ge 8.2 for air-source heat pumps and SEER \ge 14.5 for central air conditions.

to use a solar thermal collector because its conversion of sunlight into domestic hot water perfectly complements our solar panels' conversion of sunlight into electricity.

When radiant energy from the sun hits the collector, it heats a transfer fluid contained in heat pipes at the center of the collector tubes. The heat pipe fluid evaporates into a gas that collects at the top of the tubes, where it transfers its thermal energy to the working fluid of a closed loop system flowing through the manifold of the collector. The heated working fluid is pumped through this loop to the heat exchanger of our hot water tank to heat water for domestic use. A backup electric water heater ensures that hot water is always available, even on cloudy days and in high-demand situations.

While solar thermal systems are typically located on the roof, we chose to mount ours on the southern wall of the core module to make room for a larger photovoltaic array on DALE's roof. Since our collector is in a more accessible location, we chose to use evacuated tubes, which are safe to touch because their exteriors do not heat up significantly. In addition, we chose to orient our solar thermal collector to maximize the amount of sunlight collected in the winter, since there are fewer hours of daylight during those months.

C. Movement and HVAC energy analysis

We performed an extensive analysis of historical southern California weather using ASHRAE Standard 55 equations, which numerically describe how hot or cold an average person would feel given seven parameters: air temperature, mean radiant temperature, relative humidity, wind speed, clothing level, activity level, and metabolic rate. ASHRAE equations also compute a predicted percentage displeased (PPD), representing what percentage of people will be unhappy in a given weather condition. Using these ASHRAE equations, we calculated the hourly PPD given 30 years of weather data for the El Toro Marine base near in Irvine, CA to determine when the house could be opened comfortably and how much energy could be saved by doing so.

Since the homeowners can change their clothing level and adjust shading and wind speed by reconfiguring the modules and canopies, we varied these parameters to generate boundary zone estimates for weather conditions in which 90% of people would be happy with the home open (PPD \leq 10, Figure 3.3) and predict how often the home could be opened comfortably (Figure 3.4).

Figure 3.3 Comfort zones for sunny and cloudy days in southern California; actual data for 2009 – 2011 plotted. Orange and blue dots represent days/weather conditions for which at least 90% of people would have been comfortable outside. Some days/weather conditions outside of the boundaries were still comfortable due to other factors such as sunlight.

Figure 3.4 Likelihood that the home can be comfortably opened (a) during a given month of the year (b) during a given hour on a summer day.

We used Energy Pro to estimate how much energy would be consumed by DALE's HVAC system each hour to keep the inhabitants comfortable if the home was always closed. We then used hourly probabilities that the house could be comfortably opened to estimate how much energy would be consumed by DALE's HVAC system each month if the inhabitants opened the home strategically to help keep them comfortable (Figure 3.5). We assumed that the home would be closed at night from 10pm to 8am and anytime it was raining, and we considered a variety of homeowner habits:

- Works at home, opens the house during the day: 60% annual HVAC energy savings
- Works away from home from 9am to 5pm five days a week, leaves the house unconditioned during that time: 39% annual HVAC energy savings
- Works away from home from 9am to 5pm five days a week, chooses to condition the house during that time: 23% annual HVAC energy savings

Figure 3.5 Comparison of monthly HVAC energy consumption with and without strategic module and canopy movement, assuming homeowner works away from home and leaves the house unconditioned from 9am to 5pm five days a week.

We have made DALE more energy-efficient and affordable by embracing an active mechanical systems approach. Although HVAC heat recovery systems do work, as we showed with CHIP in 2011, we purposefully chose not to implement such a system this year. With the competition being held in southern California's rather more seasonable climate, we concluded that any energy savings would be merely marginal and thus would not offset the cost of a heat recovery system.

A typical HVAC heat recovery system utilizes an additional heat exchanger in the refrigeration cycle to remove heat from the gas lines of the indoor units and preheat cold municipal water before it enters the water boiler. While the HVAC system is in cooling mode, heat recovery increases the efficiency of the system in two ways. First, it reduces the amount of heat that the outdoor unit has to expel in order to cool the incoming refrigerant. Second, it reduces the workload of the boiler by preheating the incoming water to 70-80°F (municipal water is a cool 50-60°F). Our HVAC heat recovery system in 2011 was capable of reducing the overall energy usage of CHIP's HVAC and DHW systems by up to 25% compared to the same systems without heat recovery and thus was a worthwhile endeavor.

Such a heat recovery system would not be as beneficial with DALE, however, for several reasons. First, DALE's HVAC system is already more efficient than CHIP's and has a higher cooling SEER, which means that the outdoor unit is already using less energy than CHIP's did and thus would realize smaller energy savings with a heat recovery system. Second, while CHIP utilized an air-to-water heat pump, DALE utilizes a solar thermal system to generate domestic hot water. The

As-Built Set U.S. DOE Solar Decathlon 2013 Published 8/22/2013 29

passive heat exchange in DALE's solar thermal loop results in an equilibrium water temperature warmer than that of CHIP's passive heat recovery system. Finally, DALE's HVAC system is less likely to be used during periods of active cooling demand since the house is designed to be opened. Heat recovery systems only work when the house is being actively cooled, so DALE would only infrequently benefit from such a system; the extremely limited temperature gains would not offset the cost of customizing DALE's refrigeration loop.

IV. Home Control and Monitoring Systems

We designed DALE to boast a southern California philosophy – buy small, live large – and our home control and monitoring systems reflect this ideal.

A. Home control system

By integrating a Control4 system with a Honeywell HVAC control system, *DALE Control* frees homeowners from having to use multiple applications to control their appliances and HVAC system. The *DALE Control* application for tablets is intuitive, user-friendly, and easily programmable, allowing the homeowners to store their preferences.

Control4 is a well-known, smart home control system that is commonly used to wirelessly control home appliances. We used a Control4 system with CHIP in the 2011 Solar Decathlon and found it to be extremely reliable and time-saving, hence our decision to use Control4 again this year. *DALE Control* communicates with a Control4 box through a director application programming interface (API) to determine which devices are connected to DALE's Control4 server and thus can be controlled through our app.

CHIP's "big red button" was extremely popular in 2011, so *DALE Control* likewise has a single button that turns off all non-essential appliances, including lights and televisions. In addition to switching devices between their on and off states, *DALE Control* can be used to adjust specific device settings; for example, lights can be dimmed or brightened. *DALE Control* also has an automatic light mode in which the overall light level is fixed by the homeowner; light sensors measure the indoor and outdoor ambient light levels and the app adjusts the lights as needed.

DALE's HVAC system is controlled via a Honeywell Redlink thermostat, which can be controlled wirelessly from inside the house and monitored over the Internet. We chose to integrate the Redlink thermostat into the *DALE Control* app rather than use the separate app provided by Honeywell. This gives the homeowners greater control over the HVAC system without complicating the home control process by adding an entirely different user interface.

B. Monitoring system

DALE Control utilizes low-cost, real-time energy monitoring and easy-to-understand data visualization to help homeowners become more aware of how they are using energy and teach them how to run the home more efficiently.

We chose to use Chai Energy's technology to monitor DALE's energy consumption. Chai Energy was founded by Caltech alumni who built upon their experiences during the Solar Decathlon 2011 to start a successful business. Their monitoring system utilizes a router to send data from a whole-home smart meter to the cloud every six seconds. Chai Energy software then analyzes this

As-Built Set U.S. DOE Solar Decathlon 2013 Published 8/22/2013 31 data, looking for spikes in energy consumption to determine which appliances are on and how much energy each of them is using.

Figure 4.1 Chai Energy software uses algorithms and user feedback to identify spikes in total home energy consumption and attribute them to appliances and other energy sinks.

This clever technology offers several distinct advantages over more traditional monitoring systems. First, the Chai Energy system monitors total home energy consumption instead of monitoring at the circuit level; it is thus easier and less expensive to install because it requires very little hardware. The system also takes advantage of the increasing prevalence of smart meters to further lower installation costs. Finally, the Chai Energy system stores current and historical energy usage data for each appliance in an accessible database, allowing homeowners to see changes in their energy consumption over time.

The *DALE Control* app retrieves energy production data from the Tigo modules and energy consumption data analyzed by Chai Energy from their respective servers and creates an intuitive graphical display of the data. Overall energy production and consumption are plotted against time to show peak energy demands and peak PV array performance, and a pie chart shows the energy consumption of each appliance as calculated by Chai Energy. Together, these user-friendly graphs make the homeowners more aware of their net energy use and help them realize the importance of trying to save energy.

The *DALE Control* app does more than simply encourage homeowners to be more energyefficient: it actively helps them develop green habits by offering suggestions and gentle reminders and by identifying potential problems with the house. For example, the app might alert the user if

the bathroom light has been on for several consecutive hours. If the PV array's energy production falls below some threshold, the app might inform the user that maintenance is required.

In addition, the *DALE Control* app has access to indoor/outdoor temperature and humidity data, which it uses to predict whether or not the occupants would be comfortable outside. Here, the app relies on ASHRAE Standard 55, which defines the range of thermal environmental conditions that are suitable to 90% of the population. We chose to use this standard because it accounts for a tremendous variety of factors, including sunlight, air speed, and clothing levels. The *DALE Control* app likewise takes these factors into consideration, and when it determines that 90% of the population would be comfortable outside, it will suggest that the occupants open up their home. If the homeowners act on the app's suggestion, they will save energy by not running the HVAC system and they will be able to enjoy a more spacious living environment.

We purposefully chose not to create a completely automated home control system. Instead, *DALE Control* provides homeowners with the tools they need to make informed decisions on how to run their home. By showing the occupants how they can save energy and money rather than just doing it for them, the *DALE Control* app helps people live a greener lifestyle that is better for their health and for the environment.

DALE 2013 SCI-Arc/Caltech Project Manual

V. Methods and Results

A. Executive summary

Figure 1 Comparison of average annual energy consumption. These data came from:

- US Energy Information Administration 2009 Residential Energy Consumption Survey CE4.1 (end-use consumption by fuel, total U.S. homes)
- California Energy Commission Updated California Energy Demand Forecast 2011-2022 Table B-6 (number of households by planning area, 2010)
- California Energy Commission Energy Almanac California Energy Consumption by End Use (BUGL, LADWP, PASD, SCE, and SDGE)

For each end use, we calculated: $\frac{electricity \ consumption \ per \ house \ hold}{number \ of \ house \ holds}$

Data rounded to nearest 10 kWh/yr

B. Electrical systems

Figure 2.1 Decrease in energy production due to soiling.

Four Hanwha panels – two that were flat and two that were mounted at a 15° angle – were allowed to accumulate soiling for eight months. On a sunny afternoon, we monitored their instantaneous energy production for ten minutes, cleaned them with a squeegee using dish soap and water, and then monitored their instantaneous energy production for another ten minutes (Table 5.1).

	Average energy production (W)	
	Soiled	Clean
Flat Panel 1	122.32	150.41
Flat Panel 2	118.95	151.82
Tilted Panel 1	140.14	153.02
Tilted Panel 2	141.59	156.08

Table 5.1 Average instantaneous energy production for soiled and clean panels. The panels produced similar amounts of energy while clean, thus the difference in energy production while soiled must be due to a difference in the amount of accumulated soiling related to the angle at which the panels were mounted.

Determination of optimal tilt.

Figure 5.1 Energy production as a function of an array's southern tilt. Annual energy production (gray) is maximized when the array is tilted to its location's latitude; in Irvine, CA, this is 31.7°. Energy production in October (blue) is maximized when the array is tilted to 45.1°. Energy production simulated using SAM.

Home electronics cost-benefit analysis.

To convert manufacturer-specified maximum power consumptions to kWh, we made the following assumptions:

- The laptop, monitor, and television will each be powered on for 35 hours during the competition.
- The Blu-ray player, sound system, and projector will each be powered on for two hours during the competition.

To compute the use cost, monetary cost score, energy cost score, and total cost score, we used the following formulas:

use cost in
$$\$ = power consumption in kWh * \$6/kWh$$

 $monetary \ cost \ score = \frac{(product \ cost - average \ cost)}{average \ cost}$

$$energy \ cost \ score = \frac{(product \ use \ cost - average \ use \ cost)}{average \ use \ cost}$$

C. Mechanical systems

Module and canopy movement.

PLC check: canopy moves	Reason
WestM - 10ft < WestC < WestM + 10ft	The canopy can cantilever only 10 feet from
Westivi - Ioit < Westic < Westivi + Ioit	the center in either direction.
EastM - 10ft < EastC < EastM + 10ft	The canopy can cantilever only 10 feet from
Eastivi - IUIT < EastC < Eastivi + IUIT	the center in either direction.
WestC + 10ft ≤ EastC	The canopies cannot overlap.

PLC check: module moves	Reason
Oft ≤ WestM ≤ 54ft	The western module must be on the track.
Oft ≤ EastM ≤ 54ft	The eastern module must be on the track.
WestM + 10ft ≤ EastM	The modules cannot overlap.
WestM + 10ft = EastM OR WestM ≤ EastM - 15ft	The distance between the modules must be 0 feet (the house is closed) or greater than 5 feet (a small gap between the modules would be unsafe).

Note: The input position represents the distance between the western end of the track and the western edge of a particular module or canopy. The modules and canopies are 10 feet wide and the track is 54 feet long.

WestM position of western module

EastM position of eastern module

WestC position of western canopy

EastC position of eastern canopy

Table 5.2 Validity checks for input module and canopy configurations.

Figure 5.2 Flowchart used to determine the order of module movements.

Figures 3.3 – 3.5 Energy savings due to movement.

We set boundary zone estimates for weather conditions in which 90% of people would be happy with the home open (PPD \leq 10).

To investigate the effect of shading on temperature, we conducted field-testing using thermocouples placed in the sun and in the shade. We found that shaded areas are significantly cooler than sunny areas during the day (Figure 5.3), and thus it was important for us to take shading into consideration when determining if a given weather condition fell within the 90% comfort zone.

Figure 5.3 Temperature in the sun and shade. Data collected over 2.5 days; peaks occur around noon each day.

To set the comfort zone boundaries for a cloudy day, we used the following parameters:

- \blacktriangleright Relative humidity = 65% (approximate median for a cloudy day)
- Direct sunlight = 50 W/m² (approximate median for a very cloudy day)
- Diffuse sunlight = 200 W/m² (approximate median for a very cloudy day)

To set the comfort zone boundaries for a sunny day, we used the following parameters:

- Relative humidity = 52% (approximate median for a sunny day)
- Direct sunlight = 900 W/m² (approximate median for a very sunny day)
- Diffuse sunlight = 100 W/m² (approximate median for a very sunny day)

We then determined the coldest and warmest a person could feel given hourly weather conditions and the following parameters:

- Metabolic rate = 1.1 (normal adult)
- Activity level = 0 (sitting)

To determine the coldest a person could feel, we used the following parameters:

- Clothing level = 0.3 (shorts and a t-shirt)
- Wind speed = 0.75 * outdoor wind speed (the house is open and only partially blocks the wind)
- Mean radiant temperature = outdoor air temperature (the interior is completely shaded)

To determine the warmest a person could feel, we used the following parameters:

- Clothing level = 1 (sweater and jeans)
- Wind speed = 0.5 * outdoor wind speed (sunny), 0.25 * outdoor wind speed (cloudy)
- Mean radiant temperature > outdoor air temperature (the interior is not shaded; see *Thermal Comfort: Analysis and Applications in Environmental Engineering* by P. O. Fanger for the theory behind this calculation)

We computed the hourly PPD; if PPD \leq 10 in the region bounded by the coldest and warmest a person could feel given that hour's weather conditions, the home could be opened comfortably. We then used our hourly yes/no values for 30 years to determine the probability that the homeowners would be comfortable with the house open during a given hour of the year.

Quantity Takeoff of Competition Prototype House Please See Appendix B for the quantity takeoff.

Construction Specifications

DIVISION 03 – CONCRETE

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Product Data, concrete mix designs, and submittals required by ACI 301.
 - B. Ready-Mixed Concrete Producer Qualifications: ASTM C 94/C 94M.
- PART 2 PRODUCTS
- 2.01 PEFORMANCE REQUIREMENTS
 - A. Comply with ACI 301, "Specification for Structural Concrete," and with ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
- 2.02 MATERIALS
 - A. Plain Steel Wire: ASTM A 82, as drawn.
 - B. Plain-Steel Welded Wire Reinforcement: ASTM A 185, as drawn, flat sheet.
 - C. Portland Cement: ASTM C 150, Type I or II.
 - D. Fly Ash: ASTM C 618, Class C or F.
 - E. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
 - F. Silica Fume: ASTM C 1240, amorphous silica.
 - G. Aggregates: ASTM C 33, Class 3S, Class 3M, Class 1N, coarse aggregate or better, graded, with at least 10 years' satisfactory service in similar applications.
 - 1. Maximum Coarse-Aggregate Size: 1 inch nominal.
 - 2. Maximum Aggregate Size for Concrete in Insulating Concrete Forms: 3/4 inch.
 - H. Air-Entraining Admixture: ASTM C 260.
 - I. Chemical Admixtures: ASTM C 494, water reducing, high-range water reducing, water reducing and accelerating, and water reducing and retarding. Do not use calcium chloride or admixtures containing calcium chloride.
 - J. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures.
 - 1. Manufacturers: Quikrete
 - K. Synthetic Fiber: ASTM C 1116/C 1116M, Type III, polypropylene fibers, 1/2 to 1-1/2 inches long.
 - L. Vapor Retarder: Reinforced sheet, ASTM E 1745, Class A.
 - 1. Products: Fortifiber Building Systems Group; Moistop Ultra 10.
 - M. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
 - N. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.
 - 0. Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber, or ASTM D 1752, cork or self-expanding cork.
- 2.03 CONCRETE MIXTURES
 - A. Prepare design mixtures, proportioned according to ACI 301.
 - B. Normal-Weight Concrete:
 - 1. Minimum Compressive Strength: 4000 psi 28 days.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.50.
 - 3. Slump Limit: 5 inches for concrete with verified slump of 2 to 4 inches before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch.

- 4. Air Content: Maintain within range permitted by ACI 301. Do not allow air content of floor slabs to receive troweled finishes to exceed 3 percent.
- 5. Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.
- 6. For concrete exposed to deicing chemicals, limit use of fly ash to 25 percent replacement of portland cement by weight and granulated blast-furnace slag to 40 percent of portland cement by weight; silica fume to 10 percent of portland cement by weight.
- C. Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M and ASTM C 1116.
 - 1. When air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

- 3.01 CONCRETING
 - A. Construct formwork according to ACI 301 and maintain tolerances and surface irregularities within ACI 347R limits of Class A, 1/8 inch for concrete exposed to view and Class B, 1/4 inch for other concrete surfaces.
 - B. Place vapor retarder on prepared subgrade, with joints lapped 6 inches and sealed.
 - C. Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
 - D. Install construction, isolation, and contraction joints where indicated. Install full-depth joint-filler strips at isolation joints.
 - E. Place concrete in a continuous operation and consolidate using mechanical vibrating equipment.
 - F. Protect concrete from physical damage, premature drying, and reduced strength due to hot or cold weather during mixing, placing, and curing.
 - G. Formed Surface Finish: Smooth-formed finish for concrete exposed to view, coated, or covered by waterproofing or other direct-applied material; rough-formed finish elsewhere.
 - H. Slab Finishes: Comply with ACI 302.1R for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces. Provide the following finishes:
 - 1. Scratch finish for surfaces to receive mortar setting beds.
 - 2. Float finish for surfaces to receive waterproofing, roofing, or other direct-applied material.
 - 3. Troweled finish for floor surfaces and floors to receive floor coverings, paint, or other thin film-finish coatings.
 - 4. Trowel and fine-broom finish for surfaces to receive thin-set tile.
 - 5. Nonslip-broom finish to exterior concrete platforms, steps, and ramps.
 - I. Begin curing concrete slabs after finishing. Apply membrane-forming curing and sealing compound to concrete.
 - J. Owner will engage a testing agency to perform field tests and to submit test reports.
 - K. Protect concrete from damage. Repair and patch defective areas.

DIVISION 05 – METALS

SECTION 051200 - STRUCTRUAL STEEL FRAMING

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Product data, statement of recycled content, shop drawings, welding procedure specifications (WPSs), mill test reports.
- PART 2 PRODUCTS
- 2.01 PERFORMANCE REQUIREMENTS
 - A. Connections: Provide details of connections required by the Contract Documents to be selected or completed by structural-steel fabricator.
 - 1. Use [LRFD; data are given at factored-load level] [ASD; data are given at service-load level].
 - B. Comply with applicable provisions of the following:
 - 1. AISC 303.
 - 2. AISC 341 and AISC 341s1.
 - 3. AISC 360.
 - 4. RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- 2.02 STRUCTURAL STEEL
 - A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than [25] [50] <Insert number> percent.
 - B. W-Shapes: [ASTM A 992/A 992M] [ASTM A 572/A 572M, Grade 50 (345)].
 - C. Channels, Angles[, M] [, S]-Shapes: [ASTM A 36/A 36M] [ASTM A 572/A 572M, Grade 50 (345)].
 - D. Plate and Bar: [ASTM A 36/A 36M] [ASTM A 572/A 572M, Grade 50 (345)].
 - E. Cold-Formed Hollow Structural Sections: ASTM A 500, [Grade B], structural tubing.
 - F. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade B.
- 2.03 ACCESSORIES
 - A. High-Strength Bolts, Nuts, and Washers: ASTM A 325 (ASTM A 325M), Type 1, heavy-hex steel structural bolts; ASTM A 563, Grade C, (ASTM A 563M, Class 8S) heavy-hex carbon-steel nuts; and ASTM F 436 (ASTM F 436M), Type 1, hardened carbon-steel washers.
 - B. Anchor Rods: ASTM F 1554, Grade 36.
 - 1. Configuration: [Straight] [Hooked].
 - 2. Nuts: ASTM A 563 (ASTM A 563M) [heavy-]hex carbon steel.
 - 3. Plate Washers: ASTM A 36/A 36M carbon steel.
 - 4. Washers: ASTM F 436 (ASTM F 436M), Type 1, hardened carbon steel.
 - C. Primer: Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer.
 - D. Grout: ASTM C 1107, nonmetallic, shrinkage resistant, factory packaged.

2.04 FABRICATION

- A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Fabricate according to AISC's "Code of Standard Practice for Steel Buildings and Bridges" and AISC 360.
- B. Weld Connections: Comply with AWS D1.1/D1.1M[and AWS D1.8/D1.8M] for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
- C. Shop Priming: Prepare surfaces according to SSPC-SP 2, "Hand Tool Cleaning"; or SSPC-SP 3, "Power Tool Cleaning." Shop prime steel to a dry film thickness of at least 1.5 mils (0.038 mm). Do not prime surfaces to be embedded in concrete or mortar or to be field welded.

PART 3 - EXECUTION

- 3.01 ERECTION
 - A. Set structural steel accurately in locations and to elevations indicated and according to AISC 303 and AISC 360.
 - B. Base [Bearing] [and] [Leveling] Plates: Clean concrete- and masonry-bearing surfaces of bond-reducing materials, and roughen surfaces prior to setting plates. Clean bottom surface of plates.
 - 1. Set plates for structural members on wedges, shims, or setting nuts as required.
 - 2. Weld plate washers to top of base plate.
 - 3. [Snug-tighten] [Pretension] anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
 - 4. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure.
 - C. Align and adjust various members forming part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.
 - D. Do not use thermal cutting during erection[unless approved by Architect. Finish thermally cut sections within smoothness limits in AWS D1.1/D1.1M].
 - E. High-Strength Bolts: Install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.
 - 1. Joint Type: [Snug tightened] [Pretensioned] [Slip critical].
 - F. Weld Connections: Comply with AWS D1.1/D1.1M[and AWS D1.8/D1.8M] for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.

DIVISION 06 - WOOD, PLASTICS and COMPOSITES

SECTION 061533 - WOOD PATIO DECKING

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: ICC-ES evaluation reports for wood-preservative treated wood, expansion anchors, metal framing anchors and decking fasteners.

PART 2 - PRODUCTS

- 2.01 WOOD PRODUCTS, GENERAL
 - A. Lumber: Provide dressed lumber, S4S, marked with grade stamp of inspection agency.
 - B. Certified Wood: Wood-based materials produced from tropical forests shall be certified as "FSC Pure" or "FSC Mixed Credit" according to FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship," and to FSC STD-40-004, "FSC Standard for Chain of Custody Certification."
- 2.02 TREATED MATERIALS
 - A. Preservative-Treated Boards and Dimension Lumber: AWPA U1; Use Category UC3b.
 - 1. Use treatment containing no arsenic or chromium.
 - B. Preservative-Treated Timber and Poles: AWPA U1; Use Category UC4a, waterborne preservative.
 - 1. Use treatment containing no arsenic or chromium.
 - 2. Treatment with CCA shall include post-treatment fixation process.
 - C. After treatment, redry boards, dimension lumber, timber, and poles to 19 percent maximum moisture content.
 - D. Mark treated wood with treatment quality mark of an inspection agency approved by ALSC's Board of Review.
 - E. Provide preservative-treated materials for all exterior rough carpentry unless otherwise indicated on Drawings, and the following:
 - 1. Framing members less than 18 inches above grade.
 - 2. Sills and ledgers.
 - 3. Members in contact with masonry or concrete.
 - 4. Posts.
 - 5. Round wood poles.
 - 6. Decking.
 - 7. Stair treads.

2.03 LUMBER

- A. Dimension Lumber:
 - 1. Maximum Moisture Content: [15 percent] [19 percent] [15 percent for 2-inch nominal (38-mm actual) thickness or less, 19 percent for more than 2-inch nominal (38-mm actual) thickness] [19 percent for 2-inch nominal (38-mm actual) thickness or less, no limit for more than 2-inch nominal (38-mm actual) thickness].
 - Deck[and Stair] Framing: [No. 1] [No. 2] [Construction or No. 2] [Construction, Stud, or No. 3]: [Hem-fir (north): NLGA;] [Southern pine: SPIB] [Douglas fir-larch: WCLIB, or WWPA;] [Spruce-pine-fir: NLGA;] [Douglas fir south: WWPA;] [Hem-fir: WCLIB, or WWPA;] [Douglas fir-larch (north): NLGA;] [or] [Spruce-pine-fir (south): NeLMA, WCLIB, or WWPA].
 - 3. Dimension Lumber Posts: [No. 2] [Construction or No. 2] [Construction, Stud, or No. 3]: [Hem-fir or hem-fir (north): NLGA, WCLIB, or WWPA;] [Douglas fir-larch, Douglas fir-larch (north), or Douglas fir-south: NLGA, WCLIB, or WWPA;] [or] [Mixed southern pine: SPIB].

- 4. Dimension Lumber Decking[and Stair Treads]: [No. 2] [Construction or No. 2]: [Hem-fir or hem-fir (north): NLGA, WCLIB, or WWPA;] [Douglas fir-larch, Douglas fir-larch (north), or Douglas fir-south: NLGA, WCLIB, or WWPA;] [or] [Mixed southern pine: SPIB].
- 5. Dimension Lumber Decking[and Stair Treads]: [No. 2] [Construction or No. 2] [Deck Heart or Construction Heart] [Deck Common or Construction Common] redwood; RIS.
- 6. Dimension Lumber Railing Members and Benches: [No. 1] [No. 2] [Construction or No. 2]: [Hem-fir or hem-fir (north): NLGA, WCLIB, or WWPA;] [Douglas fir-larch, Douglas fir-larch (north), or Douglas fir-south: NLGA, WCLIB, or WWPA;] [or] [Mixed southern pine: SPIB]. Provide material hand selected for freedom from characteristics, that would impair finish appearance, including decay, honeycomb, knot holes, shake, splits, torn grain, and wane.
- 7. Dimension Lumber Railing Members and Benches: [No. 1] [No. 2] [Construction or No. 2] [Heart B or Select Heart] redwood; RIS.
- B. Boards:
 - 1. Maximum Moisture Content: [15] [19] percent.
 - 2. Board Decking: 1-1/4-inch- (32-mm-) thick, radius-edged decking of any of the following species and grades:
 - a. Douglas fir-larch, Douglas fir-larch (north), or Douglas fir-south, WWPA, NLGA, or WCLIB.
 - b. Hem-fir or Hem-fir (north), [Patio 1, Select Patio, or Select Dex] [Patio 2, Commercial Patio, or Commercial Dex]; WWPA, NLGA, or WCLIB.
 - c. Southern pine, [Premium] [Standard]; SPIB.
 - 3. Board Decking Heart B or Select Heart; RIS.
 - 4. Stair Treads: 1-1/4-inch- (32-mm-) thick stepping with half-round or rounded-edge nosing and[any of] the following species and grades:
 - a. Douglas fir, C & Btr VG (Vertical Grain) stepping; NLGA, WCLIB, or WWPA.
 - b. Hem-fir, C & Btr VG (Vertical Grain) stepping; NLGA, WCLIB, or WWPA.
 - c. Southern pine, [Edge Grain B & B stepping] [Near Rift B & B stepping] [B & B stepping]; SPIB.
 - 5. Stair Treads: 1-1/4-inch- (32-mm-) thick stepping with half-round or rounded-edge nosing; redwood, [Heart Clear] [Heart B or Select Heart]; RIS.
 - 6. Railing Boards: [Douglas fir, C & Btr finish or C Select; NLGA, WCLIB, or WWPA] [Hem-fir, C & Btr finish or C Select; NLGA, WCLIB, or WWPA] [or] [Southern pine, B & B finish; SPIB].
 - 7. Railing Boards: Redwood, [Heart Clear] [Heart B or Select Heart]; RIS.
 - 8. Boards for Benches: [Douglas fir, C & Btr finish or C Select; NLGA, WCLIB, or WWPA] [Hem-fir, C & Btr finish or C Select; NLGA, WCLIB, or WWPA] [or] [Southern pine, B & B finish; SPIB].
 - 9. Boards for Benches: Redwood, [Heart Clear] [Heart B or Select Heart]; RIS.
 - 10. Board Decking [Stair Treads] [and] [Boards for Benches]: Radius-edged S4S ipe boards, clear one face.
- 2.04 TIMBER AND POLES
 - A. Timbers 5-Inch Nominal (117-mm Actual) Size and Thicker: Provide [dressed timber (S4S)] [or] [timber that is rough sawn (Rgh)] unless otherwise indicated.
 - 1. Maximum Moisture Content: [20] [23] <Insert number> percent.
 - 2. Timber Posts: Balsam fir, Douglas fir-larch, Douglas fir-larch (north), eastern hemlock tamarack (north), hem-fir, southern pine, western hemlock, or western hemlock (north); [No. 1] [No. 2]; NeLMA, NLGA, SPIB, WCLIB, or WWPA.

- 3. Timber Posts: Alaska cedar; [No. 1] [No. 2]; WCLIB.
- 4. Timber Posts: Southern pine; [No. 1] [No. 2]; SPIB.
- B. Round Wood Poles: Clean-peeled wood poles complying with ASTM D 3200; with at least 80 percent of inner bark removed and with knots and limbs cut flush with the surface.
 - 1. Species: <Insert species required>.
- 2.05 MISCELLANEOUS PRODUCTS
 - A. Fasteners: Use [stainless steel] [fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M or ASTM F 2329] unless otherwise indicated.
 - 1. Provide nails or screws, in sufficient length, to penetrate not less than 1-1/2 inches (38 mm) into wood substrate.
 - 2. Power-Driven Fasteners: CABO NER-272.
 - 3. Carbon-Steel Bolts: ASTM A 307 (ASTM F 568M) with ASTM A 563 (ASTM A 563M) hex nuts and, where indicated, flat washers all hot-dip zinc coated.
 - B. Postinstalled Anchors: Stainless-steel, [chemical] [or] [torque-controlled expansion] anchors with capability to sustain, without failure, a load equal to six times the load imposed as determined by testing per ASTM E 488.
 - C. Metal Framing Anchors: Structural capacity, type, and size indicated, made from [hot-dip galvanized steel complying with ASTM A 653/A 653M, G60 (Z180) coating] [hot-dip galvanized steel complying with ASTM A 653/A 653M, G185 (Z550) coating] [stainless steel complying with ASTM A 666, Type 304].
 - 1. Manufacturers:
 - a. Simpson Strong-Tie Co., Inc.
 - D. Deck Splines: Plastic splines designed to fit in grooves routed into the sides of decking material and be fastened to deck framing with screws.[Splines are made from UV-resistant polypropylene.]
 - 1. Products:
 - a. Blue Heron Enterprises, LLC.; Eb-Ty Hidden Deck-Fastener.
 - E. Deck Clips: Black-oxide-coated stainless-steel clips designed to be fastened to deck framing with screws, and to secure decking material with teeth.
 - 1. Products:
 - a. Tiger Claw Inc.; Tiger Claw Hidden Deck Fasteners.
 - F. Deck Tracks: Formed metal strips designed to be fastened to deck framing and to secure decking material from underside with screws. Made from [epoxy powder-coated, hot-dip galvanized] [stainless] steel.
 - 1. Products: a. Gral
 - Grabber Deckmaster, a division of John Wagner Associates, Inc.; Deckmaster.

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Set work to required levels and lines, with members plumb, true to line, cut, and fitted. Locate nailers, blocking, and similar supports to comply with requirements for attaching other construction.
 - B. Framing Standard: Comply with AF&PA's "Details for Conventional Wood Frame Construction" unless otherwise indicated.
 - C. Securely attach work to substrates, complying with the following:
 - 1. CABO NER-272 for power-driven fasteners.
 - 2. Published requirements of metal framing anchor manufacturer.
 - 3. [Table 2304.9.1, "Fastening Schedule," in the IBC] [Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings].

- D. Secure decking to framing with concealed decking fasteners.
- E. Secure stair treads and risers by gluing and [nailing] [screwing] to carriages. Countersink fastener heads, fill flush, and sand filler. Extend treads over carriages[and finish with bullnose edge].
- F. Railing Installation: Countersink fastener heads, fill flush, and sand filler.
 - 1. Fit balusters to railings, glue, and [nail] [screw] in place.
 - 2. Secure newel posts to stringers and risers with [through bolts] [lag screws] [countersunk-head wood screws and glue].
 - 3. Secure wall rails with metal brackets. Fasten freestanding railings to newel posts and to trim at walls with countersunk-head wood screws or rail bolts and glue.

SECTION 061600 - SHEATHING

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: ICC-ES evaluation reports for preservative-treated plywood.

PART 2 - PRODUCTS

- 2.01 WOOD PANEL PRODUCTS, GENERAL
 - A. Plywood: DOC PS 1.
 - B. Certified Wood: Wood-based materials shall be certified as "FSC Pure" or "FSC Mixed Credit" according to FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship," and to FSC STD-40-004, "FSC Standard for Chain of Custody Certification."
- 2.02 TREATED PLYWOOD
 - A. Preservative-Treated Plywood: AWPA U1; Use Category UC2.
 - 1. Use treatment containing no arsenic or chromium.
 - 2. Kiln-dry plywood after treatment to a maximum moisture content of 15 percent.
 - B. Provide preservative-treated plywood for items indicated on Drawings and plywood in contact with masonry or concrete or used with roofing, flashing, vapor barriers, and waterproofing.
 - C. Fire-Retardant-Treated Plywood: Products with a flame-spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.
 - 1. Use Exterior type for exterior locations and where indicated.
 - 2. Use Interior Type A unless otherwise indicated.
 - 3. For roof sheathing and where high-temperature fire-retardant treatment is indicated, span ratings for temperatures up to 170 deg F shall be not less than span ratings specified.
 - 4. Identify with appropriate classification marking of a testing and inspecting agency acceptable to authorities having jurisdiction.
 - D. Provide fire-retardant-treated plywood for items indicated on Drawings.
- 2.03 WALL SHEATHING
 - A. Plywood Wall Sheathing: Exterior, Structural I, Exposure 1 sheathing.
 - B. Plywood Roof Sheathing: Exterior, Structural 1, Exposure 1 sheathing.
 - C. Composite Nail Base Insulated Roof Sheathing: Polyisocyanurate foam with oriented strand board laminated to one face complying with ASTM C 1289, Type V.
- 2.04 SUBFLOORING AND UNDERLAYMENT
 - A. Combination Subfloor-Underlayment:
 - 1. Plywood Combination Subfloor-Underlayment: DOC PS 1, Exterior, Structural I, single-floor panels.
 - B. Subflooring:
 - 1. Plywood Subflooring: [Exterior, Structural I [Exterior] [Exposure 1, Structural I] [Exposure 1] single-floor panels or sheathing.
 - 2. Oriented-Strand-Board Subflooring: Exposure 1[, Structural I sheathing][single-floor panels or sheathing].
- 2.05 MISCELLANEOUS PRODUCTS
 - A. Fasteners: Size and type indicated.
 - 1. For roof and wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M of Type 304 stainless steel.
 - 2. Power-Driven Fasteners: CABO NER-272.
 - B. Sheathing Joint-and-Penetration Treatment Materials:

- 1. Sealant for Glass-Mat Gypsum Sheathing: Silicone emulsion sealant, recommended by tape and sheathing manufacturers for application indicated.
- 2. Sheathing Tape for Glass-Mat Gypsum Sheathing: Self-adhering, glass-fiber tape recommended by sheathing and tape manufacturers for application indicated.
- 3. Sheathing Tape for Foam-Plastic Sheathing: Pressure-sensitive plastic tape recommended by sheathing manufacturer for sealing joints and penetrations in sheathing.
- C. Adhesives for Field Gluing Panels to Framing: APA AFG-01.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Securely attach to substrates, complying with the following:
 - 1. CABO NER-272 for power-driven fasteners.
 - 2. [Table 2304.9.1, "Fastening Schedule," in the IBC] [Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings].
- B. Fastening Methods:
 - 1. Combination Subfloor-Underlayment:
 - a. Nail to wood framing.
 - b. Screw to cold-formed metal framing.
 - 2. Subflooring:
 - a. Nail to wood framing.
 - b. Screw to cold-formed metal framing.
 - 3. Wall and Roof Sheathing:
 - a. Nail to wood framing.
 - b. Screw to cold-formed metal framing.

SECTION 061713 - LAMINATED VENNER LUMBER

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Product Data including specifications and installation instructions, ICC-ES evaluation reports the complete furnishings and installation of all Microllam® laminated veneer lumber (LVL) as shown on the drawings herein specified and necessary to complete the work.
 - B. Code Approvals: These products shall be designed and manufactured to the standards set forth in the ICC Evaluation Service, Inc. report ESR-1387.

PART 2 - PRODUCTS

- 2.01 PERFORMANCE REQUIREMENTS
 - A. Structural Performance: Microllam[®] LVL shall be designed to fit the dimensions and loads indicated on the plans Comply with applicable requirements and recommendations of the following publications:
 - 1. TPI 1, "National Design Standard for Metal Plate Connected Wood Truss Construction."
 - 2. TPI DSB, "Recommended Design Specification for Temporary Bracing of Metal Plate Connected Wood Trusses."
 - 3. TPI BCSI, "Guide to Good Practice for Handling, Installing, Restraining & Bracing Metal Plate Connected Wood Trusses."
 - B. Wood Structural Design Standard: Comply with applicable requirements in AF&PA's "National Design Specifications for Wood Construction" and its "Supplement."

2.02 MATERIALS

- A. Laminated Veneer Lumber: Materials shall comply with ICC ES ESR-1387.
- B. Adhesives: Adhesives shall be of the waterproof type conforming to the requirements of ASTM D-2559.
- C. Fasteners: Where beams are exposed to weather or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.
- D. Metal Framing Anchors: Provide framing anchors made from hot-dip, zinc-coated steel sheet complying with ASTM A 653/A 653M, G60 (Z180) coating designation.

2.03 FABRICATION

A. Microllam® LVL shall be manufactured by Weyerhaeuser in a plant listed in the reports referred to above and under the supervision of an approved third-party inspection agency. It shall be manufactured in a continuous process with all grain parallel with the length of the members. All members are to be free of finger or scarf joints or mechanical connections in full-length members.

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Install and brace beams according to TPI recommendations and as indicated. Install beams plumb, square, and true to line and securely fasten to supporting construction.
 - B. Anchor beams securely at bearing points; use metal beam or floor truss hangers as applicable. Install fasteners through each fastener hole in metal framing anchor.
 - C. Install and fasten permanent bracing during beam erection and before construction loads are applied. Anchor ends of permanent bracing where terminating at walls or beams.
 - 1. Install bracing to comply with [Section 061000 "Rough Carpentry."] [Section 061053 "Miscellaneous Rough Carpentry."]
 - 2. Install and fasten strongback bracing vertically against vertical web of parallelchord floor trusses at centers indicated.
 - D. Install LVL beams within installation tolerances in TPI 1.
 - E. Do not alter beams in field.

DALE 2013 Project Manual SCI-Arc/Caltech

F. Remove LVL beams that are damaged or do not meet requirements and replace with beams that do meet requirements.

SECTION 064100 - ARCHITECTURAL WOOD CASEWORK

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Shop Drawings.
 - B. Installer Qualifications: Fabricator of products.
 - C. Environmental Limitations: Do not deliver or install woodwork until building is enclosed, wet work is completed, and HVAC system is operating.

PART 2 - PRODUCTS

- 2.01 ARCHITECTURAL CABINETS
 - A. Quality Standard: AWI, AWMAC, and WI's "Architectural Woodwork Standards."
 - B. Certified Wood: Wood-based materials shall be certified as "FSC Pure" or "FSC Mixed Credit" according to FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship," and to FSC STD-40-004, "FSC Standard for Chain of Custody Certification."
 - C. Plastic-Laminate Cabinets: Economy grade.
 - 1. Type of Construction: Frameless.
 - 2. Cabinet and Door and Drawer Front Interface Style: Flush overlay.
 - 3. Laminate Cladding: Horizontal surfaces other than tops, Grade HGS; postformed surfaces, Grade HGP; vertical surfaces, Grade HGS; edges, Grade HGS PVC tape, PVC edge banding, 0.12 inch thick; semiexposed surfaces, Grade VGS thermoset decorative panels.
 - 4. Drawer Sides and Backs: Thermoset decorative panels.
 - 5. Drawer Bottoms: Thermoset decorative panels.

2.02 MATERIALS

- A. Wood Moisture Content: 5 to 10 percent.
- B. Medium-Density Fiberboard: ANSI A208.2, Grade 130, made with binder containing no urea formaldehyde.
- C. Particleboard: ANSI A208.1, Grade M-2, made with binder containing no urea formaldehyde.
- D. Veneer-Faced Panel Products (Hardwood Plywood): HPVA HP-1, made with adhesive containing no urea formaldehyde.
- E. High-Pressure Decorative Laminate: NEMA LD 3.
 - 1. Manufacturers:
 - a. Formica Corporation.
- 2.03 CABINET HARDWARE AND ACCESSORY MATERIALS
 - A. Butt Hinges: 2-3/4-inch, five-knuckle steel hinges made from 0.095-inch thick metal, and as follows:
 - 1. Semiconcealed Hinges for Flush Doors: BHMA A156.9, B01361.
 - 2. Semiconcealed Hinges for Overlay Doors: BHMA A156.9, B01521.
 - B. Frameless Concealed Hinges (European Type): BHMA A156.9, B01602, 170 degrees of opening, self-closing.
 - C. Wire Pulls: Back mounted, solid [metal] [plastic], [4 inches (100 mm) long, 5/16 inch (8 mm) in diameter] [5 inches (127 mm) long, 2-1/2 inches (63.5 mm) deep, and 5/16 inch (8 mm) in diameter].
 - D. Catches: [Magnetic catches, BHMA A156.9, B03141] [Push-in magnetic catches, BHMA A156.9, B03131] [Roller catches, BHMA A156.9, B03071] [Ball friction catches, BHMA A156.9, B03013].
 - E. Adjustable Shelf Standards and Supports: BHMA A156.9, B04071; with shelf rests, B04081
 - F. Shelf Rests: BHMA A156.9, B04013; metal, two-pin type with shelf hold-down clip.
 - G. Drawer Slides: BHMA A156.9, B05091.

- 1. Box Drawer Slides: Grade 1HD-100.
- 2. Trash Bin Slides: Grade 1HD-100.
- H. Drawer Locks: BHMA A156.11, E07041.
- I. Exposed Hardware Finishes: Comply with BHMA A156.18 for BHMA code number indicated.
 - 1. Product: Atlas Homewares Tab Cabinet Pull 4-5/16"
 - a. Finish; High Gloss White
 - b. Quantity: 15
- J. Furring, Blocking, Shims, and Hanging Strips: Fire-retardant-treated hardwood lumber, kiln dried to 15 percent moisture content.

2.04 FABRICATION

- A. Complete fabrication to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.
- 2.05 SHOP FINISHING OF WOOD CABINETS
 - A. Finishes: Same grades as items to be finished.
 - B. Finish cabinets at the fabrication shop; defer only final touch up until after installation.

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Before installation, condition cabinets to average prevailing humidity conditions in installation areas.
 - B. Install cabinets to comply with referenced quality standard for grade specified.
 - C. Install cabinets level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb (including tops) to a tolerance of 1/8 inch in 96 inches.
 - D. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
 - E. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Fasten with countersunk concealed fasteners and blind nailing. Use fine finishing nails or finishing screws for exposed nailing, countersunk and filled flush.
 - F. Cabinets: Install so doors and drawers are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation.
 - 1. Fasten wall cabinets through back, near top and bottom, at ends and not more than 16 inches o.c. with No. 10 wafer-head screws sized for 1-inch penetration into wood framing, blocking, or hanging strips.

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

SECTION 072120 - THERMAL INSULATION

PART 1- GENERAL

- 1.1 Summary
 - A. This section covers thermal insulation
- PART 2- PRODUCTS
- 2.1 Thermal batt insulation
 - A. Roxul Comfortbatt insulation
 - i. Manufacturer: Roxul
 - ii. Comfortbatt R30 24" Steel Stud
 - iii. Comfortbatt R24 24" Steel Stud
 - iv. Comfortbatt R23 16" Wood Stud
 - v. Fire resistant, non-combustible
 - vi. Chemically inert, non-corrosive
 - vii. <u>http://www.roxul.com/products/building+envelope/roxul+comfortbatt</u>

PART 3- EXECUTION

- 3.1 Install insulation following manufacturer instructions
 - A. Cut batts with serrated knife
 - B. Fill between studs

SECTION 075000 – MEMBRANE ROOFING

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Shop Drawings and ICC-ES evaluation reports for components of membrane roofing system.
 - B. Warranties: Manufacturer's standard or customized form, without monetary limitation, signed by membrane manufacturer agreeing to repair leaks due to defects in materials or workmanship for period of 10 years.
- 1.02 DEFINITIONS
 - A. Exterior unstructured vinyl siding: An architectural siding that provides weather protection and is wholly supported by the building to which it is attached.
- PART 2 PRODUCTS
- 2.01 PERFORMANCE REQUIREMENTS
 - A. Structural Performance: Provide exterior fabric capable of withstanding the effects of gravity loads and the following loads and stresses within and under conditions indicated.
 1. Wind Loads:
 - a. Uniform pressure of 18.6 lbs/sq. ft acting upward or downward.
 - B. Energy Performance: Initial Solar Reflectance not less than 0.70 and Thermal Emittance not less than 0.75 when tested according to CRRC-1.
 - C. Solar Reflectance Index: Not less than 78 when calculated according to ASTM E 1980.
 - D. Exterior Fire-Test Exposure: ASTM E 108, [Class A] [Class B] [Class C].

2.02 MATERIALS

A. PVC COATED POLYESTER:

- 1. Manufacturers:
 - a. NAIZIL INC.
- Product: High tenacity 1100 Dtex polyester PVC coated fabric, total weight 680 g/m
 Self---extinguishing, ROTOFLUO W fluoridised mixed acrylic/resin lacquering.
- 3. Weight: 24 ounce/yd2.
- 4. Width: 98.5 inches.
- 5. Color Fade Resistance: UV resistant. Most colors tested up to 1500 hrs in SAE 1960j fadeometer with minimal or no change. Fade resistant to most chemicals.
- 6. Durability: Ten years,
- 7. Mildew Resistance: Fabric will not support growth of mildew.
- 8. Chemical Resistance: Highly resistant to acids, alkalis and solvents.
- 9. Water Repellency: Excellent
- 10. Oil Repellency: AATCC 118-1997 GRADE 5
- 11. Bonding: can be heat sealed or sewn

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Install substrate board with long joints continuous and perpendicular to roof slopes with end joints staggered. Tightly butt substrate boards together and fasten to wood joist
 - B. Install roofing membrane system according to roofing system manufacturer's written instructions, applicable recommendations in ARMA/NRCA's "Quality Control Guidelines for the Application of Polymer Modified Bitumen Roofing," and as follows:

C. Maintain uniform side and staggered end laps. Bond and seal laps, leaving no voids.

SECTION 079100 – PREFORMED JOINT SEALS

PART 1- GENERAL

- 1.1 Summary
 - A. Section Includes:
 - i. Seals for module gap

PART 2- PRODUCTS

- A. QuickJoint
 - i. Manufacturer: EMSEAL JOINT SYSTEMS
 - ii. Self-Extinguising
 - iii. Fire-Retardant-acrylic-impregnated foam
 - iv. Material Cover: Silicone
 - v. Gap sizes: $\frac{1}{2}$ " to 6"
 - vi. R-value 5.696
- PART 3- EXECUTION
- 3.1 Installation
 - A. Ducts shall be installed by a license contractor
 - B. Ducts prone to condensation shall be insulated to a minimum R-value of R8
 - C. Follow manufacturer instructions for attachment, support, and sealing
 - D. Installation shall comply with all applicable codes
 - E. Ducts shall be routed to reduce the number of bends where possible

DIVISION 08 – OPENINGS

SECTION 083213 – SLIDING DOORS

PART 1- GENERAL

- 1.1 SUMMARY
 - A. Section includes:
 - i. Sliding Metal Doors
 - B. Shop Drawings

- i. Double Click Icon:
- C. Related sections
 - i. Section 07270 (07 27 00) Air Barriers: Water-resistant barrier.
 - ii. Section 07920 (07 92 00) Joint Sealants: Sealants and caulking.
- 1.2 REFERENCES
 - A. American Architectural Manufacturers Association (AAMA)
 - B. American Society for Testing and Materials (ASTM)
 - C. Aluminum Association (AA)
 - D. National Wood Window & Door Association (NWWDA)
- 1.3 SYSTEM DESCRIPTION
 - A. General: In addition to requirements shown or specified, comply with:
 - i. Applicable provisions of AAMA Windows and Sliding Glass Doors Manual for Design, materials fabrication and installation of component parts.
 - B. Design Requirements: Arcadia ULT-5820 Series (thermal/non-thermal) Multi-Sliding Doors.
 - C. Performance Requirements: This product is designed for applications only where AAMA/NWWDA ratings for air, water penetration and structural performance is not required.
- 1.4 QUALITY ASSURANCE
 - A. Single Source Responsibility
 - i. Obtain entrances, storefronts, ribbon walls, window walls, curtain walls, window systems and finish through one source from a single manufacturer.
 - B. Provide test reports from AAMA accredited laboratories certifying the performances as specifies in 1.3.
- 1.5 WARRANTY
 - A. Warranted against failure and/or deterioration of metals due to manufacturing process for a period of one (1) year providing the product was installed in accordance to Arcadia's installation instructions and maintained in accordance with Arcadia's operations manual

PART 2- PRODUCTS

- 2.1 MANUFACTURERS
 - A. Acceptable Manufacturers:
 - i. Arcadia, Inc., 3225 East Washington BLVD., Vernon, CA. Telephone 323/269-7300, FAX 323/269-7390
 - B. Acceptable Products:
 - i. Arcadia Inc., Series ULT-5820 (thermal/non-thermal) Multi-slide door.
- 2.2 MATERIALS

A. Windows & doors fabricated from aluminum extrusions of 6063-T5 alloy and temper with a minimum wall thickness of 0.090" for the door frame sill member and a minimum of

0.072" for all other members including frame, panel and optional horizontal muntins. The aluminum shall be free of defects which impair strength and appearance.

- B. Component parts and accessories shall be of aluminum alloy, stainless steel or nonmetallic materials which will neither deteriorate nor promote corrosion.
- C. Thermal break barrier (optional) shall provide a continuous uninterrupted thermal separation around the entire perimeter of the panel only which shall consist of a two-part, chemically

curing, high-strength urethane.

- D. Sill shall have a full-length nylon track cap.
- E. Panel members shall have a minimum of 5/8" glass penetration into the aluminum.
- F. Operable panel shall be equipped with two adjustable steel tandem ball bearing rollers (all stainless steel tandem rollers and housings optional).
- G. Locking device Adams-Rite maximum security lock MS+1850 with stainless steel hook bolt standard. Multi-slider doors & windows including all pocket windows can be supplied with

locking flush pulls and an Adams-Rite MS+1847 stainless steel mortise lock-optional.

- H. Operating panels shall have an extruded 3/4" diameter 8" O.C. aluminum wire pull handle set in either clear or black architect finish other colors available.
- I. Operating panels shall contain a bottom rail vinyl sweep.
- J. Horizontal members shall have two contact points incorporating silicone treated woven pile with mylar center fins. All vertical members shall have four contact points of silicone treated woven pile with mylar center fins. All shall be held in integral extruded slots and secured to prevent movement or loss while operating sash.
- K. Fixed and/or sliding panels shall be constructed to allow for either factory or field glazing. Panel glazing shall be accomplished using a "marine" style reusable, wraparound

black flexible PVC or EPDM material per commercial standard CS23060 without the need for separate glazing beads or putty style bedding compounds. The glazing channel shall be provided with the unit for either 1" insulating glass or 3/16" or 1/4" single glazing.

- L. All assembly and installation screws shall be 18-8 or 410 stainless steel.
- M. Screen made of extruded aluminum frame and screened with 18 x 16 fiber mesh.
- 2.3 FINISH
 - A. Finish all exposed areas of aluminum and components as indicated (excluding hardware):
 - i. Clear Anodized Class I (215 R1-0.4-0.7 mils thick) meeting AAMA 611.89
 - ii. (or) Dark Bronze Anodized Class 1 (0.7 mils thick) meeting AAMA 611.89
 - iii. (or) Standard finish is White baked on enamel-Duracron paint PPG UC-UC-42737 meeting AAMA 2603-98
 - iv. (or0 Standard finish is Quaker Bronze baked on enamel-Duracron paint PPG UC-88426 meeting AAMA 2603-98.
 - v. (or) Custom colors in a baked-on enamel or Duranar finish are also available AAMA 2604.98 and AAMA 2605.98 subject to minimum square footage requirements.
- 2.4 FABRICATION
 - A. Primary frame must be a minimum of 2" deep per panel required.

- B. Frame sections interlock together to form any number of repetitious sections, each capable of accommodating a panel.
- C. Each frame corner joint shall be secured with two stainless steel screws.
- D. D. Profile of the fixed jamb and the latching jamb shall include two weatherstripped pockets to receive the fixed and latching stiles.
- E. Fixed and sliding panels shall have a nominal 1-1/2" depth and shall have overlapped joints of the mortise type to provide extra strength and interlocking mechanically fastened hairline joints.
- F. Interlocks and latching stiles shall be heavy gauge tubular sections assuring precise alignment and to resist twisting under load conditions.

PART 3- EXECUTION

- 3.1 EXAMINATIONS
 - A. Examine conditions and verify substrate conditions are acceptable for product installation.
- 3.2 INSTALLATION
 - A. Install in accordance with approved shop drawings and manufacturers installation instructions.
- 3.3 FIELD QUALITY CONTROL
 - A. Contractor's responsibility to make all necessary final adjustments to attain normal operation of each door and its mechanical hardware.

DIVISION 09 – FINISHES

SECTION 093000 - TILING

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Product Data and Samples.
 - B. Obtain tile of each type and color or finish from same production run for each contiguous area.
 - C. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use.[Comply with requirements in ANSI A137.1 for labeling ceramic tile packages.]
- PART 2 PRODUCTS
- 2.01 CERAMIC TILE
 - A. Ceramic tile that complies with Standard grade requirements in ANSI A137.1, "Specifications for Ceramic Tile."
 - B. Tile Type: Glazed, square-edged quarry tile.
 - 1. Manufacturers:
 - a. Daltile; Division of Dal-Tile International Inc.
 - 2. Face Size: 6 by 3 inches
 - 3. Thickness: 3/8".
 - 4. Wearing Surface: Nonabrasive, smooth.
 - 5. Finish: clear glaze.
 - 6. Color and Pattern: white subway running bond pattern.
 - 7. Grout Color: white.
 - 8. Trim Units: Coordinated with sizes and coursing of adjoining flat tile
 - a. Base: Coved.
 - b. Wainscot Cap: Surface bullnose.
 - C. Cementitious Backer Units: ANSI A118.9 or ASTM C 1325, 1/2 inch (12.7 mm) thick.
 - 1. Products:
 - a. USG Corporation; DUROCK Cement Board.
 - D. Fiber-Cement Underlayment: ASTM C 1288, 1/2 inch thick.
 - 1. Products: [One of the following:]
 - a. CertainTeed Corp.; FiberCement Underlayment.
 - E. Low-Emitting Materials: Adhesives and fluid-applied waterproofing membranes shall have a VOC content of 65 g/L or less.
 - F. Low-Emitting Materials: Adhesives and fluid-applied waterproofing membranes shall comply with Green Seal's GS-36 and with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
 - G. Waterproofing Membranes for Thin-Set Installations: ANSI A118.10, [fabric-faced chlorinated polyethylene, PVC, or polyethylene sheet product] [fabric-reinforced modified bituminous product] [fabric-reinforced liquid-latex or elastomeric polymer product] [unreinforced liquid-latex or elastomeric polymer product] [urethane waterproofing and adhesive].
 - H. Setting and Grouting Materials: Comply with material standards in ANSI's "Specifications for the Installation of Ceramic Tile" that apply to materials and methods indicated.
 - 1. Thin-Set Mortar Type: Latex-portland cement.
 - a. Manufacturers:
 - 1) MAPEI Corporation.
 - 2. Thin-Set Mortar Type for Wood Subfloors: EGP latex-portland cement.

- a. Manufacturers:
 - 1) MAPEI Corporation.
- 3. Water-Cleanable, Tile-Setting Epoxy:
 - a. Manufacturers:
 - 1) MAPEI Corporation.
 - Grout Type: Standard cement
 - a. Manufacturers:
 - 1) MAPEI Corporation.
- 5. Grout Type: Polymer modified
 - a. Manufacturers:
 - 1) MAPEI Corporation.

PART 3 - EXECUTION

4.

- 3.01 INSTALLATION
 - A. Comply with TCA's "Handbook for Ceramic Tile Installation" for TCA installation methods specified in tile installation schedules. Comply with parts of ANSI A108 Series "Specifications for Installation of Ceramic Tile" that are referenced in TCA installation methods, specified in tile installation schedules, and apply to types of setting and grouting materials used.
 - 1. For installations indicated below, follow procedures in ANSI's "Specifications for the Installation of Ceramic Tile" for providing 95 percent mortar coverage.
 - a. Exterior tile floors.
 - b. Tile floors in wet areas.
 - c. Tile swimming pool decks.
 - d. Tile floors in laundries.
 - e. Tile floors composed of tiles 8 by 8 inches or larger.
 - f. Tile floors composed of rib-backed tiles.
 - B. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.
 - C. Lay tile in grid pattern unless otherwise indicated. Align joints where adjoining tiles on floor, base, walls, and trim are the same size.
 - D. Install cementitious backer units and fiber-cement underlayment and treat joints according to ANSI A108.11.
 - E. Where indicated, prepare substrates to receive waterproofing by applying a reinforced mortar bed that complies with ANSI A108.1A and is sloped 1/4 inch per foot toward drains.
 - F. Install waterproofing to comply with ANSI A108.13.
 - G. Do not install tile over waterproofing until waterproofing has cured and been tested to determine that it is watertight.
 - H. Install stone thresholds in same type of setting bed as adjacent floor unless otherwise indicated. At locations where mortar bed (thickset) would otherwise be exposed above adjacent floor finishes, set thresholds in latex-portland cement mortar (thin set).
 - I. Apply sealer to cleaned stone tile flooring according to sealer manufacturer's written instructions.
 - J. Interior Floor Tile Installation Method(s):
 - 1. Over Waterproof Membranes on Concrete Subfloors: [TCA F121 (cement mortar bed)] [TCA F122 (thin-set mortar)].
 - 2. Over Wood Subfloors: thin-set mortar bonded on cementitious backer units or fiber cement underlayment

K.

- 3. Over Waterproof Membranes on Wood Subfloors: TCA F121 (cement mortar bed).
- Interior Wall Tile Installation Method(s):
 - 1. Bathtub Wall Installations, Wood Studs or Furring: TCA B413 with thin-set mortar thin-set mortar on water-resistant gypsum board

SECTION 096500 – RESILIENT FLOORING

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Product Data and Samples.
 - B. Extra Materials:
 - 1. Resilient Floor Tile: Deliver to Owner one box for every 36 Square feet, 17 boxes or fraction thereof, of each type and color of resilient floor tile installed.

PART 2 - PRODUCTS

- 2.01 VINYL COMPOSITION FLOOR TILE
 - A. Products:
 - 1. Armstrong World Industries, Inc.; Natural living D2404.
 - B. Color and Pattern: Black Walnut.
 - C. ASTM F 1066, Class 3 (surface-pattern tile).
 - D. Fire-Test Response: Critical radiant flux classification of Class I, not less than 0.45 W/sq. cm per ASTM E 648.
 - E. Wearing Surface: Smooth
 - F. Thickness: 0.125 inch
 - G. Size: 4 by 36 inches
- 2.02 INSTALLATION ACCESSORIES
 - A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement- or blended hydraulic cement-based formulation provided or approved by flooring manufacturer for applications indicated.
 - B. Stair-Tread-Nose Filler: Two-part epoxy compound recommended by resilient tread manufacturer to fill nosing substrates that do not conform to tread contours.
 - C. Adhesives: Water-resistant type recommended by manufacturer to suit floor covering and substrate conditions indicated.
 - 1. Low-Emitting Materials: Adhesives shall have a VOC content of [50] [60] g/L or less.
 - 2. Low-Emitting Materials: Adhesives shall comply with Green Seal's GS-36 and with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
 - D. Chemical-Bonding Compound: Manufacturer's product for chemically bonding seams.
 - 1. Low-Emitting Materials: Chemical-bonding compound shall have a VOC content of 510 g/L or less.
 - 2. Low-Emitting Materials: Chemical-bonding compound shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
 - E. Metal Edge Strips: Extruded aluminum with mill finish of width shown, of height required to protect exposed edges of tiles, and in maximum available lengths to minimize running joints.
 - F. Integral-Flash-Cove-Base Accessories: 1-inch radius cove strip and square metal, vinyl, or rubber cap; both provided or approved by floor covering manufacturer.
 - 1. Provide metal inside and outside corners and end stops.
 - G. Floor Polish: Provide protective liquid floor polish products as recommended by manufacturer.
- PART 3 EXECUTION
- 3.01 INSTALLATION
 - A. Prepare concrete substrates according to ASTM F 710. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.

- B. Unroll sheet floor coverings and allow them to stabilize before cutting and fitting.
- C. Maintain uniformity of resilient sheet flooring direction, and match edges for color shading at seams.
- D. Minimize number of seams; place seams in inconspicuous and low-traffic areas, at least 6 inches away from parallel joints in substrates.
- E. Lay out tiles so tile widths at opposite edges of room are equal and are at least one-half of a tile.
- F. Match tiles for color and pattern by selecting tiles from cartons in same sequence as manufactured and packaged. Lay tiles [with grain running in one direction] [in basketweave pattern with grain direction alternating in adjacent tiles] [in patterns indicated].
- G. Adhesively install resilient wall base and accessories.
- H. Install wall base in maximum lengths possible. Apply to walls, columns, pilasters, casework, and other permanent fixtures in rooms or areas where base is required.
- I. Install stair-tread-nose filler to nosing substrates that do not conform to tread contours.
- J. Install reducer strips at edges of floor coverings that would otherwise be exposed.
 - 1. Install metal corners and end stops.
- K. Floor Polish: Remove soil, visible adhesive, and surface blemishes from floor covering before applying liquid floor polish.
 - 1. Apply two coat(s).

DALE 2013

SCI-Arc/Caltech

Project Manual

SECTION 099000 – PAINTING AND COATING

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals:
 - 1. Product Data. Include printout of MPI's "MPI Approved Products List" with product highlighted.
 - 2. Samples.
 - B. Mockups: Full-coat finish Sample of each type of coating, color, and substrate, applied where directed.
- PART 2 PRODUCTS

2.01 PAINT

- A. Manufacturers:
 - 1. Dunn-Edwards Corporation.
- B. MPI Standards: Provide materials that comply with MPI standards indicated and listed in its "MPI Approved Products List."
 - 1. Exterior Painting Materials:
 - a. Primer, Latex: MPI #6.
 - b. Primer, Alkyd: MPI #5.
 - c. Latex, Exterior Flat (Gloss Level 1): MPI #10.
 - d. Latex, Exterior Low Sheen (Gloss Level 3-4): MPI #15.
 - e. Latex, Exterior Semigloss (Gloss Level 5): MPI #11.
 - f. Latex, Exterior, Gloss (Gloss Level 6): MPI #119.
 - g. Light Industrial Coating, Exterior, Water Based (Gloss Level 3): MPI #161.
 - h. Light Industrial Coating, Exterior, Water Based, Semigloss (Gloss Level 5): MPI #163.
 - i. Light Industrial Coating, Exterior, Water Based, Gloss (Gloss Level 6): MPI #164.
 - j. Alkyd, Exterior Flat (Gloss Level 1): MPI #8.
 - k. Alkyd, Exterior, Semigloss (Gloss Level 5): MPI #94.
 - l. Alkyd, Exterior Gloss (Gloss Level 6): MPI #9.
 - m. Alkyd, Quick Dry, Semigloss (Gloss Level 5): MPI #81.
 - n. Alkyd, Quick Dry, Gloss (Gloss Level 7): MPI #96.
 - o. Floor Paint, Latex, Low Gloss (Maximum Gloss Level 3): MPI #60.
 - p. Floor Enamel, Alkyd, Gloss (Gloss Level 6): MPI #27.
 - 2. Interior Painting Materials:
 - a. Primer Sealer, Latex: MPI #50.
 - b. Primer, Latex, for Interior Wood: MPI #39.
 - c. Latex, Interior, Flat, (Gloss Level 1): MPI #53.
 - d. Latex, Interior, (Gloss Level 2): MPI #44.
 - e. Latex, Interior, (Gloss Level 4): MPI #43.
 - f. Latex, Interior, Semigloss, (Gloss Level 5): MPI #54.
 - 3. Staining and Clear Finishing Materials:
 - a. Wood Filler Paste: MPI #91.
 - b. Primer, Latex for Exterior Wood: MPI #6.
 - c. Primer, Alkyd for Exterior Wood: MPI #5.
 - d. Primer, Oil for Exterior Wood: MPI #7.
 - e. Preservative, for Exterior Wood: MPI #37.
 - f. Stain, for Exterior Wood Decks: MPI #33.
 - g. Stain, Semitransparent, for Interior Wood: MPI #90.
 - h. Varnish, Water Based, Clear, Satin (Gloss Level 4): MPI #128.

DALE 2013 SCI-Arc/Caltech Project Manual

i.

Danish Oil: MPI #92.

- 4. High-Performance Coating Materials:
 - a. Block Filler, Latex: MPI #4.
 - b. Block Filler, Epoxy: MPI #116.
 - c. Primer Sealer, Latex: MPI #50.
 - d. Primer, Zinc-Rich, Epoxy: MPI #20.
 - e. Primer, Epoxy, Anticorrosive: MPI #101.
 - f. Polyurethane, Two-Component, Pigmented, Gloss (Gloss Level 6): MPI #72.
- C. Material Compatibility: Provide materials that are compatible with one another and with substrates.
 - 1. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.
- D. Use interior paints and coatings that comply with the following limits for VOC content:
 - 1. Flat Paints and Coatings: [50] <Insert value> g/L.
 - 2. Nonflat Paints, Coatings: [150] <Insert value> g/L.
 - 3. Dry-Fog Coatings: [400] <Insert value> g/L.
 - 4. Primers, Sealers, and Undercoaters: [200] <Insert value> g/L.
 - 5. Anticorrosive and Antirust Paints Applied to Ferrous Metals: [250] <Insert value> g/L.
 - 6. Zinc-Rich Industrial Maintenance Primers: [340] <Insert value> g/L.
 - 7. Pretreatment Wash Primers: [420] <Insert value> g/L.
 - 8. Clear Wood Finishes, Varnishes: [350] <Insert value> g/L.
 - 9. Clear Wood Finishes, Lacquers: [550] <Insert value> g/L.
 - 10. Floor Coatings: [100] <Insert value> g/L.
 - 11. Shellacs, Clear: [730] <Insert value> g/L.
 - 12. Shellacs, Pigmented: [550] <Insert value> g/L.
 - 13. Stains: [250] <Insert value> g/L.
 - Colors: As [selected] [scheduled].
- PART 3 EXECUTION

E.

- 3.01 PREPARATION
 - A. Comply with recommendations in MPI's "MPI Architectural Painting Specification Manual" applicable to substrates indicated.
 - B. Remove hardware, lighting fixtures, and similar items that are not to be painted. Mask items that cannot be removed. Reinstall items in each area after painting is complete.
 - C. Clean and prepare surfaces in an area before beginning painting in that area. Schedule painting so cleaning operations will not damage newly painted surfaces.
- 3.02 APPLICATION
 - A. Comply with recommendations in MPI's "MPI Architectural Painting Specification Manual" applicable to substrates indicated.
 - B. Paint exposed surfaces, new and existing, unless otherwise indicated.
 - 1. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces.
 - 2. Paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 3. Paint the back side of access panels.
 - 4. Color-code mechanical piping in accessible ceiling spaces.
 - 5. Do not paint prefinished items, items with an integral finish, operating parts, and labels unless otherwise indicated.
 - C. Apply paints according to manufacturer's written instructions.

DALE 2013 SCI-Arc/Caltech Project Manual

- 1. Use brushes only for exterior painting and where the use of other applicators is not practical.
- 2. Use rollers for finish coat on interior walls and ceilings.
- D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
 - 1. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.
- E. Apply stains and transparent finishes to produce surface films without color irregularity, cloudiness, holidays, lap marks, brush marks, runs, ropiness, or other imperfections. Use multiple coats to produce a smooth surface film of even luster.
- 3.03 EXTERIOR PAINT APPLICATION SCHEDULE
 - A. Concrete, Nontraffic Surfaces:
 - 1. Flat Latex: Two coats over primer: MPI EXT 3.1A.
 - 2. Flat Latex: Two coats over alkali-resistant primer: MPI EXT 3.1K.
 - B. Steel:
 - 1. Semigloss Water-Based, Light-Industrial Coating: Two coats over alkyd anticorrosive primer.
 - C. Wood: Including wood trim, wood-based panel products.
 - 1. Flat Latex: Two coats over latex primer: MPI EXT 6.3L.
- 3.04 INTERIOR PAINT APPLICATION SCHEDULE
 - A. Concrete, Nontraffic Surfaces:
 - 1. Flat Latex: Two coats: MPI INT 3.1E.
 - 2. Flat Latex: Two coats over primer/sealer: MPI INT 3.1A.
 - B. Steel:
 - 1. Semigloss, Quick-Dry Enamel: Two coats over quick-drying alkyd metal primer: MPI INT 5.1A.
 - C. Galvanized Metal:
 - 1. Flat Latex: Two coats over waterborne galvanized-metal primer: MPI INT 5.3J.
 - D. Wood: Including wood trim, door and wood-based panel products.
 - 1. Semigloss Latex: Two coats over latex primer for wood: MPI INT 6.3T.
 - E. Gypsum Board:
 - 1. Flat and Semigloss Latex: Two coats over latex primer/sealer: MPI INT 9.2A.
- 3.05 EXTERIOR STAIN AND CLEAR FINISH APPLICATION SCHEDULE
 - A. Wood, traffic surfaces, including wood decks and stairs.
 - 1. Deck Stain over Wood Preservative: Two coats over preservative: MPI EXT 6.5D.
 - 2. Deck Stain: Two coats: MPI EXT 6.5F.
- 3.06 INTERIOR STAIN AND CLEAR FINISH APPLICATION SCHEDULE
- A. Wood substrates, nontraffic surfaces,
 - 1. Semitransparent Stain: Two coats: MPI INT 6.1G
 - 2. Semitransparent Stain: Two coats: MPI INT 6.3C.
 - 3. Danish Oil: Two coats: MPI INT 6.3M.
- 3.07 EXTERIOR HIGH PERFORMANCE COATING APPLICATION SCHEDULE
 - A. Concrete, Nontraffic Surfaces:
 - 1. Gloss Epoxy: Three] coats: MPI EXT 3.1D.
 - B. Concrete, Traffic Surfaces:
 - 1. Epoxy Slip-Resistant Deck Coating: One coat: MPI EXT 3.2C.
 - C. Steel:
 - 1. Gloss Polyurethane, Pigmented: Two coat(s) over gloss epoxy and epoxy anticorrosive primer: MPI EXT 5.1H.

DALE 2013 SCI-Arc/Caltech Project Manual

- 2. Gloss Polyurethane, Pigmented: One coat over intermediate coat and epoxy primer recommended by topcoat manufacturer.
- 3. Gloss Polyurethane, Pigmented: Two coat(s) over gloss epoxy and zinc-rich epoxy primer: MPI EXT 5.1P.
- 4. Gloss Polyurethane, Pigmented: One coat over intermediate coat recommended by topcoat manufacturer and zinc-rich epoxy primer.
- D. Galvanized Metal:
 - 1. Gloss Polyurethane, Pigmented: [One] [Two] coat(s) over epoxy anticorrosive primer: MPI EXT 5.3L.
 - 2. Gloss Polyurethane, Pigmented: [One] [Two] coat(s) over epoxy primer recommended by topcoat manufacturer.
- E. Wood:

1. Gloss Polyurethane, Pigmented: Two coats: MPI EXT 6.3H.

- 3.08 INTERIOR HIGH PERFORMANCE COATING APPLICATION SCHEDULE
 - A. Concrete, Nontraffic Surfaces:
 - 1. Gloss Epoxy: Two coats: MPI INT 3.1F.
 - 2. Gloss Epoxy-Modified Latex: Two coats: MPI INT 3.1G.
 - B. Concrete, Traffic Surfaces:
 - 1. Gloss Epoxy: Two coats: MPI INT 3.2C.
 - 2. Gloss Polyurethane, Pigmented: Two coat(s) over gloss epoxy: MPI INT 3.2D.
 - 3. Gloss Polyurethane, Pigmented Two coat(s) over epoxy primer recommended by topcoat manufacturer.
 - C. Steel:
 - 1. Gloss Epoxy: [One] [Two] coat(s) over anticorrosive epoxy primer: MPI INT 5.1L.
 - 2. Gloss Epoxy: [One] [Two] coat(s) over epoxy primer recommended by topcoat manufacturer.
 - 3. Epoxy-Modified Latex: Two coats over primer recommended by topcoat manufacturer.
 - 4. Gloss Polyurethane, Pigmented: [One] [Two] coat(s) over anticorrosive epoxy primer: MPI INT 5.1F.
 - 5. Gloss Polyurethane, Pigmented: Two coats over epoxy primer recommended by topcoat manufacturer.
 - D. Galvanized Metal:
 - 1. Gloss Epoxy: Two coat(s) over anticorrosive epoxy primer: MPI INT 5.3D.
 - 2. Gloss Epoxy: Two coat(s) over epoxy primer recommended by topcoat manufacturer.
 - 3. Gloss Polyurethane, Pigmented: Two coats over epoxy primer recommended by topcoat manufacturer.
 - E. Wood:
 - 1. Gloss Epoxy: Two coats: MPI INT 6.3L.
 - 2. Gloss Polyurethane, Pigmented: Three coats: MPI INT 6.3E.
 - F. Gypsum Board:
 - 1. Gloss Epoxy: Two coat(s) over latex primer sealer: MPI INT 9.2E.

2. Gloss Epoxy-Modified Latex: Two coats over latex primer sealer: MPI INT 9.2F.

SECTION 102226 - OPERABLE PARTITIONS

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Related Sections 064100
 - B. Submittals: Product Data, Shop Drawings, and Samples.
- PART 2 PRODUCTS
- 2.01 OPERABLE PANEL PARTITION: SHEET XB101
 - A. Manufacturers:
 - 1. Unistrut.
 - a. Product: Wheel Trolley P2950
 - b. Quantity: 8
 - 2. Unistrut.
 - a. Product: Channel P5000
 - b. Quantity: 60 LF
 - B. Partition Operation and Configuration: Manually operated, individual panels.
 - C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - D. Surface-Burning Characteristics: Provide finishes with flame-spread and smokedeveloped indexes not more than [25] [75] [200] and 450, respectively, per ASTM E 84.
 - E. Panel Weight: 2000 LBS maximum.
 - F. Panel Thickness: 3'X 8'Cabinet
 - G. Panel Edges: Cap trimmed
 - H. Panel Face Finish: Formica.
 - 1. Total Weight: 500lbs.
 - 2. Color and Pattern: White.
 - I. > per ASTM E 90 and ASTM E 413.
 - J. Suspension System: Steel trolley-system carriers and aluminum track. Limit track deflection to 0.10 inch between supports.
 - K. Safety Features:

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Examine flooring, structural support, and opening, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of operable panel partitions. Proceed with installation only after unsatisfactory conditions have been corrected.
 - B. Install operable panel partitions to comply with ASTM E 557 after other finishing operations, including painting, had been completed.
 - C. Adjust operable panel partitions to operate smoothly, without warping or binding. Lubricate hardware, and other moving parts.

DALE 2013

SCI-Arc/Caltech

Project Manual SECTION 102800 - TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
- A. Submittals: Product Data.
- PART 2 PRODUCTS
- 2.01 TOILET AND BATH ACCESSORIES
 - A. Manufacturers
 - 1. Kohler Inc.
 - B. Toilet Tissue Dispenser: SHEET P102
 - 1. Product: K-14444-BN.
 - 2. Type: Single-roll dispenser.
 - 3. Mounting: Vertically mounted.
 - 4. Material: Brushed Nickel
 - 5. Operation: Non-control delivery with standard spindle.
 - 6. Capacity: Designed for 4-1/2- or 5-inch diameter-core tissue rolls.
 - C. Towel Bar: SHEET P102:
 - 1. Product: Kohler K-14436-BN
 - 2. Description: 3/4-inch- square tube with circular end brackets.
 - 3. Mounting: Flanges with concealed fasteners.
 - 4. Length: 24 inches.
 - 5. Material and Finish: Brushed Nickel
 - D. Towel Bar: SHEET P102:
 - 1. Product: Kohler K-14435-BN
 - 2. Description: 3/4-inch- square tube with circular end brackets.
 - 3. Mounting: Flanges with concealed fasteners.
 - 4. Length: 18 inches.
 - 5. Material and Finish: Brushed Nickel
- PART 3 EXECUTION
- 3.01 INSTALLATION
 - A. Install accessories using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.
 - B. Adjust accessories for unencumbered, smooth operation and verify that mechanisms function properly. Replace damaged or defective items. Remove temporary labels and protective coatings.

SECTION 107114 - METAL SUN SHADE

PART 1 - GENERAL

- 1.1 SUMMARY
 - A. Section includes: Modular, shop fabricated, metal sun shades to mount on exterior canopy frame.
 - B. Related Sections:
 - 1. Section 107313 AWNINGS
- 1.2 REFERENCES
 - A. American Society for Testing and Materials (ASTM) Publications:
 - 1. ASTM A36 Structural Steel.
 - 2. ASTM A500 Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes.
 - 3. ASTM B209 Aluminum and Aluminum-Alloy Sheet and Plate.
 - 4. ASTM B221 Aluminum-Alloy Extruded Bar, Rod, Wire, Shape, and Tube.
- 1.3 SUBMITTALS
 - A. Provide in accordance with Section 01 33 00 Submittal Procedures:
 - 1. Product data for sun shade components and finish.
 - 2. Shop drawings showing layout, dimensions, spacing of components, and anchorage and installation details.
 - 3. Calculations for support system.
 - 4. Sample: [10 by 10 inches] [254 by 254 mm] minimum size sample of sun shade panel illustrating design, fabrication workmanship, and selected color coating.
 - 5. Copy of warranty specified in Paragraph 1.5 for review by Architect.
- 1.4 QUALITY ASSURANCE
 - A. Design structural support framing components for sun shades under direct supervision of professional structural engineer.
 - B. Installer qualifications: Approved by manufacturer for installation sun of shade system.
- 1.5 WARRANTY
 - A. Provide in accordance with Section 01 77 00 Closeout Procedures:
 - 1. 20 years warranty for factory finish against cracking, peeling, and blistering under normal use.

PART 2 - PRODUCTS 2.1 ACCEPTA

- ACCEPTABLE MANUFACTURERS
 - A. Apollo Roof opening system
 - B. Requests to use equivalent products of other manufacturers shall be submitted in accordance with Section 01 63 00 Product Substitution Procedures.
- 2.2 MATERIALS
 - A. Extruded aluminum: ASTM B221, Alloy 6063, Temper T-6.
 - B. Sheet aluminum: ASTM B209 6063, Temper T-6.
- 2.3 SUN SHADE SYSTEM
 - A. Aluminum sun shades consisting of modular framed panels with louvered infill and outriggers for mounting on canopy frame; Sun Shades as manufactured by Apollo Roof Systems.

1. Panel size: 126 by 126 inches aluminum frame with louvered infill panel as indicated on Drawings and approved shop drawings.

- i. Quantity: 4
- B. Sun shade panel: Modular infill panel
 - 2. Panel size: 57 by 126 inches insert panel as indicated on Drawings and approved shop drawings.
 - i. Quantity: 26
 - 3. Panel infill: Perforated Aluminum Panel.
 - a. Incident angle of sun shade: N/A

- C. Support system: Provide outriggers or other means for support of sun shade panel fabricated from same material as panel. System shall be designed to resist applicable dead, live, wind, and seismic loads.
 - 1. Type: Straight projecting outriggers.
 - 2. Construction: Welded fabrication consisting of attachment plate, double support angles, and tapered plate extension as detailed and dimensioned on Drawings and approved shop drawings.
 - 3. Size: As required to provide sufficient structural support of panels.
- D. Fasteners: Stainless steel bolts, studs, and other types of size and spacing as recommended by manufacturer for specific condition and detailed on approved shop drawings.

2.4 FACTORY FINISH

- A. Sun shade panels, outriggers, and other components shall receive electrostatically applied colored polyester powder coating heat cured to chemically bond finish to metal substrate.
 - 1. Minimum hardness measured in accordance with ASTM D3363: 2H.
 - 2. Direct impact resistance tested in accordance with ASTM D2794: Withstand 160 inch-pounds.
 - 3. Salt spray resistance tested in accordance with ASTM B117: No undercutting, rusting, or blistering after 500 hours in 5 percent salt spray at 95 degrees F and 95 percent relative humidity and after 1000 hours less than [3/16 inch] [5 mm] undercutting.
 - 4. Weatherability tested in accordance with ASTM D822: No film failure and 88 percent gloss retention after 1 year exposure in South Florida with test panels tilted at 45 degrees.
- B. Color: Silver with weather resistant clear coating

PART 3 - EXECUTION

3.1

- PREPARATION
 - A. Prior to fabrication, field verify required dimensions.
 - B. Coordinate sun shade installation with provision of canopy frame structure to ensure proper structural support is provided, attachment of sun shades is compatible with substrate, and weathertightness of exterior envelop is maintained.

3.2 INSTALLATION

- A. Install sun shades in accordance with manufacturer's installation instructions and approved shop drawings.
- B. Insulate dissimilar metals to prevent electrolysis with bituminous paint or nonabsorptive gasket to prevent contact.
- C. Allow for thermal expansion and contraction of metal components.
- D. Install shade panels plumb, level, free from distortion, and aligned with building elements and adjacent shade panels.
- E. Do not installed bent, bowed, or otherwise damaged panels. Remove damaged components from site and replace.
- F. Attach shade panels to outriggers with appropriate fasteners for secure, permanent installation.
- G. After installation, touch-up damaged finish with paint supplied by manufacturer and matching original coating.

SECTION 107313 - AWNINGS

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Product Data, Shop Drawings, and Samples.
 - B. Verify dimensions by field measurements before fabrication and indicate on Shop Drawings.
- PART 2 PRODUCTS
- 2.01 AWNINGS
 - A. Performance Requirements: Provide awnings capable of withstanding design loads indicated.
 - B. Aluminum Frames: Alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated.
 - 1. Aluminum Plate and Sheet: ASTM B 209 (ASTM B 209M).
 - 2. Aluminum Extrusions: ASTM B 221 (ASTM B 221M).
 - 3. Extruded Structural Pipe and Round Tubing: ASTM B 429/B 429M.
 - 4. Drawn Seamless Tubing: ASTM B 210 (ASTM B 210M).
 - 5. Aluminum Finish: Mill.
 - C. Anchors, Fasteners, Fittings, Hardware, and Installation Accessories: Corrosion-resistant, weather-resistant, nonstaining materials. Where exposed to view, provide finish and color as selected.
 - 1. Expansion Anchors: Stainless steel anchors able to sustain six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete.
 - D. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds in steel, complying with SSPC-Paint 20.
 - E. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.
- 2.02 BALL BEARING SLIDER
 - A. Manufacturer

1.

- Barnes Engineering Company
 - a. Product: HD3B2
 - b. Quantity: 10
- B. Manufacturer
 - 1. Unistrut:
 - a. Product: Wheel trolley P2750
 - b. Quantity: 8
- C. Manufacturer
 - 1. Unistrut:
 - a. Product: Channel P1000
 - b. Quantity: 40 LF
- 2.03 CANOPY DRIVE MOTORS
 - A. Manufacturer
 - 1. Baldor
 - a. Product: VEM3538
 - b. FL Amps 1.54/.77
 - c. 60 Hz
 - d. 1745 rpm
 - e. 0.5 hp
 - f. Quantity: 2
 - g. <u>http://www.baldor.com/products/specs.asp?1=1&page=1&catalogonly=1&catalog</u> =VEM3538&product=AC+Motors&family=General+Purpose%7Cvw_ACMotors

<u>GeneralPurpose&phase=3&rpm=1400-</u>

<u>1800&voltage=230%2F460&hp=0%2E5&winding=35WGQ186&rating=40CMB-CONT</u>

- B. Manufacturer
 - 1. BOSTON GEAR
 - a. Product: Model # F710-15-B4-G
 - b. Quantity: 2
- 2.04 AWNING FABRICATION
 - A. Frames: Preassemble awning frames in the shop to greatest extent possible.
 - 1. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
 - 2. Form exposed work true to line and level with accurate angles and straight edges.
 - 3. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners where possible. Provide weep holes where water may accumulate.
 - 4. Weld corners and connections continuously. At exposed corners and connections, finish exposed welds and surfaces smooth and blended.

B. Colors of Metal and Plastic Components Exposed to View: As indicated by manufacturer's.

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. General: Install awnings securely connected to supports, free of rack, and in proper relation to adjacent construction.
 - B. Install awnings after other finishing operations, including joint sealing and painting, have been completed.
 - C. Slip fit frame connections accurately together to form hairline joints.
 - D. Weld frame connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations.
 - E. Corrosion Protection: Coat concealed surfaces of aluminum that will come into contact with grout, concrete, masonry, wood, or dissimilar metals with a heavy coat of bituminous paint.
 - F. Galvanized Surfaces: Clean field welds, connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

SECTION 107400 - MANUFACTURED EXTERIOR SPECIALTIES

- PART 1-**GENERAL**
- 1.1 SECTION REQUIREMENTS
 - Variable- and single-frequency drives accelerate and decelerate pairs of motors to move A. the modules and canopies.
 - B. Submittals
 - i. http://ab.com/catalogs/
- PART 2-PRODUCTS
- 2.1 **Single-Phase Drives**

i.

- Allen-Bradley single-phase drive A.
 - Allen-Bradley 1PH 240 VAC single-phase drives (50/60 Hz)
 - Catalog number: 22F-A2P5N103 а
 - Certification: UL508C, EN 50178 b
 - Environment: IP20, -10 to 50 °C С
 - d Voltage tolerance: 200 to 240 V \pm 10%
 - Input frequency tolerance: 48 to 63 Hz е
 - f Carrier frequency: 2 to 10 kHz
 - Output frequency: 0 to 400 Hz g
 - h Frequency accuracy
 - (i) Digital input: within 0.05% of set output frequency
 - (ii) Analog input: within 0.5% of maximum output frequency
 - Speed regulation: open loop with slip compensation i
 - Stop modes: ramp, coast, DC brake, ramp-to-hold, S curve i
 - Output HP: 0.5 k
 - 1 Output kW: 0.4
 - Output current: 2.5 A m
- 2.2 **Three-Phase Drives**
 - Rockwell Automation three-phase drive A.
 - PowerFlex 4M i.
 - Catalog Number: 22F-RF010-AL а
 - Input Voltage b 240 V
 - Single Phase С
 - Power d 0.75 kW
 - Rating 1.0 hp е
 - f Current 10 A
 - g Control output voltage 0-10 V
 - Control output amperage 4-20 mA h 97.5%
 - Efficiency i
 - UL508 C Listed j
 - CSA 22.2 Listed k 1
 - **Frequency Accuracy** +/- 0.05%
 - Stop Modes: Multiple, including ramp, coast, DC break, S curve m
 - http://literature.rockwellautomation.com/idc/groups/literature/documents/td n /22f-td001 -en-p.pdf
- EXECUTION PART 3-
- **INSTALLATION** 3.1

Follow Manufacturer Specifications A.

DIVISION 11 – EQUIPMENT

SECTION 113100 - RESIDENTIAL APPLIANCES

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Allowances: See Section 012000 "Price and Payment Procedures" for appliance allowances.
 - B. Submittals: Product Data.
- PART 2 PRODUCTS

D.

- 2.01 RESIDENTIAL APPLIANCES
 - A. Regulatory Requirements: Comply with the following:
 - 1. NFPA: Provide electrical appliances listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. ANSI: Provide gas-burning appliances that comply with ANSI Z21 Series standards.
 - B. Accessibility: Where residential appliances are indicated to comply with accessibility requirements, comply with [the U.S. Architectural & Transportation Barriers Compliance Board's Accessibility Guidelines] [ICC A117.1].
 - C. Electric Cooktop: 30-inch, built-in cooktop with four burner elements.
 - 1. Manufacturers:
 - a. BOSCH Home Appliances.
 - 2. Product: NET8054UC
 - 3. Color: black and stainless steel.
 - Electric Wall Oven: Built-in, single electric, self-cleaning wall oven with broiler unit.
 - 1. Manufacturers:
 - a. BOSCH Home Appliances.
 - 2. Product: HBL8450UC
 - 3. Color: stainless steel.
 - E. Exhaust Hood: 20-inch, downdraft exhaust hood with variable-speed two-speed fan.
 - 1. Manufacturers:
 - a. BSH Home Appliances Corporation (Gaggenau).
 - 2. Product: VL431-707
 - 3. Color: Stainless Steel
 - 4. Fan Control: Hood-mounted switch, with separate light switch.
 - 5. Weatherproof floor cap with backdraft damper and rodent-proof screening.
 - F. Refrigerator/Freezer: Freestanding, frost-free cycle-defrost, two-door refrigerator with bottom-mounted freezer, ABS thermoplastic-copolymer interior cabinet liners.
 - 1. Manufacturers:
 - a. LIEBHERR.
 - 2. Product: HC1001
 - 3. Color: custom panel.
 - 4. Fresh Food Compartment Volume: 7.1 cu. ft.
 - 5. Freezer Compartment Volume: 2.4 cu. Ft.
 - 6. Shelf Area: four adjustable glass shelves.
 - 7. Energy Performance: Provide appliances that qualify for the EPA/DOE ENERGY STAR product labeling program.
 - G. Dishwasher: Built-in, undercounter, automatic dishwasher drawer, sized to fit in 24-inch base cabinet, nine wash cycles with hot-air and heat-off drying cycles, porcelain-enamel tub and molded-plastic door liner, nylon-coated sliding dish racks.
 - 1. Manufacturers:
 - a. Fisher & Paykel.ffa

- 2. Product: Model DD36ST12
- 3. Color: custom panel.
- 4. Energy Performance: Provide appliances that qualify for the EPA/DOE ENERGY STAR product labeling program.
- H. Clothes Washer: Freestanding, automatic clothes washer with 2.2-cu. ft. capacity stainless-steel tub and eight [8] wash cycles including regular, delicate, and permanent press; 1200 maximum RPM reversible motor.
 - 1. Manufacturers:
 - a. BOSCH Home Appliances.
 - 2. Product:WAS24460UC
 - 3. Color: white.
 - 4. Energy Performance: Provide appliances that qualify for the EPA/DOE ENERGY STAR product labeling program.
- I. Electric Clothes Dryer: Freestanding, front-loading clothes dryer, 3.9-cu. ft. capacity with stainless-steel interior.
 - 1. Manufacturers:
 - a. BOSCH Home Appliances.
 - 2. Product: WTE86300US
 - 3. Color: white.
- PART 3 EXECUTION
- 3.01 INSTALLATION
 - A. Built-in Appliances: Securely anchor to supporting cabinetry or countertops with concealed fasteners. Verify that clearances are adequate for proper functioning and rough openings are completely concealed.
 - B. Freestanding Appliances: Place in final locations after finishes have been completed in each area. Verify that clearances are adequate to properly operate equipment.
 - C. Test each item of residential appliances to verify proper operation. Make necessary adjustments.
 - D. Verify that accessories required have been furnished and installed.

SECTION 115213 – PROJECTION SCREENS

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Product Data.
 - B. Coordinate layout and installation with ceiling construction.
- PART 2 PRODUCTS

2.

- 2.01 PROJECTION SCREENS
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - B. Surface-Mounted Electrically Operated Screens: UL-labeled units consisting of case, screen, motor, controls, mounting accessories, and other components. Provide units with three-position switch infrared remote control, no ceiling closure, and end-mounted motor.
 - 1. Manufacturer:
 - a. FAVI ENTERTAINMENT
 - Product: FAVI 16:9/120-Inch Electric Projector Screen (HD-120)
 - C. Screen Material: Mildew- and flame-resistant fabric with a matte silver, silver lenticular, pearlescent, or high-gain matte neutral viewing surface with a peak gain of at least 1.3 and half-gain angle of at least 40 degrees
 - 1. Mildew-Resistance Rating: 0 or 1 when tested according to ASTM G 21.
 - 2. Flame Resistance: Passes NFPA 701.
 - 3. Flame-Spread Index: Not greater than 75 when tested according to ASTM E 84.
 - 4. Size of Viewing Surface: 105" x 60"

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Install projection screens where indicated, securely anchored to supporting substrate in a manner that produces a smoothly operating screen with vertical edges plumb and viewing surface flat when screen is lowered.
 - B. Test projection screens to verify proper operation. Make necessary adjustments.

DIVISION 12 – FURNISHINGS

SECTION 123623 – PLASTIC COUNTERTOPS

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Shop Drawings, Samples showing the full range of colors, textures, and patterns available for each type of finish.
 - B. Fabricator Qualifications: Certified participant in AWI's Quality Certification Program Licensee of WI's Certified Compliance Program.
 - C. Installer Qualifications: Fabricator of products.
 - D. Environmental Limitations: Do not deliver or install countertops until building is enclosed, wet work is completed, and HVAC system is operating.

PART 2 - PRODUCTS

- 2.01 PLASTIC-LAMINATE COUNTERTOPS
 - A. Quality Standard: AWI, AWMAC, and WI's "Architectural Woodwork Standards."
 - B. Certified Wood: Wood-based materials shall be certified as "FSC Pure" or "FSC Mixed Credit" according to FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship," and to FSC STD-40-004, "FSC Standard for Chain of Custody Certification."
 - C. Plastic-Laminate Countertops: Premium grade.
 - 1. Laminate Grade: HGS for flat countertops, HGP for post-formed countertops.
 - 2. Grain Direction: Parallel to cabinet fronts.
 - 3. Edge Treatment: Same as laminate cladding on horizontal surfaces.

2.02 MATERIALS

- A. Wood Moisture Content: 5 to 10 percent.
- B. Medium-Density Fiberboard: ANSI A208.2, Grade 130, made with binder containing no urea formaldehyde.
- C. Particleboard: ANSI A208.1, Grade M-2, made with binder containing no urea formaldehyde.
- D. Softwood Plywood: DOC PS 1.
- E. High-Pressure Decorative Laminate: NEMA LD 3.
 - 1. Manufacturers
 - a. Formica Corporation.
- 2.03 FABRICATION
 - A. Complete fabrication to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Before installation, condition countertops to average prevailing humidity conditions in installation areas.
 - B. Install countertops to comply with referenced quality standard for grade specified.
 - C. Install countertops level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches.
 - D. Scribe and cut countertops to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.

E. Anchor countertops securely to base units. Seal space between backsplash and wall.

DIVISION 21 – FIRE PROTECTION

SECTION 210500 – FIRE PREVENTON EQUIPMENT

PART 1- GENERAL

- 1.1 Summary
 - A. This section includes submittals on fire prevention equipment
- PART 2- Products
- 2.1 Sprinkler Head
 - A. Tyco Concealed Pendent

	-		
i		Tuco	TY2596
1.		Tyco	112390

	5		
ii.	Maximum Coverage Area	12 x 12 ft	
iii.	Minimum Flow	13 GPM	
iv.	Minimum Pressure	7 PSI	

- 8 FT Minimum Spacing v.
- Temperature Rating: vi.
- 160 F with 139 F Cover Plate 4.9 GPM/Psi
- **K-Factor** vii. viii. Quantity
- 8
- http://tyco-fire.com/TD_TFP/TFP/TFP442_07_2012.pdf ix.
- 2.2 Hose Material
 - A. BlazeMaster Pipe and Fittings
 - Manufacturer: Lubrizol i.
 - CPVC ii. Material:
 - Max Pressure 175 psi iii.
 - Max Temp 150F iv.
 - Service Life 50 years v.
 - 1" Pipe Size vi.
 - vii. http://www.lubrizol.com/CPVC/Products/BlazeMaster/Single-Family-Fire-Sprinkler-Systems.html
- **PART 3- EXECUTION**
- 3.1 Installation
- **END OF SECTION 210500**

DIVISION 22 – PLUMBING

SECTION 220529 – HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT PART 1- GENERAL

PART 1- GENERAL

- 1.1 Summary
 - A. This section includes plumbing equipment related to movement of structures
 - B. Please Observe Section 260529 HANGARS AND SUPPORTS FOR ELECTRICAL
 - i. Cable Carriers are Dual-Use for Hose and Wire Cable

SECTION 221116 – DOMESTIC WATER PIPING

PART 1- GENERAL

- 1.1 Summary
 - A. This section includes submittals on domestic water piping
- PART 2- Products
- 2.1 Pipe Material
 - A. 1/2" FlowGuard Gold CPVC
 - i. Company: Lubrizol
 - ii. Manufacturer: Charlotte Pipe
 - iii. Material: CPVC
 - iv. Max Pressure 400 psi
 - v. Max Temp 230°F
 - vi. Dimensions
 - a Outside diameter: 0.625"
 - b Wall thickness: 0.068"
 - c Copper-tube-size: 1/2"
 - vii. Fittings: FlowGuard Gold CPVC solvent weld fittings
 - viii. http://www.lubrizol.com/CPVC/Products/FlowGuard/FlowGuard-Gold-Pipe-Fittings.html
 - B. 3/4" FlowGuard Gold CPVC
 - i. Company: Lubrizol
 - ii. Manufacturer: Charlotte Pipe
 - iii. Material: CPVC
 - iv. Max Pressure 400 psi
 - v. Max Temp 230°F
 - vi. Dimensions
 - a Outside diameter: 0.875"
 - b Wall thickness: 0.080"
 - c Copper-tube-size: 3/4"
 - vii. Fittings: FlowGuard Gold CPVC solvent weld fittings
 - viii. http://www.lubrizol.com/CPVC/Products/FlowGuard/FlowGuard-Gold-Pipe-Fittings.html
 - C. 1" FlowGuard Gold CPVC
 - i. Company: Lubrizol
 - ii. Manufacturer: Charlotte Pipe
 - iii. Material: CPVC
 - iv. Max Pressure 400 psi
 - v. Max Temp 230°F
 - vi. Dimensions
 - a Outside diameter: 1.125"
 - b Wall thickness: 0.102"
 - c Copper-tube-size: 1"
 - vii. Fittings: FlowGuard Gold CPVC solvent weld fittings
 - viii. http://www.lubrizol.com/CPVC/Products/FlowGuard/FlowGuard-Gold-Pipe-Fittings.html

PART 3- EXECUTION

3.1 Follow manufacturer's directions.

SECTION 221117 – FLEXIBLE HOSES

PART 1- GENERAL

- 1.1 Summary
 - A. This section contains information on the flexible reels
- 1.2 Submittals:

A.

- Product Information
- PART 2- PRODUCTS
- 2.1 POTABLE WATER FLEXIBLE HOSES
 - A. Ace Hose and Rubber Company
 - i. Part 4082-06/3025-AB-Nex
 - ii. PVC Potable Water Hose
 - iii. NSF 51 Certified
 - iv. Black
 - v. 1" Diameter
 - vi. Max working Pressure: 125 psi for 1" ID hose @70F
 - vii. Website: <u>http://acehose.com/mcart/index.cgi?code=3&cat=16</u>
- 2.2 SANITARY WASTE DISPOSAL HOSES
 - A. Ace Hose and Rubber Water Hose
 - i. Part 4082-06/3025-AB-Nex
 - ii. PVC Potable Water Hose
 - iii. NSF 51 Certified
 - iv. Black
 - v. 1" Diameter
 - vi. Max working Pressure: 100 psi for 1" ID hose @70F
 - vii. Website: <u>http://acehose.com/mcart/index.cgi?code=3&cat=16</u>
- 2.3 FIRE SPRINKLER
 - A. Ace Hose and Rubber Company
 - i. Part 4082-06/3025-AB-Nex
 - ii. PVC Potable Water Hose
 - iii. NSF 51 Certified
 - iv. Black
 - v. 1" Diameter
 - vi. Max working Pressure: 125 psi for 1" ID hose @70F
 - vii. Website: <u>http://acehose.com/mcart/index.cgi?code=3&cat=16</u>
- PART 3- EXECUTION
- 3.1 Installation
 - A. Install with strain relief as needed
 - B. Follow manufacturer installation instructions
 - C. Ensure proper fitting attachment

SECTION 221123 - DOMESTIC WATER PACKAGED BOOSTER PUMPS

Part 1 – GENERAL

- 1.1 Summary
 - A. Section includes:
 - 1. Booster pump for the entire water distribution system
 - 1.2 Related Sections
 - 1. 223330.13 Residential Small-Capacity Electric Domestic Water Heaters
 - **1.3** Section Requirements
 - A. Submittals
 - 1. Product Data

i.

ii. iii.

Part 2 – PRODUCTS

- Domestic Water booster pump A.
 - Grundfos MQ3-45 Flow based pressure boosting system 1.
 - **Product Requirements** a.
 - UL listed i.
 - b. Product Specifications System pressure

Inlet pressure

Max 109 psi

32 F to 95 F

120V, 60Hz

Max 44 psi

<55dB

- Max 26 ft (8m)
- iv. Liquid Temperature
- Main Voltage v.

Suction lift

- Voltage tolerances: -10% / +6%vi.
- vii. Sound pressure level
- viii. Flow rate at 75 feet head 4 GPM
- ix. Price: \$475 (http://www.freshwatersystems.com/p-4439-grundfos-mq3-45-230v-1-hp-pressure-booster-pump-96860207.aspx?affiliateid=10050&qid=0&utm_source=Googlebase&utm_m
 - edium=Feed&utm_campaign=Product&utm_term=MQ3-45-2)
- Manufacturer Information and Product Link c.
 - Manufacturer: Groundfos i.
 - Link: ii.

http://noteswww.grundfos.com/web/HOMEus.NSF/Webopslag/PAVA-5CHIE7

Part 3 – EXECUTION

3.1 Installation

A. Follow manufacturer's installation instructions

SECTION 221223 - WATER STORAGE TANKS

PART 4- GENERAL

- 4.1 Summary
 - A. This section covers info in the water storage tanks
- PART 5- PRODUCTS
- 5.1 Storage Tank
 - A. 800 Gallon Fresh Water Bladder Tank
 - i. Manufacturer: Go-to tanks
 - ii. Size: 8' 8" x 10' x 16"
 - iii. Used to store potable water
 - iv. 4" PVC fill fitting at top
 - v. 1 ½" PVC Flange Fitting with PVC Ball Valve
 - vi. Ground Tarp Included
 - vii. XR3 FDA/NSF-61 Approved Materials
 - viii. 47 lbs
 - ix. http://www.gototanks.com/951-008002.aspx
- 5.2 Wastewater Tank
 - A. 800 Gallon Fresh Water Bladder Tank
 - i. Manufacturer: Go-to tanks
 - ii. Size: 8' 8" x 10' x 16"
 - iii. Used to store potable water
 - iv. 4" PVC fill fitting at top
 - v. 1 ¹/₂" PVC Flange Fitting with PVC Ball Valve
 - vi. Ground Tarp Included
 - vii. XR3 FDA/NSF-61 Approved Materials
 - viii. 47 lbs
 - ix. http://www.gototanks.com/951-008002.aspx
- PART 6- EXECUTION
- 6.1 Install tanks following manufactur instructions
- 6.2 Ensure access to filling hole
- 6.3 Ensure that pvc outlet pipe is properly connected

SECTION 221300 - FACILITY SANITARY SEWERAGE

- PART 1- GENERAL
- 1.1 Summary
 - A. This section contains specifications for the macerator unit
- PART 2- PRODUCTS
- 2.1 Macerator
 - A. SFA Sanigrind pro
 - i. Manufacturer: Saniflo
 - ii. Model 38724.0
 - iii. 120 V Macerator Pump
 - iv. Dimensions 10 ½" x 8" x 20 5/16"
 - v. Capacity 30 gpm
 - vi. Power 1 HP
 - vii. Anti-siphon backflow prevention
 - viii. Requires 15 A dedicated circuit
 - ix. Current 9.0 A
 - x. Power 600 W
 - xi. Duty Cycle 2.5 gpm, 10 foot lift, 1 hour on, 45 mins off
 - xii. Vent 1 ½" Port
 - xiii. <u>http://www.saniflo.com/upload/products/45/240732-manual_sanigrind-pro.pdf</u>
- 2.2 Sump Pump
 - A. Little Giant Sump/Effluent pump
 - i. Manufacturer: Little Giant
 - ii. Model Number: 6EN-CIA-SFS
 - iii. http://www.little-giantpump.com/little giant pump 506630.htm
 - iv. 1/3 hp PSC motor with thermal overload protection
 - v. Cast Iron pump housing
 - vi. Stainless Steel screws, bolts, and handle
 - vii. Mechanical seals
 - viii. Vortex Impellor
 - ix. Passes 1/2 Spherical Solids
 - x. 1 ½" FNPT Discharge
 - xi. Integral snap action float switch: on level 7" 10", off level 2" 5"
 - xii. Fully submersible
 - xiii. 115 V
 - xiv. 6 A

i.

- xv. 30 GPM at 15' head
- B. Sump Pump Basin
 - Manufacturer: Topp Industries
 - ii. The Sump Box System
 - iii. 11 gallon capacity
 - iv. 12" x 16" x 14"
 - v. Weight: 7 lbs
 - vi. Wall Thickness: 3/16"
 - vii. 1 1/2" "spin weld" inlet
 - viii. Discharge size options: 1 1/2" or 1 1/4"
- 2.3 Laundry Pump

A.

- PART 3- EXECUTION
- 3.1 Installation

- A. Follow Manufacturer Instructions
- B. Install dedicated 15 A circuit for macerators

SECTION 223300 – DOMESTIC ELECTRIC HOT WATER HEATERS

- PART 1- GENERAL
- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. 76 gal insulated tank for heating and holding hot water. Tank will provide hot water for living needs and for heating the house. Primary heating from heat exchange loop connected to solar thermal system with backup heating provided by integrated electric water heater.
 - B. Submittals
 - i. http://s3.pexsupply.com/product_files/SUNX-Overview.pdf
- PART 2- PRODUCTS
- 2.1 Hot Water Tank
 - A. 76 Gallon AO Smith Hot Water Tank
 - i. Model No SUNX-80
 - ii. Specification:
 - a *Water Volume* 76 gal
 - b *Booster heater* 4.5 kW
 - c Working Pressure 150 psi
 - iii. Piping Connections:
 - a Water inlet H/E Diameter 3/4" (F) BSP
 - b Water outlet H/E Diameter 3/4" (F) BSP
 - c Heat Exchanger in Diameter 1" (F) NPT
 - d Heat Exchanger out Diameter 1" (F) NPT
 - iv. Power Supply
 - a *V/PH/Hz* 240/1/60
 - v. Tank Material:
 - a *Material outside casing* Glass Tank Coating
 - b *Heating Element* Low-watt density Copper
 - c Insulation 2 in non-CFC foam insulation
 - vi. Unit Data:
 - a Dimensions (HxDiam) 63-1/4" x 24"
 - b Shipping weight 257 lbs
- PART 3- EXECUTION

3.1 INSTALLATION

A. Follow manufacturer specified instructions

SECTION 224000 - PLUMBING FIXTURES

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals:
 - Product Data for each type of plumbing fixture, including trim, fittings, accessories, 1. appliances, appurtenances, equipment, and supports.
 - 2. Documentation indicating flow and water consumption requirements.
- PART 2 PRODUCTS
- 2.01 PERFORMANCE REOUIREMENTS
 - Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and A. Usable Buildings and Facilities"; Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336, "Americans with Disabilities Act"; for plumbing fixtures for people with disabilities.
 - Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy B. Policy Act," about water flow and consumption rates for plumbing fixtures.
 - C. NSF Standard: Comply with NSF 61, "Drinking Water System Components - Health Effects," for fixture materials that will be in contact with potable water.
- 2.02 WATER CLOSET: SHEET P102
 - Vitreous-China Water Closet: Compact elongated siphon-jet type, floor-mounted outlet A. with one-piece bowl and tank, flushometer valve.
 - Manufacturers: 1.
 - Kohler Co. a.
 - Product: Reve K-3797-0 2. Color: white a.
- 2.03 **FLUSHOMETERS: SHEET P102**
 - Flushometer Valve: Brass body, brass or copper pipe or tubing inlet with wall flange and A. tailpiece with spud, screwdriver check stop, and vacuum breaker. Polished, chromeplated, exposed metal parts. Consumption: Dual-flush .8 gal./flush or 1.6 gal./flush. 1.
 - Manufacturers:
 - Kohler Co. a.
- 2.04 LAVATORY: SHEET P102
 - Vitreous-China Lavatory: Counter mounting, H 7-7/16"x L 23-5/8"x W 18-5/16" A.
 - 1. Manufacturers:
 - a. Kohler Co.
 - 2. Product: K-5027-8-0
 - a. Color: white
 - ME A112.18.1; solid brass Retain option in "Manufacturers" Subparagraph below to limit B. manufacturers to those listed.
 - 1. Manufacturers:
 - Kohler Co. a.
 - 2. Product: K-14406-4-BN
 - Color: brushed nickel
 - 3. Type: Widespread faucet with low lever handles and gooseneck spout.
 - 4. Finish: brushed nickel
 - Handle(s): Dual lever. 5.
 - Maximum Flow Rate: 1.5 gpm. 6.
 - Drain: Pop up with NPS 1-1/4 tailpiece, included with faucet. C.
 - D. Trap: plastic tubular fittings with slip-joint inlet and wall flange.
 - Supply and Drain Insulation: Soft-plastic covering: removable at stops. E.
 - F. Fixture Support: Concealed arm.

2.

2.05 SHOWER: SHEET P102

- A. Center drain shower stall with integrated high-dome ceiling, H 90" x L 36" x W 36-1/2"
 - 1. Manufacturers:
 - a. <u>Kohler Co.</u>
 - Product: Sonata K-1689-0
 - a. Color: white
- B. Sonata accessory kit (grab bar and shelf kit), L 16" x W 3-1/2"
 - 1. Manufacturers:
 - a. <u>Kohler Co.</u>
 - 2. Product: Sonata K-9459-BN
 - a. Color: brushed nickel
- C. Mixing-Valve Faucet and Miscellaneous Fittings: Single-lever, thermostatic and pressurebalance antiscald-type faucet; maximum 2.5-gpm (0.16-L/s) flow rate.
 - 1. Manufacturers:
 - a. <u>Kohler Co.</u>
 - 2. Product: K-T14422-4-BN
 - a. Color: brushed nickel
 - 3. pop-up waste and overflow; shower diverter valve; shower head, arm, and flange; and ball, gate, or globe valves on supplies if check stops are not included with faucet.
 - 4. Body Material: Solid brass.
 - 5. Finish: brushed nickel.
 - 6. Shower Arm, Flow-Control Fitting: 1-1/2 gpm
- 2.06 SINK: SHEET P102
 - A. Stainless Sink: Undercounter type, 18-gauge thick, one bowl(s).
 - 1. Manufacturers:
 - a. <u>Kohler Co.</u>
 - 2. Product: Iron/Tones K-6585-0
 - a. Finish: white
 - B. Bowl:
 - 1. Dimensions: H 8-1/4" x L 24-1/4" x W 18-3/4"
 - 2. Drain(s): 3-1/2-inch removable, stainless-steel crumb cup with tubular stainlesssteel tailpiece] outlet for disposer.
 - 3. Drain location: Centered in bowl.
 - C. Faucet: [Solid brass] [Solid-brass underbody and brass cover plate] [Nonmetal (plastic) underbody and plastic or brass cover plate].[Maximum 2.5-gpm (0.16-L/s) flow rate.]
 - 1. Manufacturers:
 - a. <u>Kohler Co.</u>
 - 2. Product: K-7505-BN
 - 3. Type: Purist with pull-out spout.
 - 4. Finish: brushed nickel.
 - 5. Handle(s): Single lever.
 - 6. Spout: Integral with body Swing aerator **1.8-gpm**.
- PART 3 EXECUTION
- 3.01 INSTALLATIONS
 - A. Install fitting insulation kits on fixtures for people with disabilities.
 - B. Install fixtures with flanges and gasket seals.

- C. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.
- D. Install tanks for accessible, tank-type water closets with lever handle mounted on wide side of compartment.
- E. Fasten wall-hanging plumbing fixtures securely to supports attached to building substrate when supports are specified, and to building wall construction where no support is indicated.
- F. Fasten floor-mounted fixtures to substrate. Fasten fixtures having holes for securing fixture to wall construction, to reinforcement built into walls.
- G. Fasten wall-mounted fittings to reinforcement built into walls.
- H. Fasten counter-mounting plumbing fixtures to casework.
- I. Secure supplies to supports or substrate within pipe space behind fixture.
- J. Set shower receptors and mop basins in leveling bed of cement grout.
- K. Install individual supply inlets, supply stops, supply risers, and tubular brass traps with cleanouts at fixture.
- L. Install water-supply stop valves in accessible locations.
- M. Install traps on fixture outlets. Omit traps on fixtures having integral traps. Omit traps on indirect wastes unless otherwise indicated.
- N. Install disposers in sink outlets. Install switch where indicated, or in wall adjacent to sink if location is not indicated.
- 0. Install dishwasher air-gap fitting at each sink indicated to have air-gap fitting. Install [in sink deck] [on countertop at sink] <Insert location>. Connect inlet hose to dishwasher and outlet hose to disposer.
- P. Install hot-water dispensers in back top surface of sink or in counter with spout over sink.
- Q. Install escutcheons at wall, floor, and ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons where required to conceal protruding pipe fittings.
- R. Seal joints between fixtures and walls, floors, and counters using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color.
- S. Install piping connections between plumbing fixtures and piping systems and plumbing equipment. Install insulation on supplies and drains of fixtures for people with disabilities.
- T. Ground equipment.

DIVISION 23 – HVAC

SECTION 233100 - HVAC DUCTS AND CASINGS

PART 1- GENERAL

- 1.1 Summary
 - A. Section Includes:
 - i. Ducting for ventilation and exhaust systems
- 1.2 Submittals:
- A. Product Data
- 1.3 Related Sections:
 - A. 23 80 00 Decentralized HVAC Equipment
- PART 2- PRODUCTS
- 2.1 Metal Ducts
 - A. Ducts will be used for the range hood, AEV, and bathroom fan
 - B. Sizes
 - i. 4" diameter circular for bathroom ceiling fan
 - ii. 5" diameter circular for air exchange ventilator
- PART 3- EXECUTION
- 3.1 Installation
 - A. Ducts shall be installed by a license contractor
 - B. Ducts prone to condensation shall be insulated to a minimum R-value of R8
 - C. Follow manufacturer instructions for attachment, support, and sealing
 - D. Installation shall comply with all applicable codes
 - E. Ducts shall be routed to reduce the number of bends where possible

SECTION 233200 - AIR EXCHANGE VENTILATOR

PART 1- GENERAL

- 1.1 Summary
 - A. Section Includes:
 - i. Air exchanger for whole house ventilation.
- 1.2 Submittals:
 - A. Product Sheet: http://fantech.net/download/412123-aev-spec
- 1.3 Related Sections:
 - A. 23 80 00 Decentralized HVAC Equipment
- PART 2- PRODUCTS
- 2.1 Fantech Air Exchanger
 - A. Model Number: AEV 1000
 - B. Specifications
 - i. Speeds (CFM): 25/63/87
 - ii. Power (V/Hz/Phase): 120/60/1
 - iii. Max Amps: 0.7
 - iv. Max inlet temp: 140° F
 - v. Dimensions (H x W x D): 14" x 12-1/2" x 18-3/16"
- PART 3- EXECUTION
- 3.1 Installation
 - A. Mounted vertically
 - B. Follow outdoor exhaust/inlet placement requirements
 - C. Install as specified by manufacturer

SECTION 233423 -VENTILATORS

PART 1- GENERAL

- 1.1 Summary
 - A. Section Includes:
 - i. Exhaust fans
- 1.2 Submittals:
 - A. Product Data: http://shop.panasonic.com//docs/misc/2012/appliance/FV-08VRL1_Submittal_Sheet.pdf

PART 2- PRODUCTS

- A. Bathroom Ventilation Fans
 - i. Manufacturer: Panasonic
 - ii. Model: FV-08VRL1 WhisperRecessed
 - iii. Light: 18 W, GU24
 - iv. Power Consumption: 20.5 W
 - v. Duct Diameter: 4"
 - vi. Voltage: 120 V
 - vii. UL Listed for Tub/Shower Enclosure when on GFCI Circuit and enclosed in insulated ceiling
- PART 3- EXECUTION
- 3.1 Installation
 - A. Ducts shall be installed by a license contractor
 - B. Follow Manufacturer Instructions

END SECTION 233423

SECTION 235601 - SOLAR THERMAL PUMP STATION

- PART 1- GENERAL
- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. Pump station for circulating working fluid through collector to DHW solar kit and back.
 - B. Submittals
 - i. http://solarusmfg.com/downloads/Pump_Station.pdf
- PART 2- PRODUCTS
- 2.1 Pump Station

A.

- Solar Thermal Pump Station
- i. Model No: Wilo Solar pump STAR S 21 U 15 130 PR 3
- ii. Technical Features:
 - a Fluid Type: Water, Glycol solution (50% max glycol)
 - b Safety Valve Calibration: 60 psi
 - c Connection: 3/4" NPT
 - d Operating Temperature Range: 14-230° F
 - e Max Ambient Temp: 104° F
 - f Max Operative Pressure: 145 psi
 - g Insulated Shell Conductibility: 0.041 W/mK
 - h Dimensions (LxWxD): 16.5" x 10.25" x 7"
 - i Center to center connection distance: 5.12 in
 - j Power supply: 115V 60Hz
 - k Protection level: NEMA 2
- PART 3- EXECUTION
- 3.1 INSTALLATION
 - A. Follow Manufacturer Specifications

SECTION 235613.01 – HEATING, SOLAR, VACUUM TUBE COLLECTORS

- PART 1- GENERAL
- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. Solar Thermal Collector made evacuated tubes with heat pipe cores. The panel collects sunlight to heat a working fluid in the manifold pumped to circulate through the hot water tank to heat water.
 - B. Submittals
 - i. http://solarusmfg.com/downloads/solarus_30.pdf
- PART 2- PRODUCTS
- 2.1 Solar Thermal Collector
 - A. Solar US Evacuated Tube Collector
 - i. Solarus 30
 - ii. Model No: SolarUS SL-30
 - iii. Dimensions:
 - a Overall Length (in/mm): 76.2/1935
 - b Overall Depth (in/mm): 5.7/145
 - c Overall Width (in/mm): 90.2/2290
 - d Absorber Area (ft²/m²): 26.22/2.436
 - e Net Weight: 216 lbs/98 kg
 - f Volume (Manifold): 0.46 gal/1740 mL
 - iv. Performance:
 - a Efficiency (η 0G): 74.4%
 - b Peak Power Output: 1917 W/hr/6541 BTU
 - v. Tilt: 75° down from horizontal
 - vi. Flow Rates:
 - a Max: 2.11 gpm/8 Lpm
 - b Recommended: 0.8 gpm/3 Lpm
 - c Max tubes in series: 150
- PART 3- EXECUTION
- 3.1 INSTALLATION
 - A. Follow Manufacturer Specifications

END OF SECTION 235613.01

SECTION 236333 – HEAT PUMP REFRIGERANT CONDENSERS

- PART 1- GENERAL
- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. Outdoor heat pump split system.
 - B. Submittals
 - i. http://usa.mylinkdrive.com/categories/3/product_types/5/series/42/models/66/ products/show/874.html
- PART 2- PRODUCTS
- 2.1 Outdoor Condensor Unit
 - A. Mitsubishi Electric Heat Pump
 - i. Model No MXZ-2B20NA-1
 - ii. Heating Capacity 22,000 Btu/h
 - iii. Heating Input Power 2.62 kW
 - iv. Cooling Capacity 20,000 Btu/h
 - v. Cooling Input Power 2.19 kW
 - vi. HSPF 8.9
 - vii. SEER 18
 - viii. Operating Range
 - a Cooling Temp. (Min/Max) 14/115°F (-10/46°C)
 - b Heating Temp. (Min/Max) 6/75°F (-14/24°C)
 - ix. Compressor
 - a DC INVERTER-driven Twin Rotary
 - x. Power Supply
 - a V/PH/Hz 208-230/1/60
 - b Minimum Circuit Amps (MCA) 15.0 Amps
 - c Maximum Overcurrent Protection (MOP) 20.0 Amps
 - xi. Refrigerant & Piping:
 - a Refrigerant Type/Charge R-410A/5,15
 - b Liquid Piping 1/4"
 - c Gas Piping 3/8"
 - d Max Pipe Length(total) 164 ft
 - e Vertical Limit 49 ft
 - xii. Unit Data:
 - a Dimensions (HxWxD) 27-15/16" x 33-1/16" x 13"
 - b Weight 130 lbs
- PART 3- EXECUTION

3.1 INSTALLATION

A. Installation shall be designed and completed by trained contractors **END OF SECTION 236333**

SECTION 238219 - INDOOR HEAT PUMP UNITS

- PART 1- GENERAL
- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. Ductless indoor unit heats/cools air over the refrigeration piping from the outdoor unit.
 - B. Submittals
 - i. http://usa.mylinkdrive.com/categories/3/product_types/5/series/48/models/56/ products/show/401.html
- PART 2- PRODUCTS

2.1 Indoor Unit

- A. Mitsubishi Electric Ceiling-recessed Cassette Ductless Heat Pump
 - i. SLZ-KA09NA
 - ii. Cooling Performance:
 - a Nominal Capacity 8,400 Btu/h
 - b Capacity Range 3,100-10,900 Btu/h
 - c Total Input 700 W
 - d Energy Efficiency SEER 15
 - e Sensible Heat Factor 0.84
 - iii. Heating Performance:
 - a Nominal Capacity 10,900 Btu/h
 - b Capacity Range 3,100-14,100 Btu/h
 - c Total Input 930 W
 - d HSPF (Region IV) 9.6
 - iv. Airflow Rate:
 - a Cooling DRY 280-320-350 CFM
 - b Cooling WET 250-290-320 CFM
 - c Heating WET 250-290-320 CFM
 - d External Static Pressure: 0.02-0.06-0.14-0.20 In. WG (5-15-35-50 Pa)
 - e Sound Pressure Level: 29-32-38 dB(A)
 - v. Electrical Data:
 - a Power supply 208-230V / 1PH / 60Hz
 - b Min. Circuit Amps (MCA) 1 AMP
 - vi. Physical Data:
 - a Dimension (H x W x D) 9-1/4"x22-7/16"x22-7/16"
 - b Grill (H x W x D) 13/16"x25-5/8"x25-5/8"
 - c Weight 36 lbs
 - vii. Connection type
 - a Gas Line 3/8"
 - b Liquid Line 1/4"
 - Field Drain Pipe (OD) 1-1/4"
- c Field Dra PART 3- EXECUTION
- 3.1 INSTALLATION
 - A. Follow Manufacturer Specifications

DIVISION 25 – INTEGRATED AUTOMATION AND CONTROL

SECTION 251400 – MICROPROCESSOR-BASED CONTROL UNIT

PART 1- GENERAL

- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. This section includes information on the Control4 Controller, which is used to receive and send messages between the UI and the house.
 - B. Submittals a Pro
 - Product link: http://www.control4.com/files/products/data-sheets/Control4-HC-300-Datasheet.pdf
- PART 2- PRODUCTS
- 2.1 Control Equipment
 - A. Control4 Controller
 - i. Home Controller HC-300
 - a Specifications
 - (i) Model Number: C4-HC300C-E-B
 - (ii) Remote: SR-250 Included
 - (iii)Video Outputs: Component (SD/HD), Composite, SVideo
 - (iv) Line-Level Audio Outputs: 2RCA
 - (v) Analog Audio Inputs: 1 RCA
 - (vi) Num. IR Outputs (Individual Device Control): 6
 - (vii) Num. IR Blaster (Multiple Device Control): 1
 - (viii) Num. IR Inputs: 1
 - (ix) Voltage: 100-240 VAC
 - (x) Amps: 0.26 A
 - (xi) Hertz: 50-60 Hz
 - (xii) Dimensions: 2.8" x 12" x 7.25' (71mm x 305mm x 184mm)
 - (xiii) Weight: 5.2 lbs (2.35kg)
 - b Manufacturer Info
 - (i) Manufacturer: Control4 Corporation
- PART 3- EXECUTION
- 3.1 INSTALLATION
 - A. Follow all manufacturer specifications

SECTION 253489 - MITSUBISHI WIRELESS THERMOSTAT

- PART 1- GENERAL
- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. This section includes information on the Mitsubishi Wireless Thermostats used to control the HVAC system of the house
 - B. Submittals
 - a Product link: http://www.mitsubishipro.com/media/448725/mhk1kit.pdf
- PART 2- PRODUCTS
- 2.1 Control Equipment
 - A. Mitsubishi Wireless Remote Controller
 - i. Model Number: MRCH1
 - a Operation Modes: Cool/Drying/Auto/Heat/Fan Only
 - b Temperature Setting Range 50– 87°F
 - c Fan Speed Setting Hi/Mid-2/Mid-1/Low/Auto
 - d Power Supply: 2 AA batteries
 - e Dimensions: 5-3/16" x 1-1/2" x 3-9/16"
 - B. Mitsubishi Wireless Receiver
 - i. Model Number: MFH1
 - a Receives commands from remote and relays them to the units
 - b Dimensions: 3-1/4" x 1-5/16" x 6-7/16"
- PART 3- EXECUTION
- 3.1 INSTALLATION
 - A. Follow all manufacturer specifications

DIVISION 26 – ELECTRICAL

SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1- GENERAL

- 1.1 Related Documents
 - A. Solar Decathlon 2013 Building Code
 - B. Solar Decathlon 2013 Rules
 - C. Drawings and General Provisions of the Contract, including General and Supplementary Conditions, Division 01 Specification Sections, apply to this section and to all following sections within Division 26
- 1.2 Summary
 - A. Section Includes
 - i. Electrical equipment installation
 - ii. Common electrical installation requirements
- 1.3 Section Requirements
 - A. The following specifications apply to all Division 26 Sections as a set of minimum requirements.
 - i. Compliance with the following codes:
 - a Solar Decathlon 2013 Building Code
 - b International Building Code 2012
 - c International Residential Code 2012
 - d National Electric Code 2012
 - Compliance with local rules and regulations
- ii. Con 1.4 Submittals
 - i. Product data sheets
 - ii. Manufacturer installation instructions
- PART 2- PRODUCTS
- 2.1 26 05 19: Low Voltage Electrical Conductors and Cables
- 2.2 26 05 26: Grounding and Bonding for Electrical Systems
- 2.3 26 05 33: Raceway and Boxes for Electrical Systems
- 2.4 26 05 53: Identification for Electrical Systems
- 2.5 26 05 83: Wiring Connectors
- PART 3- EXECUTION
- 3.1 INSTALLATION
 - A. Perform all electrical work in compliance with applicable safety regulations
 - B. All safety equipment required for compliance shall be provided by the Contractor
- 3.2 Quality Assurance
 - A. All work and materials shall be specified in accordance with the requirements and codes listed above and all applicable local regulations applicable to the structure's final location.

SECTION 260519 – LOW-VOLTAGE ELECTRICAL CONDUCTORS AND CABLES

- PART 1- GENERAL
- 1.1 Summary
 - A. This section covers all conductors and cables used in the house. Refer to Construction Drawings for locations of products

NM-B

- 1.2 Related Sections
 - A. Section 26 05 00: Common Work Results for Electrical
- 1.3 Submittals
 - A. Product Data Sheets
- PART 2- PRODUCTS
- 2.1 Interior Cables
 - A. NM-B 3-conductor and 4-conductor solid cables
 - i. Manufacturer: Southwire
 - ii. Insulation Type: NM-B
 - iii. Insulation Voltage Rating: 600 V
 - iv. Wire type: Solid Copper
 - v. Wire colors:
 - a Phase 1: Black
 - b Phase 2: Red
 - c Neutral: White
 - d Ground: Bare
 - B. NM-B 3-conductor and 4-conductor stranded cables
 - i. Manufacturer: Southwire
 - ii. Insulation Type:
 - iii. Insulation Voltage Rating: 600 V
 - iv. Wire type: Stranded Copper
 - v. Wire colors:
 - a Phase 1: Black
 - b Phase 2: Red
 - c Neutral: White
 - d Ground: Bare
- 2.2 Outdoor Cables
 - A. SOOW
 - i. Manufacturer: Southwire
 - ii. Maximum Voltage: 600 V
 - iii. Wire color: Black
 - iv. Usage: Outdoors
 - v. <u>http://www.southwire.com/products/viper-type-soow.htm</u>

PART 3- EXECUTION

- 3.1 Wiring Requirements
 - A. Verify that raceway work is completed
 - B. Verify that no further mechanical work is likely do damage cables
- 3.2 Installation
 - A. NM-B Solid Cables
 - i. Use conductor size AWG 12 for lighting and receptacle branch circuits rated 15-20 A
 - ii. Use conductor size AWG-10 for circuits rated up to 30 A
 - iii. Pull all conductors through raceway at the same time
 - iv. Use suitable wire pulling equipment

- v. Support cables using plastic-protected cable fasteners
- vi. Protect cables installed through studs with nail plates
- B. NM-B Stranded Cables
 - i. Use conductor size AWG-8 for circuits up to 40 A
 - ii. Use conductor size AWG-6 for circuits up to 55 A
 - iii. Use conductor size AWG-2/0 for service entrance cable
 - iv. Pull all conductors through raceway at the same time
 - v. Use suitable wire pulling equipment
 - vi. Support cables using plastic-protected cable fasteners
 - vii. Protect cables installed through studs with nail plates
- C. SOOW Stranded Cables
 - i. Use conductor size AWG-10, 12
 - ii. Use conductor size AWG-8 for Ground
 - iii. Tie cables to PV mounting frame or structure using clips or UV-rated cable ties
 - iv. Connect to junction boxes via approved watertight connectors
 - v. Follow Manufacturer Specifications

END OF SECTION 26 05 19

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1- GENERAL

- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. This section covers electrical bonding and grounding.
 - ii. Related Sections:
 - a 262416: Panelboards
 - B. Submittals
- PART 2- PRODUCTS
- 2.1 Grounding Electrodes
 - A. Grounding Rod
 - i. Product to be determined based on ground penetration decisions by the Organizers
 - ii. Quantity to be determined based on Organizers Building Code Requirements
- 2.2 Electrode Fittings
 - A. Direct Burial Ground Clamp
 - i. Product to be determined based on grounding rod system
 - ii. Quantity to be determined based on grounding rod system
- PART 3- EXECUTION
- 3.1 General
 - A. Install in accordance with NEC
 - B. Install in locations as shown in Construction Drawings
 - C. All metallic equipment, including building structure, ductwork, metallic raceways, junction boxes, and other conductive equipment shall be grounded
- 3.2 Installation
 - A. Grounding Rod system shall be connected to the central panelboard by means of an uninsulated wire of minimum 4 AWG
 - B. Grounding Rod and Clamp must be installed where they will not pose a tripping or falling hazard

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

- PART 1- GENERAL
- 1.1 Summary

i.

- This section includes electric equipment related to movement of structures A.
- PART 2- PRODUCTS
- **Cable Carriers** 2.1
 - **GORTRAC TS-110 Cable Carrier** A.
 - **Outside-Inside Cable Carrier**
 - 99 links а
 - b **Outside Dimensions** (i) 5" Width x 3.24" Height
 - С Inside Dimensions (i) 3.91" Width x 2.22" Height
 - Link Length 4.06"
 - d Bend Radius 10.98" е
 - Inter-Module Cable Carrier ii.
 - 176 links а
 - b **Outside** Dimensions
 - (i) 3" Width x 3.24" Height
 - **Inside Dimensions** С
 - (i) 2.89" Width x 2.22" Height
 - d Link Length 4.06"
 - Bend Radius 10.98" е
 - B. **GORTRAC N3-8D Cable Carrier**
 - **Canopy Cable Carriers** i.
 - 119 links а
 - **Outside Dimensions** b
 - (i) 2.95" Width x 1.38" Height
 - **Inside Dimensions** С
 - (i) 2.48" Width x 0.91" Height
 - d Link Length 4.06"
 - Bend Radius 10.98 е

PART 3- EXECUTION

- 3.1 INSTALLATION
 - A. Installation shall be designed and completed by trained contractors
 - Remove all sharp edges prior to installing cables B.
 - On-site, attach carriers with wires pre-loaded C.
 - Ensure that hoses and cables can fit in the bend radius D.

SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1- GENERAL

- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. This section covers electrical boxes and raceways for wires
 - ii. Related Sections
 - a 26 05 19: Low-Voltage Electrical Conductors and Cables
 - B. Submittals
 - i. Product Data Sheets
- PART 2- PRODUCTS (example is for water systems)
- 2.1 Metallic boxes
 - A. Ceiling Boxes
 - i. Manufacturer: Raco or Equivalent
 - ii. Size:
 - a 4" square 2 -1/8" deep
 - b 4" octagon 2-1/8" deep
 - iii. Website:
 - B. Wall Boxes
 - i. Manufacturer: Raco or Equivalent
 - ii. Size:
 - a 4" x 2-1/8" rectangle 2-1/8" deep
 - b 4" square 2-1/8" deep
 - iii. Website:
- 2.2 Nonconducting boxes
- 2.3 Faceplates and Rings
 - A. Faceplates
 - i. Approved plastic faceplates shall be used as appropriate for outlets and switches
 - ii. Website:
- 2.4 Raceway

A.

- A. Metallic conduit
- B. Flexible armored cable
- C. Liquidtight flexible conduit
- 2.5 Cable Carriers
 - Gortrac KN Series Cable Carriers
 - i. Manufacturer: A&A Manufacturing
 - ii. Sizes: various
 - iii. Website: http://www.gortrac.com/carriers/cable-hose-carriers/nylatrac/nylatracopen-style-standard-plastic-carriers/kn-series
- PART 3- EXECUTION
- 3.1 INSTALLATION
 - A. Follow Manufacturer Specifications
 - B. Installation shall be performed by qualified team member or licensed electrician

SECTION 260913 - ELECTRICAL POWER MONITORING AND CONTROL

Part 1 - GENERAL

1.1 Summary

A. This section includes information on the monitoring equipment. These include the: 1. Powerhouse Dynamics eMonitor 4-24 Energy Monitor

Part 2 - PRODUCTS

2.1 Products

A. Energy Consumption Monitor

1. Product Description and/or Specifications

i. Power Needs: 120 VAC, 60 Hz

ii. Operating Temperature: 14 - 140°F

iii. Operating Humidity: 5 - 95%, non-condensing

iv. Circuits able to Monitor: 24

v. Circuit Needs: 120VAC/15A breaker

vi. Communication Protocols: eLink Wireless 2.4 GHz

between circuit probes and Gateway, RS485 link protocol

to xPod, WiFi 802.11 and TCP-IP via Ethernet to computer

vii. Dimensions: 7" x 2.5" x 1.875" (eMonitor), 3.75" x

1.875" x .875" (xPod), 5.25" x 3.25" x 1.5" (Gateway)

viii. Weight: 4 oz (eMonitor), 2 oz (xPod), 6 oz (Gateway)

2. Manufacturer Information and Product Link

i. Manufacturer: Powerhouse Dynamics

ii. Model: 4 - 24

iii. Product Specifications:

http://www.smarthome.com/90422/Powerhouse-Dynamics-eMonitor4-24-

Intelligent-Residential-Power-Usage-Monitor/p.aspx

iv. Manufacturer Website:

http://www.powerhousedynamics.com/residential-energy-

efficiency/electricity-monitor-features-circuit-level-monitoring/

END SECTION 260913

SECTION 262616 - PANELBOARDS

- PART 1- GENERAL
- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. Panelboards/Circuit breaker panels provide electrical connectivity for the houseB. Submittals
 - i. http://products.schneider-electric.us/products-services/productdetail/?event=productDetail&countryCode=us&partNumber=HOM42M225RB
- PART 2- PRODUCTS
- 2.1 150 A Panelboard
 - A. Manufacturer: Schenider Electric
 - i. Model: HOM24M225RB
 - ii. Ampere Rating 225 A
 - iii. Bus Material Tim-Plated Aluminum
 - iv. Enclosure Type Outdoor/Rainproof
 - v. Enclosure Rating NEMA 3R
 - vi. Maximum Single-Pole Circuits 42
 - vii. Short Circuit Rating 22 kA
 - viii. Phase 1-Phase
 - ix. Dimensions 39.37 in H x 14.75 in W x 4.52 in D
 - x. Voltage Rating 120/240 V
- PART 3- EXECUTION
- 3.1 INSTALLATION
 - A. Follow Manufacturer Specifications
 - B. Products to be installed by a licensed electrician.

SECTION 262726 - WIRING DEVICES

PART 1- GENERAL

- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. These switches and dimmers receive commands from the Control4 Controller and turn home electronics on and off.
 - B. Submittals
 - i. Product Link: http://www.control4.com/files/products/data-sheets/Control4-120V-Lighting.pdf
- PART 2- PRODUCTS

2.1 Switches

- A. Outlet Switch
 - i. Control4 Outlet Switch
 - a Specifications
 - (i) Power requirements: 120 VAC +/- 10%; 60/50 Hz
 - (ii) Power Consumption: 1.4W (LEDs Off), 1.7W (LEDs On)
 - (iii) Maximum One Gang Load (Total across both outlets)
 - 1. Incandescent/Tungsten/Halogen: 600W
 - 2. Fluorescent: 7.2
 - 3. Compact Fluorescent: 7.2
 - 4. Electronic Low Voltage: 7.2 A
 - 5. Magnetic Low Voltage: 1000VA
 - 6. Motor: 1/3 HP (7.2 FLA)
 - 7. Control Communications: ZigBee (802.15.4)
 - (iv) Operational Temperature: 0°C- 40°C
 - (v) Humidity: 5%-95% (non-condensing)
 - (vi) Storage Temperature: -20°C 70°C
 - (vii) Dimensions: 4.5" x 2.6" x 1.6" (115mm x 67mm x 42mm)
 - (viii) Weight: 8.0 oz (227 g)
 - b Manufacturer Info
 - (i) Manufacturer: Control4 Corporation
- 2.2 Dimmers
 - A. Outlet Dimmer
 - i. Control4 Outlet Dimmer
 - a Specifications
 - (i) Power requirements: 120 VAC +/- 10%; 60/50 Hz
 - (ii) Power Consumption: 350 mW
 - (iii) Maximum One Gang Load
 - 1. Incandescent/Tungsten/Halogen: N/A
 - 2. Fluorescent: 1000W electronic ballast
 - 3. Compact Fluorescent: 1000VA
 - 4. Electronic Low Voltage: 1000VA
 - 5. Magnetic Low Voltage: 1000VA
 - 6. Control Communications: ZigBee (802.15.4)
 - (iv) Operational Temperature: 0°C- 40°C
 - (v) Humidity: 5%-95% (non-condensing)
 - (vi) Storage Temperature: -20°C 70°C
 - (vii) Dimensions: 4.5" x 2.75" x 1.6" (117mm x 70mm x 41mm)
 - (viii) Weight: 4.9 oz (139 g)
 - b Manufacturer Info

(i) Manufacturer: Control4 Corporation EXECUTION

PART 3- EXECUTION

3.1 INSTALLATION

A. Follow all manufacturer specifications **END OF SECTION 262726**

SECTION 262800 - LOW-VOLTAGE CIRCUIT PROTECTIVE DEVICES

PART 1- GENERAL

- 1.1 SECTION REQUIREMENTS
 - A. Summary
 - i. This section contains circuit breaker specifications

1

30 A

40 A

2

2

- Submittals B.
 - Manufacturer Information i.
- PART 2- PRODUCTS (example is for water systems)
- 2.1 **Circuit Breakers**

i.

- Square D HOM Line Circuit Breakers A.
 - **AFCI Breakers**
 - HOM115AFI а
 - (i) Amperage: 15 A
 - (ii) Poles:
 - (iii) AFCI Protection
 - ii. **GFCI Breakers**
 - HOM115GFI а
 - (i) Amperage: 15 A
 - (ii) Poles: 1
 - (iii) GFCI Protection
 - b HOM120GFI
 - (i) Amperage: 20 A
 - (ii) Poles: 1
 - (iii) GFCI Protection
 - iii. **Standard Breakers**
 - HOM115 а
 - (i) Amperage: 15 A 1
 - HOM215
 - (i) Amperage: 15 A

 - С
 - (ii) Poles:
 - d HOM240
 - (i) Amperage:
 - (ii) Poles:
 - е
 - (i) Amperage: 50 A (ii) Poles: 2
 - Panel Breakers iv.
 - QOM2150VH а
 - (i) Amperage 150 A
- **PART 3- EXECUTION**

b

- 3.1 Installation
 - Follow Manufacturer Specifications A.
 - Installation shall be performed by qualified team member or licensed electrician B.

- (ii) Poles 2

- (ii) Poles:
- (ii) Poles: 2
- HOM230
- (i) Amperage:

- HOM240

SECTION 263100 - SOLAR PHOTOVOLTAICS

- PART 1- GENERAL
- 1.1 SECTION REQUIREMENTS
 - A. This section contains information on the solar array, including:
 - i. Hanwha monocrystalline modules
 - ii. SMA America inverter
 - iii. Tigo module maximizer hubs
 - B. Submittals
 - i. http://www.hanwha-solarone.com
 - ii. <u>http://www.sma-america.com/en_US.html</u>
 - iii. http://www.tigoenergy.com
 - iv. {Shop Drawings}
 - v. {Manuf. Instructions}
- PART 2- PRODUCTS
- 2.1 Photovoltaic modules
 - A. Hanwha photovoltaic modules
 - i. Hanwha monocrystalline modules
 - a Catalog number: SF160-24-1M190
 - b Certification: IEC 61215
 - c Power: 137 W (max at normal cell operating temperature)
 - d Open circuit voltage: 41.2 V
 - e Short circuit current: 4.68 A
 - f Voltage and current at maximum power: 32.2 V, 4.26 A
 - g Module efficiency: 13.4%
 - h Cell efficiency: 17.2%
 - i System voltage: 1,000 V (max)
 - j Series fuse fating: 10 A
 - k Environment: IP65, -40 to 85 °C
- 2.2 Grid-Tied Inverters
 - A. SMA America grid-tied inverters
 - i. SMA America Sunny Boy 6000 US
 - a Catalog number: SB6000US
 - b Max. recommended PV power: 7500 W
 - c Max. DC power: 6350 W
 - d Max. DC voltage: 600 V
 - e MPP voltage range: 250 to 480 V
 - f Max. input current: 25 A, 20 A per string
 - g MPP trackers: 1
 - h Fused strings per MPP tracker: 4
 - i Max. AC nominal power: 6000 W
 - j Max output current: 29 A
 - k Efficiency: 96.9% (max)
 - 1 Electronics proection rating: NEMA 3R
 - m Certification: UL1741
- 2.3 Module Maximizers
 - A. Tigo Energy module maximizers
 - i. Tigo Energy module maximizer
 - a Catalog number: MM-ES50
 - b Maximum power: 350 W
 - c Maximum input DC voltage: 52 V

- d Voltage at maximum power: 16 to 48 V
- e Maximum input current: 10 A
- f Maximum output power: 350 W
- g Maximum continuous output current: 9.5 A
- h Environment: IP65, -30 to 70 °C
- i Certification: UL1741

PART 3- EXECUTION

3.1 INSTALLATION

A. Follow Manufacturer Specifications

SECTION 265000 – LIGHTING

PART 1 - GENERAL

- 1.01 SECTION REQUIREMENTS
 - A. Submittals: Product Data for each luminaire, including lamps.

PART 2 - PRODUCTS

- 2.01 PERFORMANCE REQUIREMENTS
 - A. Fixtures, Emergency Lighting Units, Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 2.02 LIGHTING FIXTURES AND COMPONENTS, GENERAL REQUIREMENTS
 - A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
 - B. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
 - C. Exterior Luminaires: Comply with UL 1598 and listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
 - D. Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
 - E. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

2.03 LAMPS

A.

- **Recessed Can Lights**
- 1. Elite Lighting 4" Can
 - a. Manufacturer: Elite Lighting
 - b. Wattage: 10W
 - c. Dimming: Yes
 - d. Voltage: 120 V
 - e. Housing: LED4IC-AT
 - f. Insulation: Yes, can Contact
 - PAR16 GU10 Task Light
 - a. Manufacturer: Philips
 - b. Yes
- B. Outdoor Strip Lights

2.

- 1. American Lighting LED Rope Light Kit
 - a. Model: 120-TL60-30-WW
 - b. Color: White
 - c. Dimensions: $\frac{1}{4}$ x 3/8" x 360 in.
 - d. Waterproof
 - Wattage 37 W
- e. Wattage C. Deck Recessed Lights
 - 1. Solar LED Recessed Deck Dock Patio Light
 - a. Manufacturer: Reusable Revolution
 - b. Model: SRroundwhite1
 - c. Color: White
 - d. Dimensions: 4.75" diameter x 2" x 3" diameter base
 - e. Waterproof
 - f. Battery: 900 mAh

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Coordinate ceiling-mounted luminaires with ceiling construction, mechanical work, and security and fire-prevention features mounted in ceiling space and on ceiling.
 - B. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture.
 - C. Comply with NFPA 70 for minimum fixture supports.
 - D. Seismic Protection: Luminaire attachments to building walls and ceilings shall comply with seismic criteria in Section 260500 "Common Work Results for Electrical."
 - E. Adjust aimable lighting fixtures to provide required light intensities.

DIVISION 27 – COMMUNICATIONS

SECTION 272200 - DATA COMMUNICATIONS HARDWARE

Part 1 - GENERAL

- 1.1 Summary
 - A. This section includes information on the control equipment. These include the:1. Google Nexus 7
- Part 2 PRODUCTS
 - 2.1 Products
 - A. Tablets
 - 1. Google Nexus 7
 - a. Product Description and/or specifications
 - i. 7" 1280x800 (216ppi) screen
 - ii. 198.5 x 120 x 10.45 mm dimension
 - iii. 32 GB hard drive
 - iv. 340 g
 - v. 1.2 MP front-facing camera
 - vi. Wi-Fi 802.11 b/g/n
 - vii. bluetooth
 - viii.1GB ram
 - ix. NVIDIA Tegra 3 quad-core processor
 - x. 4,325 mAh battery
 - xi. Accelerometer
 - xii. GPS
 - xiii. Gyroscope
 - xiv. Microphone
 - xv. Magnetometer

Part 3- EXECUTION

- 2.2 Installation
- A. Comply with all manufacturers' written recommendations and specifications

SECTION 274116 - INTEGRATED AUDIO-VISUAL SYSTEMS AND EQUIPMENT

PART 1- GENERAL

- 1.1 SECTION REQUIREMENTS
 - A. The home entertainment system will contain TV, audio system, projector, projector screen, computer, and monitor. It will be used to entertain guests indoors and outdoors.
 - B. Submittals
 - *i.* TV: Samsung UN32EH5000
 - *ii.* Blu-Ray player: LG BP220 Audio system: Panasonic SC-BTT190 Blu-Ray Home Theater System Projector: Acer H5360 Projector screen: FAVI HD150 Computer: Lenovo H330 (77805RU) Monitor: Viewsonic VX2250WM
 - iii. {Shop drawings}
 - iv. Follow all manufacturer instructions.
- PART 2- PRODUCTS
- 2.1 TV/blue-ray/audio system
 - A. TV
- Brand: Samsung Model: UN40EH5300 Type: LED-LCD (LED backlighting) Screen size: 40-inch Resolution: 1080p HD Refresh rate: 60 Hz Other: Built-in wifi, Smart Hub
- B. Blue-ray

Brand: LG Model: BP220 Features: Smart TV, Smart phone app Connectivity: Wired Internet, DMP (DLNA), SIMPLINK Other: HDMI 1.4

C. Audio

Brand: Panasonic Model: SC-BTT190 Output: 1000W Connectivity: Smart phone, VIERA Connect™, Wireless LAN, DLNA (DMP&DMR), BD-

- Live™
- Other: HMDI

2.2 Projector system:

A. Projector

- Brand: Acer Model: H5360 Brightness: 2500 lumen Throw distance: min – 3.2ft, max – 33.4ft Max power consumption: 224W Resolution: 1080HD Other: 3D Connectors: HDMI, DVI, VGA
- B. Projector screen Brand: FAVI

Model: HD-150 Size: 150-inch Aspect Ratio: 16:9/HD Viewing Area: 131-inch x 74-inch

2.3 Computer and monitor system

A. Computer

Brand: Lenovo Model: H520s - 57310716 CPU: 2nd generation Intel Core i3-2130 Processor (3.40GHz) RAM: 4GB Hard drive: 1TB 7200 rpm Graphics: Intel HD Graphics 2000

B. Monitor

Brand: Viewsonic Model: VX2250WM Resolution: 1080p Type: LED backlighting Connectivity: VGA, power

PART 3- EXECUTION

3.1 INSTALLATION

A. Follow Manufacturer Specifications

DIVISION 28 ELECTRONIC SAFETY AND SECURITY

SECTION 281600 – SAFETY MEASURES

PART 1- GENERAL

- 1.1 SECTION REQUIREMENTS
 - A. When a person or other object comes in contact with one or more safety edges, the sensor(s) will trigger a full and immediate stop of module and canopy movement. When a person or other object interrupts the beams of a light curtain, the sensor will trigger a full and immediate stop of module and canopy movement. When a person or other object interrupts the beam of an area access control sensor, the sensor will trigger a full and immediate stop of module and canopy movement. Safety limit switches mute the signal from a light curtain when it is interrupted by the home. Safety relays and safety edge controllers send status inputs to a programmable logic controller and are hardwired to the module motors.
 - B. Submittals
 - i. http://www.ab.com/catalogs
 - ii. {Shop Drawings}
 - iii. {Manuf. Instructions}
- PART 2- PRODUCTS
- 2.1 Safety Edges
 - A. Allen-Bradley sensitive edge system
 - i. Allen-Bradley Safedge 0118S
 - a Catalog number: 440F-E0118S10
 - b Safety rating: IEC/EN 60204-1
 - c Environment: IP65, -5 to 55 °C
 - d Bend radius: 19.6 in (min)
 - e Power supply: 4 VDC (from control unit)
 - f Wire size: 18 AWG
 - g Cushion factor: 0.15 in
 - h Length: 32.8 ft
 - i Profile: 0.63 in
 - j Mounting rail
 - (i) Catalog number: 440F-R1212
 - (ii) Material: aluminum
 - (iii) Length: 6.5 ft
 - k Connector and cable
 - (i) Catalog number: 440F-A1185
 - l Mini profile resistor
 - (i) Catalog number: 440F-A1186
 - m Mini profile closing cap
 - (i) Catalog number: 440F-A1318
- 2.2 Safety Edge Controllers
 - A. Allen-Bradley sensitive edge controller
 - i. Allen-Bradley Safedge controller
 - a Catalog number: 440F-C252D
 - b Safety rating: EN 954-1
 - c Environment: IP65, -10 to 55 °C
 - d Response time: 13 ms (max)
 - e Contacts
 - (i) Safety: 2 NO

- (ii) Auxiliary: 1 NC
- 2.3 Light Curtains
 - A. Allen-Bradley safety light curtain
 - i. Allen-Bradley Guardmaster Type 4 POC GuardShield Standard
 - a Catalog number: 440L-P4K0320YD
 - b Protected height: 12.6 in
 - c Number of beams: 16
 - d Resolution: 1.18 in
 - e Safety rating: IEC/EN 61496 Parts 1 & 2
 - f Operating voltage: 24 VDC (max)
 - g Power: 0.4 A max (no load)
 - h Response time: 20 to 25 ms
 - i Wavelength: 870 nm
 - j Environment: IP65, -10 to 55 °C
 - k Cordset
 - (i) Transmitter
 - 1. Catalog number: 889D-F4AC-10
 - 2. 22 AWG
 - (ii) Receiver
 - 1. Catalog number: 889D-F8AB-10
 - 2. 24 AWG
- 2.4 Area Access Control Sensors
 - A. Allen-Bradley area access control sensor
 - i. Allen-Bradley area access control single beam emitter
 - a Catalog number: 440L-T4F2070-Q
 - b Safety rating: IEC/EN 61496 Parts 1 & 2
 - c Input power: 24 VDC ±20%
 - d Power consumption: 8 W (max, 24 VDC)
 - e Outputs: 2 NO relays
 - f Response time: < 22 ms
 - g Beam diameter: 23 mm
 - h Scanning range: 0.5 to 20 m
 - i Wavelength: 950 nm
 - j Environment: IP67, -25 to 55 °C
 - ii. Allen-Bradley area access control single beam receiver
 - a Catalog number: 440L-R4F0020-Q
 - b Safety rating: IEC/EN 61496 Parts 1 & 2
 - c Input power: 24 VDC ±20%
 - d Power consumption: 8 W (max, 24 VDC)
 - e Outputs: 2 NO relays
 - f Response time: < 22 ms
 - g Beam diameter: 23 mm
 - h Scanning range: 0.5 to 20 m
 - i Environment: IP67, -25 to 55 °C
- 2.5 Safety Limit Switches

i.

- A. Allen-Bradley safety limit switch
 - Allen-Bradley compact safety limit switch
 - a Catalog number: 440P-ARPS11C
 - b Safety rating: UL, CE, marked for all applicable directives
 - c Outputs

- (i) Safety contact: 1 NC, snap acting
- (ii) Auxiliary contact: 1 NO, snap acting
- d Actuation speed: 250 mm/s (max), 100 mm/min (min)
- e Actuation frequency: 6,000 operations/hour (max)
- f Mechanical life: 10,000,000 operations
- g Environment: IP 66/67, 2 to 70 °C
- 2.6 Safety Relays
 - A. Allen-Bradley safety relay
 - i. Allen-Bradley muting module safety relay
 - a Catalog number: 440R-P23071
 - b Safety rating: IEC/EN 61496 Parts 1 & 2
 - c Input power: 24 VDC ±20%
 - d Power consumption: 0.4 A max (no load)
 - e Outputs
 - (i) Safety: 2 OSSD, 0.5 A
 - (ii) Auxiliary: 0.5 A
 - f Response time: 20 ms

PART 3- EXECUTION

3.1 INSTALLATION

A. Follow Manufacturer Specifications

SECTION 281601 - POSITIONING EQUIPMENT

PART 1- GENERAL

- 1.1 SECTION REQUIREMENTS
 - A. Retroreflective laser distance sensors measure the distance between the modules and the distance between each module and the end of the track. Limit switches prevent the modules from driving off the ends of the track and ensure that the modules continue to close until an air- and water-tight seal forms between the modules.
 - B. Submittals
 - i. http://ab.com/catalogs/
 - ii. {Shop Drawings}
 - iii. {Manuf. Instructions}
- PART 2- PRODUCTS
- 2.1 Laser Distance Sensors
 - A. Allen-Bradley photoelectric sensor
 - i. Allen-Bradley laser measurement photoelectric sensor
 - a Catalog number: 45LMS-U8LGC3-D4
 - b Sensing mode: retroreflective
 - c Light source: Class 1 laser (visible red 660 nm)
 - d Sensing distance: 0.2 to 50 m
 - e Spot size: < 50mm at a distance of 50 m
 - f Precision: accurate to ± 25 mm
 - g Environment: IP65, -30 to 50 °C
 - h Outputs: one discrete (NPN/PNP), one analog (4 to 20 mA)
 - i Mounting bracket
 - (i) Catalog number: 45LMS-BKT1
 - j Cordset
 - (i) DC Micro quick disconnect, 22 AWG
 - k Reflector target
 - (i) Dimensions: 40.5 x 60 mm
- 2.2 Limit Switches
 - A. Allen-Bradley limit switch
 - i. Allen-Bradley compact limit switch (top push cross roller)
 - a Catalog number: 802B-CSAD1XSXD4
 - b Torque/force to operate: 11.77 N (max)
 - c Travel to operate contacts: 1.8 mm (max)
 - d Maximum travel: 5 mm
 - e Maximum travel to reset contacts: 0.2 mm
 - f Output type: standard
- 2.3 Proximity Sensors
 - A. Allen-Bradley proximity sensor
 - i. Allen-Bradley 2W proximity switch
 - a Catalog number: 872C-D3NE12-D4
 - b Environment: IP67, -25 to 70 °C
 - c Barrel Diameter: 12 mm
 - d Sensing Distance: 3 mm
 - e Load current: < 100 mA
 - f Leakage current: < 0.9 mA
 - g Operating voltage: 10 to 30 VDC
 - h Voltage drop: ±6 V

DALE 2013 Project Manual SCI-Arc/Caltech

PART 3- EXECUTION 3.1 INSTALLATION A. Follow Manufacturer Specifications END OF SECTION 281601

SECTION 281602 - COMMAND CENTER EQUIPMENT

PART 1- GENERAL

- 1.1 SECTION REQUIREMENTS
 - A. A programmable logic controller with a touchscreen user interface and manual trigger allow the homeowners to input a desired module and canopy configuration.
 - B. Submittals
 - i. http://ab.com/catalogs/
 - ii. {Shop Drawings}
 - iii. {Manuf. Instructions}
- PART 2- PRODUCTS
- 2.1 Programmable Logic Controllers (PLCs)
 - A. Allen-Bradley PLC
 - i. Allen-Bradley MicroLogix 1400 PLC
 - a Catalog number: 1766-L32BWA
 - b Environment: -20 to 60 °C
 - c Line voltage: 120/240 VAC
 - d Memory
 - (i) 10 kB user program
 - (ii) 10 kB user data
 - (iii)Battery-backed RAM
 - e Inputs: 12 (fast 24 VDC), 8 (normal 24 VDC)
 - f Outputs: 12 relay
- 2.2 PLC Input/Output Modules
 - A. Allen-Bradley input module
 - i. Allen-Bradley four-channel analog input module
 - a Catalog number: 1762-IF4
 - b Environment: -20 to 65 °C
 - c Inputs: four differential (bipolar)
 - d Analog ranges
 - (i) Voltage: ±10 V
 - (ii) Current: 4 to 20 mA
 - Allen-Bradley 16 point digital input module
 - a Catalog number: 1762-IQ16
 - b Environment: -20 to 65 °C
 - c Inputs: 16 (eight points/group)
 - d Operating voltage range: 10 to 26.4 VDC
 - e Maximum on-state current: 12 mA at 30 VDC
 - f Maximum off-state current: 1.5 mA at 5 VDC
 - B. Allen-Bradley output module
 - i. Allen-Bradley 16 point digital output module
 - a Catalog number: 1762-0W16
 - b Environment: -20 to 65 °C
 - c Outputs: 16 (eight points/group)
 - d Operating voltage range: 5 to 265 VAC, 5 to 125 VDC
 - e Maximum continuous current per output: 2.5 A
 - f Maximum off-state leakage current: 0 mA
- 2.3 User Interface Panels

ii.

- A. Allen-Bradley touchscreen user interface panels
 - i. Allen-Bradley PanelView graphic terminal

- a Catalog number: 2711C-T6T
- b Display type: color transmissive TFT active matrix LCD
- c Display size: 5.7 in
- d Resolution: 320 x 240
- e Backlight: white LED lifetime 40,000 hours (min)
- f Touchscreen type: analog resistive
- g Actuation rating: 1,000,000 presses
- h Communication ports: RS-232 (DH-485), RS-232 (DF1), RS485, Ethernet
- i Programming port: USB device port or Ethernet port
- j Input voltage range: 18 to 30 VDC (24 VDC nom)
- k Power consumption: 10 W (max, 0.42 A at 24 VDC)
- l Environment: IP 65, 0 to 50 °C
- m Certification: c-UL-us, CE marked, C-Tick
- 2.4 Power Supplies
 - A. Allen-Bradley power supply
 - i. Allen-Bradley 480 W power supply
 - a Catalog number: 1606-XLS480E
 - b Output wattage and voltage: 480 W, 24 to 28 VDC
 - c Input voltage: 100 to 240 VAC or 110 to 150 VDC
 - d Rated input current
 - (i) 4.6 A at 100 VAC
 - (ii) 2.5 A at 240 VAC
 - e Output current
 - (i) 20 A at 24 V
 - (ii) 17 A at 28 V
 - f Safety rating: IEC/EN 60950, EN 50178
- 2.5 Emergency Stop Buttons
 - A. Allen-Bradley emergency stop button
 - i. Allen-Bradley metal mushroom push button
 - a Catalog number: 800FM-MT34
 - b Trigger action: twist to release
 - c Color: red
 - d Size: 30 mm diameter
 - e Environment: IP 65/66, -25 to 70 °C
 - f Mechanical durability: 300,000 cycles
 - g Operating force: 9 N (typical)
 - h Certifications: UR/UL, CSA, CCC, CE
 - i Metal latch
 - (i) Catalog number: 800F-ALM
 - (ii) Mechanical durability: 10,000,000 cycles
 - (iii)Certifications: UR/UL, CSA, CCC, CE
 - j Contact blocks
 - (i) Catalog numbers: 800F-X01, 800F-X10
- 2.6 Unmanaged switches
 - A. Allen-Bradley unmanaged switch
 - i. Allen-Bradley Stratix 2000
 - a Catalog number: 1783-US05T
 - b Inrush current: 2.2 A (max)
 - c Power supply voltage: 24 VDC (10 to 35 VDC)
 - d Isolation voltage: 30 V (continuous)

- e Power consumption: 4 W (max, 400 mA at 10 VDC)
- f Ethernet connections: category 5 cable (ISO/IEC 24702)
- g DC power connections: 16 to 14 AWG
- h Environment: open-style enclosure, 0 to 60 °C
- i Certification: UL Listed Industrial Control Equipment
- j Copper ports per module: 5

PART 3- EXECUTION

3.1 INSTALLATION

A. Follow Manufacturer Specifications

DALE 2013 Project Manual SCI-Arc/Caltech

Appendix B: Quantity Takeoff

Buro Happold

١

Sci-Arc Solar Decathlon

Structural Calculations (Construction Documents Phase) Project #: 3102BD November 9, 2012

	PROJECT:	PROJECT #:	PAGE #:
	SOLAR DECATHALON	3102BD	
	DESCRIPTION		AUTHOR/DATE:
	SITE MAP		
		·	CHECKED BY/DATE:
Buro Happold			

SITE MAP:

Great Park Irvine, California 92618, USA

Latitude:	N 33.672917
	N 33° 40' 22.5"
Longitude:	W 117.73172
	W 117° 43' 54.2"

	PROJECT:	PROJECT #:	PAGE #:
	SOLAR DECATHALON	3102BD	
	DESCRIPTION	······································	AUTHOR/DATE:
	GENERAL DESIGN CRITERIA		
			CHECKED BY/DATE:
Buro Happold			

GENERAL DESIGN CRITERIA

	PROJECT:		
	TROSECT:	PROJECT #:	PAGE #:
	SOLAR DECATHALON	3102BD	
	DESCRIPTION	010200	
	DESCRIPTION		AUTHOR/DATE:
	GENREAL DESIGN CRITERIA		
			CHECKED BY/DATE:
Ruro Hannald	•		1
Buro Happold			

GENERAL DESIGN CRITERIA:

Structural Design is based on the California Building Code, 2010 Edition, City of Irvine Building Ordinances and Amendments, ASCE (American Society of Civil Engineers), ACI (American Concrete Institute), AISC (American Institute of Steel Construction), AITC (American Institute of Timber Construction), and NDS (National Design Standards) for wood construction.

LOADS:

- Dead Load: (As required per calculations)
- Roof Live Load: 20 psf
- Floor Live Load: Typical Floor: 50 psf (Reducible per CBC Section 1607.9.1.1) Decks used for Tour Staring and Egress: 100 psf (Reducible per CBC Section 1607.9.1.1)
- Decks used for Tour Staging and Egress: 100 psf (Reducible per CBC Section 1607.9.1.1)
- Seismic: Occupancy Category II; Site class D; Short period spectral response acceleration (S_s) 143.6%; 1.0 sec period
- spectral response acceleration (S₁) 50.7%; Long-period transition period (T_L) 8.0; Importance factor (I_E) 1.00;
- Wind: Basic wind speed 85 mph; Exposure category C; Importance factor (I_W) 1.0

- Snow: N/A

FOUNDATIONS:

- Spread and Continuous Footings: Designed for an allowable bearing pressure of 1,500 psf on paved surfaces.

MATERIALS:

CONCRETE: – Concrete:

- Spread and Continuous Footings: Minimum compressive strength of 4,500 psi at 28 days. Slab on Grade: Minimum compressive strength of 4,500 psi at 28 days.
- Cement: Type V
- Reinforcing: ASTM A615, Grade 60 ($F_y = 60 \text{ ksi}$)

STEEL:

- W-Beams and W-Columns: ASTM A992, Grade 50 (Fy = 50 ksi)
- HSS-Beams and HSS-Columns (Rectangular): ASTM A500, Grade B (F_v = 46 ksi)
- Angles and Plates: ASTM A36 (Fy = 36 ksi)
- Bolt Connections: ASTM A325 (Slip-Critical where occurs).
- Anchor Bolts: Standard: ASTM A307

WOOD:

- Visually Graded Dimension Lumber (2" 4" thick): Douglas Fir-Larch No. 2 Grade.
- Pre-Manufactured Lumber: Truss Joists, a Weyerhaeuser Business or ICBO approved equal.
- Connection Hardware: Simpson Strong Tie or ICBO Approved Equal.
- Shear Walls: As per attached Shear Wall Schedule

WELDS:

- E70XX Electrode

INSPECTION:

- As required by governing municipality
- Concrete: Required verification and inspection per Table 1704.4
- Steel: Required verification and inspection per Table 1704.3
- Quality Assurance: Section 1705 for Seismic Resistance and 1706 for Wind Requirement

PROJECT #:

3102BD

PAGE #:

HHA

SOLAR DECATHALON DESCRIPTION

AUTHOR/DATE:

GENREAL DESIGN CRITERIA

CHECKED BY/DATE:

Buro Happold

SHEAR WALL SCHEDULE:

PROJECT

			SHEAR WA	LL SCHEDULE				
	SHEAR WA	_L.	SILL PLATE CO	NNECTION	HARDWARE CO	ONNECTION	ALLOWA	BLE SHEAR
MARK	NOMINAL PANEL THICKNESS	EDGE NAILING (E.N.)	SILL PLATE NAILING AT STEEL FLOOR MEMBER	SILL PLATE NAILING AT WOOD FLOOR	A35 OR LTP4	16dS	SEISMIC	WIND
2P6	3/8 " PLYWOOD	10dN @ 6" O.C.	PDP @ 6" 0/C	16dS @ 4" O.C.	16" O.C.	4" O.C.	340 PLF	476 PLF
	3/8 " PLYWOOD	10dN @ 4" O.C.	PDP @ 4" 0/C	20dN @ 3" O.C.	10" O.C.	3" O.C.	510 PLF	714 PLF
	3/8 " PLYWOOD	10dN @ 3" O.C.	PDP @ 3" 0/C	20dN @ 2" O.C.	8" O.C.	2" O.C.	665 PLF	931 PLF
^ ۲2ک	3/8 " PLYWOOD	10dN @ 2" O.C.	PDP @ 2" 0/C	20dN @ 2" O.C.	6" O.C.		870 PLF	1218 PLF

5.

- NOTES: 1. 10dN = 10d COMMON NAIL (0.148" DIA.) 20dN = 20d COMMON NAIL (0.192" DIA.) 16dS = 16d SINKER NAIL (0.148" DIA.) 16dS = 16d SINKER NAIL (0.148" DIA.) PDP = HILTI X-U (0.157" DIA)
- WALL SHEATHING SHALL BE STRUCTURAL I PLYWOOD 2. WITH A SPAN RATING OF 32/16. ALL UNSUPPORTED EDGES SHALL BE BLOCKED WITH 12" O.C. FEILD NAILING.
- 3. ALL SILL PLATES SHALL BE 2x NOMINAL LUMBER AND TOP PLATE SHALL BE DOUBLE 2X NOMINAL LUMBER U.O.N.
- WHERE HILTI X-U PDP'S ARE USED, FULL PENETRATION 4. INTO THE STEEL MEMBER MUST BE ACHIEVED- INSTALL PER MFR SPECIFICATION
- P4, P3, P2 AND DOUBLE-SIDED SHEAR WALLS SHALL REQUIRE THE FOLLOWING: A. NAILS SHALL BE STAGGERED AT ALL ADJOINING PANEL EDGES. B. 3x NOMINAL LUMBER SHALL BE USED AT ALL ADJOINING PANEL EDGES. C. SILL PLATE SHALL BE 3x NOMINAL LUMBER. 4x NOMINAL LUMBER MAY BE USED AT THE FOUNDATION ONLY.

FOR DOUBLE-SIDED SHEAR WALLS USE ONE-HALF THE SPACING SHOWN IN 6. THE SCHEDULE FOR SILL PLATE CONNECTION AND HARDWARE CONNECTION

- ALL SHEAR WALL LENGTHS NOTED ON PLAN ARE MINIMUM REQUIRED AND MAY 7. BE INCREASED WITHOUT REVIEW.
- 8. ALLOWABLE SHEAR VALUES ARE BASED ON THE SPECIFIC GRAVITY OF THE FRAMING LUMBER NOT LESS THAN 0.50 AND STUDS ARE NOT SPACED MORE THAN 16" O.C.
- 9. MULTIPLE END POSTS SHALL BE STITCH NAILED TOGETHER WITH 16dS PER SHEAR WALL SCHEDULE.

PROJECT:	PROJECT #:	PAGE #:
SOLAR DECATHALON	3102BD	
		AUTHOR/DATE:
DEAD LOADS		
Buro Happold		CHECKED BY/DATE:
Roof Dead Loads (Typical Surface Lo	ad): Maximum	
Solar Panels		4.0 psf
Attachment Steel and Fabric		4.0 psf
Waterproofing Membrane		1.5 psf
1/2" Roof Sheathing (O.S.B. Allowance)		1.7 psf
2x10 Douglas-Fir Floor Joists @ 16" o/c		2.8 psf
Insulation		0.5 psf
Mechanical/Electrical/Plumbing		3.0 psf
Sprinklers		2.0 psf
5/8" Gypsum Board		2.8 psf
Miscellaneous		1.7 psf
	V Total Dead L	
Roof Dead Loads (Typical Surface Loa	ad): Minimum	
Attachment Steel and Fabric		3.1 psf
Waterproofing Membrane		0 5

	Total Dead Load	11.0 psf
5/8" Gypsum Board		2.8 psf
Insulation		0.3 psf
2x10 Douglas-Fir Floor Joists @ 16" o/c		2.8 psf
1/2" Roof Sheathing	,	1.5 psf
Waterproofing Membrane		0.5 psf
*102 ³		· · · · · · · · · · · · · · · · · · ·

ATT PROJE		PROJECT #:	PAGE #:
		3102BD	
			AUTHOR/DATE:
	AD LOADS		CHECKED BY/DATE:
uro Happold			
Floor Dead Lo	ads (Typical Surface Lo	ad): Maximum	
Floor Finish	aus frypical Suitace LU		
			5.0 psf
3/4" Floor Sheathing			2.5 psf
2x6 Douglas-Fir Floo	r Joists @ 16" o/c		1.7 psf
Insulation			0.5 psf
3/4" Floor Sheathing	(O.S.B. Allowance)	. /	2.5 psf
Miscellaneous			1.8 psf
		V VTotal Dead Load	14.0 psf
Floor Dead Loa	ads (Typical Surface Loa	ad): Minimum	
Floor Finish			2.7 psf
3/4" Floor Sheathing			['] 2.3 psf
2x6 Douglas-Fir Floor	r Joists @ 16" o/c		1.7 psf
3/4" Floor Sheathing			2.3 psf
-		Total Dead Load	9.0 psf
			0.0 por

	, PROJECT:	PROJECT #:	PAGE #:
		3102BD	
	DEAD LOADS	· · · · · · · · · · · · · · · · · · ·	AUTHOR/DATE:
			HECKED BY/DATE:
uro Happold			
Wall Dead	Loads (Typical Surface Load):	Maximum	
Attachment Ste	el and Fabric		4.0 psf
Waterproofing	Membrane		2.5 psf
1/2" Wall Shea	thing (O.S.B. Allowance)		1.7 psf
2x6 Douglas-Fi	r Floor Joists @ 16" o/c		1.7 psf
Insulation			0.5 psf
Mechanical/Ele	ctrical/Plumbing		1.0 psf
5/8" Gypsum Be	bard		2.8 psf
Miscellaneous			
i i i i i i i i i i i i i i i i i i i		Total Dead Load	1.8 psf
Miscellaneous			1.8 psf
Miscellaneous Wall Dead	Loads (Typical Surface Load):		1.8 psf
Miscellaneous <u>Wall Dead</u> Attachment Ste	Loads (Typical Surface Load): el and Fabric		1.8 psf
Miscellaneous <u>Wall Dead</u> Attachment Ster Waterproofing N	Loads (Typical Surface Load): el and Fabric <i>N</i> embrane		1.8 psf 16.0 psf
Miscellaneous <u>Wall Dead</u> Attachment Ste	Loads (Typical Surface Load): el and Fabric <i>N</i> embrane		1.8 psf 16.0 psf 3.2 psf
Miscellaneous Wall Dead Attachment Ster Waterproofing M 1/2" Wall Sheat	Loads (Typical Surface Load): el and Fabric <i>N</i> embrane		1.8 psf 16.0 psf 3.2 psf 0.5 psf
Miscellaneous Wall Dead Attachment Ster Waterproofing M 1/2" Wall Sheat	Loads (Typical Surface Load): el and Fabric <i>N</i> embrane hing		1.8 psf 16.0 psf 3.2 psf 0.5 psf 1.5 psf
Miscellaneous <u>Wall Dead</u> Attachment Ster Waterproofing M 1/2" Wall Sheat 2x6 Douglas-Fir	Loads (Typical Surface Load): el and Fabric Membrane hing Floor Joists @ 16" o/c		1.8 psf 16.0 psf 3.2 psf 0.5 psf 1.5 psf 1.7 psf

	PROJECT:	PROJECT #:	PAGE #:
	SOLAR DECATHALON	3102BD	
	DESCRIPTION	· · · · · · · · · · · · · · · · · · ·	AUTHOR/DATE:
	DEAD LOADS		
			CHECKED BY/DATE:
Buro Happold			

Line Loads To Exterior Frames:

	2 1 32 988 A 1 9 92 1 1 1	<u>ea o 1 440 1 1 4 2 0 0</u>				
Trib. Width:	4.50 ft	<<< Tributary	r width at all moo	dules		
					Desig	n Loads
	DL (psf)	LL (psf)	DL (plf)	LL (plf)	DL (plf)	LL (plf)
Roof (Max):	24.0	20.0	108	90	110	90
Roof (Min):	11.0		50		50	
Floor (Max):	14.0	50.0	63	225	65	225
Floor (Min):	9.0		41		45	

Point Loads To Exterior Frames:

Wall Height: 9.5 ft <<< Constant for all modules

				Design Loads
	DL (psf)	DL (plf)	DL (lbs)	DL (lbs)
Wall (Max):	16.0	152	684	685
Wall (Min):	10.0	95	428	430

	PROJECT:	PROJECT #:	PAGE #:
	SOLAR DECATHALON	36102BD	
	DESCRIPTION		AUTHOR/DATE:
	GRAVITY ANALYSIS AND DESIGN		
		······································	CHECKED BY/DATE:
Buro Happold			

GRAVITY ANALYSIS AND DESIGN (MAIN STRUCTURAL SYSTEM)

Overall Length: 9' 7"

All Dimensions Are Horizontal; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	288 @ 3 1/2"	1969	Passed (15%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	259 @ 9"	1829	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	648 @ 4' 9 1/2"	2211	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.126 @ 4' 9 1/2"	0.225	Passed (L/859)		1.0 D + 1.0 L (Ali Spans)
Total Load Defl. (in)	0.161 @ 4' 9 1/2"	0.300	Passed (L/671)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	47	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/360).

• Bracing (LL): All compression edges (top and bottom) must be braced at 9' o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.

* A 4% Increase in the moment capacity has been added to account for repetitive member usage.

A structural analysis of the deck has not been performed.

Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

Additional considerations for the TJ-Pro™ Rating include: None

		Bearing Leng	th	Load	s to Suppor	ts (ibs)	
Supports	Total	Available	Required	Dead	Floor	Total	Accessories
1 - Hanger on 5 1/2" DF beam	3.50°	Hanger	1.50"	67	240	307	See note 1
2 - Hanger on 5 1/2" DF beam	3.50"	Hanger ¹	1,50"	67	240	307	See note 1

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Stron	g-Tie Connectors	a na nasila na				
Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

1 - Uniform (PSF)	0 to 9' 7"	12"	14.0	50.0	Residential - Living Areas
Loads	Location	Spacing	A State of the second second second second	Floor Live (1.00)	Construction Constru Construction Construction Const Construction Construction C

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Frank Reppi BuroHappold (310) 945-4800 frank.reppi@burohappold.com	
	1

10/24/2012 4:31:49 PM Forte v3.5, Design Engine: V5.5.3.2 3102BD-20120920-FAR-Floor Joists.4te

SUSTAINABLE FORESTRY INITIATIVE

All Dimensions Are Horizontal; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	370 @ 3 1/2"	1325	Passed (28%)	1.25	1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	370 @ 3 1/2"	2738	Passed (14%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	779 @ 4' 6"	7138	Passed (11%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.011 @ 4' 6"	0.281	Passed (L/999+)		1.0 D + 1.0 Lr (Ali Spans)
Total Load Defl. (in)	0.025 @ 4' 6"	0.421	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC Design Methodology : ASD Member Pitch: 0/12

BUSTAINABLE FORESTRY INITIATIVE

Deflection criteria: LL (L/360) and TL (L/240).

 Bracing (Lu): All compression edges (top and bottom) must be braced at 8' 5" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.

		Bearing Leng	th	Load	s to Suppor	ts (ibs)	
Supports	Total	Available	Required	Dead	Roof Live	Total	Accessories
1 - Hanger on 16" DF beam	3.50"	Hanger ¹	1.75"	216	180	396	See note 1
2 - Hanger on 16" DF beam	3.50"	Hanger	1.75"	216	180	396	See note 1

· At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong	g-Tie Connectors		经合款的债券公司		열려, 여러가 잘 수 있다.	
Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
1 - Top Mount Hanger	ITS2.37/16	2.00"	4-10d x 1-1/2	2-10d x 1-1/2	N/A	
2 - Top Mount Hanger	ITS2.37/16	2.00"	4-10d x 1-1/2	2-10d x 1-1/2	N/A	

1 - Uniform (PSF)	0 to 9'	24"	24.0	20.0	Roof
Loads	Location	Spacing	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressiv disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Frank Reppi BuroHappold (310) 945-4800 frank.reppi@burohappold.com	

10/24/2012 4:38:31 PM Forte v3.5, Design Engine: V5.5.3.2 3102BD-20120920-FAR-Floor Joists.4te

PROJECT: PROJECT #: PAGE #: 3102015 DESCRIPTION: ECAMPLON AUTHOR / DATE: LANGER DESTEN. CHECKED BY / DATE: **Buro Happold** HANGER 1000 ESECIALS Eleson From Fabre D=== = 288 * 762-67 ALJES *****/~ 1610th AN181/2 .64 FROM TAGES LERICTEN Rom LO MARINE Ked 033+>265+ de MARIS ANGER Mest restan. FROM FACTEN ŠEE Forte FEEGN. TODAT = 372 butches Otto WEPC exp. (142=.85 ~ tono UDLEFT ON 85-X85mpl 9=600235 ~85° "Ô, KZE Deg 285 48-,55) .4 Decement QW/2 -leg totE ENE - 10 pr 1 AF 26 \sim hje... OK 2 FROM BA: 2.37/16 = 2220#> 373 dk T ANKS

FACE MOUNT HANGERS – STRUCTURAL COMPOSITE LUMBER

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson for details.

ered Wood & Structural Composito Lumber Connectors

CODES: See page 12 for Code Reference Key Chart.

SIMPSON

Shongen

Actual			1	Dimens	ions		Fa	steners			A	llowabl	e Loads			Therefore Key (
Joist	Model No.	G	ia			Min	VL				ecies He	ader	SPF/H	IF Specie	s Header	- 1
Size			W	⊢ ₩	B	Ma	Fase	loist		Fioor (100)			Floor	Snow	Roof	Code Ref.
1¾ x 5½	HU1.81/5		113/1	16 53/8	1 21/	a Min	12-16d	4-10dx11/2	575	1610	1850	2010	1390	1600	· · · · ·	<u> </u>
		Your	113/1			a May	16-16d	6-10dx11/2	865	2145	2465		1855	2135		170
13⁄4 x 71⁄4	HU7	1	4 413/1			****				1610	1850	2010	1390	-1600	and the second s	-
······			113/1			2 Max	(16-16d	8-10dx11/2	1150	2145	2465	2680	1855	2135	2320	- 19, F8
	HUS1.81/10	1(6 113/4				30-16d	10-16d	3000	4900	5045	5145	4355	5010	5145	F23
1¾ x 9½	HU9		113/1					6-10dx11/2	865	2410	2775	3015	2090	2400	2610	1
	111/004 04/0 000		4 113/1			Max		10-10dx1½	1440	3215	3700	4020	2785	3200	3480	19, F8
	HUCQ1.81/9-SDS		113/1		3		8-SDS 14"x134			2000	2300	2500	1490	1655	1800	l
197.52	HUS1.81/10	18		····		1	30-16d	10-16d	3000	4900	5045	5145	4355	5010	5145	F23
1¾ x 11¼ - 11¼	HU11	14	113/1				1	6-10dx1½	865	2950	3390	3685	2550	2935	3190	470
1174 - 3176	HUC01.81/11-SDS					Max		10-10dx1½	1440	4020	4315	4405	3480	4000	4350	170
	HUS1.81/10		113/10		3	1-	10-SDS 14'x1%			2500	2875	3125	1800	2070	2250	
	U14	- 16	113/10			1-	30-16d	10-16d	3000	4900	5045	5145	4355	5010	5145	F23
13⁄4 x 14	014		113/10 173/16			1-	14-16d	6-10dx11/2	865	1860	2140	2330	1610	1850	2010	
1/4 ለ 54	HU14	14					28-16d	8-10dx11/2	1150	3750	4110	4180	3250	3735	4060	19, F8
	HUCQ1.81/11-SDS	- 14				Max	36-16d	14-10dx11/2	2015	4540	4730	4855	4175	4730	4855	
·	HU2.75/10/		113/16 23/4		3		10-SDS 14"x1%		1505	2500	2875	3125	1800	2070	2250	F23
211/16 X	HUC2.75/10/	14	23/4	9	21/2		14-16d	6-10dx11/2	865	1875	2155	2345	1625	1870	2030	10 50
914 - 91⁄2	HGUS2.75/10	12			21/2	Max	18-16d	10-10dx1½	1440	2410	2775	3015	2090	2400	2610	19, F8
	HU2.75/12/	12		815/16			46-16d	16-16d	3630	7940	8220	8410	5980	6195	6335	F23
211/16 X	HUC2.75/12	14	23/4	103/4		Min	16-16d	6-100x11/2	865	2145	2465	2680	1855	2135	2320	10 50
111/4 - 1117/8	HGUS2.75/12	12		10%		Max	22-16d	10-10dx11/2	1440	2950	3390	3685	2550	2935	3190	19, F8
	HU2.75/14/	12	23/4		+		56-16d	20-16d	4055	8410	8760	8995	6335	6600	6775	F23
2 ⁷¹ /16 x 14	HUC2.75/14	14	23/4	13 13	21/2	Min	18-16d	8-10dx11/2	1150	2410	2775	3015	2090	2400	2610	10 50
- /10 / 14	HGUS2.75/14	12	23/4	13 1215/16	21/2	Max	24-16d	14-10dx11/2	2015	3215	3700	4020	2785	3200	3480	19, F8
	HU2.75/16/	12	23/4	12'91		1.61m	66-16d	22-16d	5380	8645	9030	9285	6510	6800	6995	F23
2 ¹¹ /16 X 16	HUC2.75/16	14	23/4	14716		Min	20-16d	8-10dx11/2	1150	2680	3080	3350	2320	2670	2900	10 50
	HGUS2.75/14	12	23/4	1215/16	·	Max	26-16d	14-10dx11/2	2015	3485	4005	4355	3015	3470	3770	19, F8
	········	† ·	3%	6 ¹³ /16	21/2	Min	66-16d 10-16d	22-16d	5380	8645	9030	9285	6510	6800	6995	F23
	HU48/HUC48	14	3%16	613/16	21/2	Max	14-16d	4-10d	725	1340	1540	1675	1160	1335	1365	17, F6
31/2 x 71/4	HGUS46	12	35%	41/16	4	IVIAA	20-16d	6-10d	1085	1875		2345	1625	1870	2030	
	HHUS48	14	3%	71/8	3		22-16d	8-16d	2325	3940	4535	4930	3410	3920	4260	IL14, F23
ŀ	HGUS48	12	35/8	71/16	4		36-16d	8-16d 12-16d				4885	3275	3765	4095	<u>19, F8</u>
	U410	16	3%16	83%	2	_	14-16d	6-10d				7925	5890	6655	6655	IL14, F23
ľ	HUS410		3%16	815/16	2	_	8-16d	8-16d				2330	1610	1850	2010	
ſ			3%16	85%8	21/2	Min	14-16d	6-100				2510	1650	1900	2065	
31⁄2 x	HU410/HUC410	14	3%18	8%		Max	18-16d	10-10d				2345	1625	1870	2030	19, F8
14 - 9½	HHUS410		35%	9	3		30-16d	10-16d					2090	2400	2610	
Γ	HUCQ410-SDS		3%16	9	3			6-SDS 1/4°x21/2"				5900 4955	4385 3370	5040	5480	
	HGUS48	10	3%	71/16	4	_	36-16d	12-16d	3220				······	3570	3570	F23
	HGUS410	12	3%	91/16	4		46-16d	16-16d					5890	6655	6655	IL14, F23
	U410	16	3%16	83%8	2		14-16d	6-10d			*************	·····	7365	7510	7510	
	HUS412	-	3%16	101/2	2		10-16d	10-16d				******	1610 2065	1850	2010	
	HU412/HUC412	ſ	3%18	105/16	·	Min	16-16d	6-10d			2465		1855	2375	2580	10.00
31/2 x	110412/1100412	14	3%16	10%s		Max	22-16d	10-10d					2550	2135 2935	2320	19, F8
14 - 1176	HHUS410	Γ	3%	9	3	_1	30-16d	10-16d					4385		3190 5480	
	HUCQ412-SDS		3%16	11	3	- 1		6-SDS 1/4"x21/2"							A	500
	HGUS48		3%	71/16	4		36-16d	12-16d					·····		4005	F23
		12	3%	91⁄16	4		46-16d	16-16d			···· ··· ···				6655 7510	IL14, F23
	HGUS412		3%	10%6	4	_1	56-16d	20-16d								
	U414	16	3%16	10	2		16-16d	6-10d							7690	F23
Γ	HU416/HUC416			135%		Min	20-16d	8-10d							2300	
1		14				Max	26-16d	12-100			******				2900	19, F8
1⁄2 x 14	HHUS410		3%	9	3		30-16d	10-16d							3770	
	HGUS410		3%	9	4		46-16d	16-16d							5480	1144 500
Π	IGUS414	1 / /		121/16			66-16d	22-16d			0015 1				7510	IL14, F23
1	HUCQ412-SDS		3%16	11		- 14								8185 4005	8380	F23

COTTON IS JEON SUMPRISH STRENG THE COMPANY INC. PRINTED 1930 C-2009 © 2008 SIMPSON STRONG TIE COMPANY INC PRINTED 12/08

1. 10d commons or 16d sinkers may be used instead of the specified 16d at 0.84 of the table load value.
 2. 16d sinkers may be used instead of the specified 10d commons with no load reduction.
 3. Uplift loads based on DF/SP lumber and have been increased 60% for wind or earthquake loading with no further increase allowed. For normal loading applications such as cantilever construction refer to Simpson Strong-Tie® Connector Selector[™] software or conservatively divide the uplift load by 1.6.

For SPF/HF, use 0.86 x DF/SP Uplift Load for products requiring nails and 0.72 x DF/SP Uplift Load for products requiring screws.
4. MiN nailing quantity and load values—fill all round holes; MAX nailing quantity and load values—fill all round and triangle holes.
5. Hangers sorted in order of recommended selection for best overall performance and installation value.
6. NAILS: 16d = 0.162° dia. x 3½° long, 10d = 0.148° dia. x 3° long, 10dx1½ = 0.148° dia. x 1½° long. See page 16-17 for other nail sizes and information.

87

TOP FLANGE HANGERS LBV/BA/B/HB I-Joist & Structural Composite Lumber Hangers

Engineered Wood & Structural Composite Lumber Connectors

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The BA hanger is a cost effective hanger targeted at high capacity I-joists and common Structural Composite Lumber applications. A positive angle nailing are targeted at I-joist without web stiffeners requirement and the maximum nailing generates higher loads to support structural composite lumber. The unique two level embossment provides added stiffness to the top flange. The newly improved LBV, B and HB hangers offer wide versatility for I-joists and structural composite lumber. The enhanced load capacity widens the range of applications for these hangers. The LBV still features positive angle nailing and does not require the use of web stiffeners for standard non modified I-joist installations. See Top Flange tables on pages 96 to 105. See Hanger Options on pages 181-183 for hanger modifications, which may result in reduced loads. MATERIAL: See tables, pages 96 to 105. FINISH: LBV, B, BA and HB—Galvanized; all saddle hangers and all welded sloped and special hangers—Simpson Strong-Tie® gray paint. LBV, B, BA and HB may be ordered hot-dip galvanized; specify HDG.

- INSTALLATION: Use all specified fasteners. See General Notes and nailer table. ALLATION: • Use all specified fasteners. See General Notes and nailer table,
 • LBV, B, BA and HB may be used for weld-on applications. Weld size to match material thickness (approximate thickness shown). The minimum required weld to the top flanges is ½ x 2° fillet weld to each side of each top flange tab for 14 and 12 gauge and ½ x 2° fillet weld to each side of each top flange tab for 7 gauge and 10 gauge. Distribute the weld equally on both top flanges. Welding cancels the top and face nailing requirements. Consult the code for special considerations when welding galvanized steel. The area should be well-ventilated, see page 14 for weld information. Weld on applications produce the maximum allowable down load listed. For uplift loads refer to T-WELDUPLFT.
 • LBV hangers do not require the use of web stiffeners for non-sloned or
 - · LBV hangers do not require the use of web stiffeners for non-sloped or non-skewed applications.
 - B and HB hangers require the use of web stiffeners. BA MIN nailing does not require web stiffeners. BA MAX nailing requires the use of web stiffeners.
 - Ledgers must be evaluated for each application separately. Check TF dimension, nail length and nail location on ledger.

 - Refer to technical bulletin T-SLOPEJST for information regarding load reductions on selected hangers which can be used without modification to support joists which have shallow slopes (≤%:12).

OPTIONS: . LBV, B and HB

- Other widths are available; specify W dimension (the minimum W dimension is 1%). Other widn's are avanable; specify w dimension (the manufacturing process used. Check with your Simpson Strong-Tie representative for details. Hot-dip galvanized available: specify HDG,
 Refer to technical bulletin T-BSERIES for the complete line of LBV, BA, B and HB hangers, including models not shown here, their available modification combinations and their associated reduction factors.

 Modified hangers have reduced loads, see Hanger Options, pages 181-183. CODES: See page 12 for Code Reference Key Chart.

Model	Nailer	Top Flange	Uplift ¹	Allowat	le Loads
No.	1141163	Nailing	ling (160)		SPF/HF
	2x	10-10dx11/2	265	2280	2085
LBV	2-2x	10-10d	265	1955	1530
ພິຍາ	3x	10-16dx21/2	265	2490	_
	4X	10-160	255	12590	A States
BA	₩2x	10-10dx11⁄2	265	2220	1755
	8-2×	14-10d A	265 đ	2695A	2235
	3x	14-16dx21/2	76 5	3230	ALLOSSIC LAND
	4x	14-16d	265	3300	
в	2-2x	14-10d	710	3615	2770
	3x	14-16dx21/2	825	3725	
	4x	14-16d	825	3800	
HB	4x	22-16d	1550	5500	

NAILER TABLE

- The table indicates the maximum llowable loads for LBV, BA, B and B hangers used on wood nailers. Vailers are wood members attached o the top of a steel I-beam, concrete r masonry wall.
- Upift values are for DF/SP members only. LBV and BA hangers resist more uplift when web stiffeners are used. Refer to technical bulletin T-NAILERUPLFT for additional information (see page 191 for details).
- See page 184 for reductions on modified hangers on nailers. B hangers require 6-104x1½ joist nails to achieve published loads. For joist members 2½ or wider, 16dx2½ joist nails should be installed for additional uplift loads on the 3x and a pailer complementers of 070 the ord df000k 4x nailer applications of 970 lbs. and 1010 lbs. respectively.

B SERIES WITH VARIOUS HEADER APPLICATIONS

Model	Fasteners			Allowable Loads Header Type								
Series	Тор	Face	Joist	Uplift ³	LVL*	PSL	LSL	DF/SP ²	SPF/	1-J0	ist ⁹	Code Ref.
				(160)		1.05	LUL	01/01	HF	DF/SCL	SPF/HF	1161.
LBV	6-10dx11/2	4-10dx11/2	2-10dx11/2	265	2295	2610	2270	1790	1835	1495	1340	
(Min)	6-10d	4-10d	2-10dx11/2	265	2295	2610	2645	2310	2060			1
10007	6-16d	4-16d	2-10dx11/2	265	2910	2885	3190	2460	2060			
LBV	6-10dx11/2	4-10dx11/2	6-10dx11/2	635	2295	2610	2270	1790	1835	1495	1350	
(Max)	6-10d	4-10d	6-10dx11/2	785	2295	2610	2645	2310	2060			
(Many	6-16d	4-16d	6-10dx11/2	895	2910	2885	3190	2460	2060			
BA	6-10dx11/2	10-10dx11/2	2-10dx11/2							1495	1495	<i>I</i> 1,
(Min)	6-10d	<u>1</u> 0-10d	2-10dx11/2	265	3230	3630	4005	3080	2425			F21
<u>`</u> (6-16d	10-16d	2-10dx11/2	265	4015	3705	4005	3435	2665			• 1
BA	<u>6-10d</u>	10-10d	8-10dx11/2	1170	3555	3630	4120	3625	2465			
(Max)	6-16d	10-16d	8-10dx11/2	1170	4715	4320	4500	3800	2665			
Bs	6-10d	8-10d	6-10dx11/2	990	3575	3195	3640	3625	2190			
	6-16d	8-16d	6-16dx21/2	1010	4135	3355	4500	3800	2650			
HB ^z	6-16d	16-16d	10-16dx21/2	2610	5815	5640	6395	5650	3820	·		

- 5.
- analis are used.
 SCL (structural composite lumber) is LVL (laminated veneer lumber), LSL (laminated strand lumber), and Parailam® PSL.
- Paralam[®] PSL. Code values are based on DF/SP header species. Apples to LVL headers made primarily from Douglas Fir or Southern Pine. For LVL made primarily from Spruce-Pine-Fir or similar less dense veneers, use the veluee-Pine-Fir or similar less dense veneers, use
- 9. DF I-joists include flanges made from solid sawn Douglas Fir, LVL made primarily of Douglas Fir/ Southern Pine, or LSL. For flanges with thicknesses from 1% to 1%, use 0.85 of the I-joist header load. For flanges with thicknesses from 1% to 1%, use 0.75 of the I-joist header load. use 0.75 of the I-joist header load.

<u>چ</u>

92

PROJECT: PROJECT #: PAGE #: RICEB -DXVAL 1JA AUTHOR / DATE: DESEC ~INI and CHECKED BY / DATE: **Buro Happold** nemegne 2006 WGIAS -FER LÁICH "= 2 NRT= NON BEARENG JAKS ONLY JARDON BENDENCY Connods <u>~85</u> Gt M -tono: K2= BKO C -X85-2 9 <u>85</u> •8s QU 3.36 ps/ 13.36ps 6355 X16"/12X S/g 2MOMERS 19/2 10 (900 psi 060 1.6 EGp >1 4 M 7.563 872 03 ok V. lad psi -3105 ^∖ 55 16"de 2×6 - -----NSFL **?? . de \bigcirc

Solution: Envelope	
	SK - 1
	Feb 4, 2013 at 10:40 AM 3102BD-20120930-FAR-Risa Anal
·····	3102BD-20120930-FAR-Risa Anal

Loads: BLC 2. DL (Max - Center)	
Loads: BLC 2, DL (Max - Center) Solution: Envelope	
	SK - 3
	Feb 4, 2013 at 10:41 AM
	3102BD-20120930-FAR-Risa Anal

ENTRY AND COMMENTARY	
Loads: BLC 3, DL (Min - Center) Solution: Envelope	
	SK - 4
	Feb 4, 2013 at 10:41 AM
	3102BD-20120930-FAR-Risa Anal

Lodd: BLC 4, DL (Max - Cantilever) Solution: Envelope	685ib
	SK - 5
	Feb 4, 2013 at 10:41 AM
	3102BD-20120930-FAR-Risa Anal

Ledd: BLC 5. DL (Mr Cantlever) Soldion: Erwelge	430lb
	L
	Feb 4, 2013 at 10:41 AM

Leed: BLC 6, LL (Center) Solution: Envelope	
	SK - 7
	Feb 4, 2013 at 10:42 AM 3102BD-20120930-FAR-Risa Anal
	510200-20120930-FAR-RISA Anal

Loads: BLC 7, LL (Cantilever) Solution: Ervelopa	
	SK - 8
	Feb 4, 2013 at 10:42 AM
	3102BD-20120930-FAR-Risa Anal

Loads: BLC 8, Lr (Center) Solution: Envelope	and the second s	SK-9
		Feb 4, 2013 at 10:42 AM
		f
		3102BD-20120930-FAR-Risa Anal

Leds: BLC 9. Lr (Centilever) Solution: Envelope
Feb 4, 2013 at 10:42 AM
3102BD-20120930-FAR-Risa Anal

244.6lb/ft	
Loads: BLC 10, Wind (X-Dir) Solution: Envelope	
	SK - 11 Feb 4, 2013 at 10:42 AM
1	

Loads: BLC 11, Wit Solution: Envelope	ind (Y-Dir)	
		SK - 12
		Feb 4, 2013 at 10:42 AM

56.4lb/h Loads: BLC 12, Seismic (X-Dir) Solution: Envelope SK - 13
Feb 4, 2013 at 10:42 AM
3102BD-20120930-FAR-Risa Anal

Loads: ELC 13, Selemic (Y-Dir) Solution: Envelope	
	SK - 14
	Feb 4, 2013 at 10:42 AM
	3102BD-20120930-FAR-Risa Anal

Loads: BLC 14 Solution: Envel	2.21/m 2.	
		SK - 15
		Feb 4, 2013 at 10:42 AM 3102BD-20120930-FAR-Risa Anal

Feb 4, 2013 2:34 PM Checked By:

Wa	m	ina	ł

	Message
	No Data to Print
Global	
Display Sections for Member Calcs	120
Max Internal Sections for Member Calcs	39
Include Shear Deformation	Yes
Include Warping	No
Area Load Mesh (in 2)	144
Marga Tolaranca (in)	112

P-Dalla Analysis Tolerance	0.50%
Vertical Axis	Z
Hot Rolled Sizel Code	AISC : ASD 13th
Cold Formed Steel Code	AISI 01: ASD
Wood Code	NDS 2005; ASD
Wood Temperature	< 100F
Concrete Code	ACI 2005
Masonry Code	MSJC 05/IBC 06 ASD
Number of Sheer Regions	4
Region Specing Increment (in)	4
Biexial Column Method	Exact Integration
Perme Bata Factor (PCA)	65
Concrete Stress Block	Raciangular
Use Cracked Sections	Yes
Bad Framing Warnings	No
Unused Force Warnings	Yes
Ortosad Forca warrands	1 195
Fooling Overturning Safety Factor	1.5
Check Concrete Bearing	Yes
Self WI, Overburden in DL for Design	Yes
ooting Concrete Weight	145 k/th^3
ooting Concrete fc	3 ksi
Footing Concrete Es	4000 ksi
Footing Steel fy	50 ksi
vinimum Steel	0.0018
vlaximum Steel	0.0075
coling Top Bar	#3
coting Top Ber Cover	3.5 in
ooling Botlom Bar	#4
Pooling Bottom Bar Cover	3.5 in
Pedestal Ber	8
Pedestal Bar Cover	1.5 in
Padectal Ties	#3

Hot Rolled Steel Properties

Labei	É íksi	Gliksil	Nu	Thom ME5 FI	Density(k/M31	Yieldiksil
1. A36 Gr.36	29000	11354	.3	.65	49	36
2 A572 Gr.50	29000	11154	3	.65	.49	50
3 A992	29000	11154	.3	.65	49	50
4 A500 Gr.42	29000	11154	.3		49	42
5 A500 Gr.46	29000	11154	3	65	. 49	45

RISA-3D Version 8.1.2 [Ch., L.L., L.N.OS RISAI3102BD-20120930-FAR-Rise Analysis.Schematic.r3d] Page 1

Contgany	Feb 4, 2013
Designer	2:34 PM
Job Number	Checkso By:

	Leès I	Reicase	i Reinate	l Offsetini	J Offset(n)	T/C Only	Physical	TOM	. Inactive
11	M11	BanPiN	BanPIN				Yas		
12	M12	- SanPIN	BenPIN				Yes	1.50	
13	M13						Yes		
14	M14	·····	discrete and	1997 Sec. 1997	Second Second	·····	Yes	1.00	
15	M15						Yes	··	
16	M16	Parkupa (Probai)	and the first section of the		1.0000000000000000000000000000000000000	Section Section 1.	Yas	53 77.000 (0.00	1000000
17	M17						Yes		
18	MIS		COUNTRY COM. 4		100000000000000000000000000000000000000		Yes	nderder with our	

Joint Boundary Conditions

	Joint Label	X Jik/m)	Y IMa	Zīk/mì	X Rol [k-ft/ncl]	V Datily Blood	7 Det la March	Fooling
1	N2	Reaction	Reaction	Reaction	1012010000000	1 10034-01605	Y NOTH-JOIND	rseepig .
2	A	Reaction	Reaction	Reaction	1	*******	1111111111111111111	
3	N4	Fixed		1				
4	N3	Fixed	1. mar. 200 1		1			
5	N5	Fixed		}			1	
8	NB	Fixed	1987 - 11 M	T	1		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ينبينه متناه وستنصبت
7	N7	Fixed			T T			
8	N8	Fixed	· · · · · · · · · · · · · · · · · · ·	1.466				a na a su
9	N9	Fixed]			
10	N10	Fixed			· · ·			
.11	N11	Fixed						
12	N12	Fixed						
13	N13	Fixod	-					
14	N14	Fixed				· · ·	· · · · · · · · · · ·	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
15	N15	Fixed						
16	N16	Fixed				1. 1967 N. 197	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
12	N17	Fixed						
18	N18	Fixed	and the second of the		14 I. C.	1	an an the second se	1999 - Angel State (1997)
19	N19	Fixed						
20	N20	Fixed				Alexandra de la		
21	N23	Fixed						
22	N24	Fixed			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
23	N25	Fixed						
.24	N26 N27	Fixed					1679-168 1	
25	N28	Fixed			1			
27	N29	Fixed				Fixed	24.11.1.4.11.11	
28	N30	Fixed	·					
29	N31	Fixed		······				
30	N32	Fixed			·····	······		
31	N33	Fixed			•	(
32	N34	Fixed	·		····			
33	N35	Fixed						
34	N36	Fixed						
35 1	N37	Fixed						
36	N38	Fixed						
37	N39	Fixed						
38	N40	Fixed						
39	N41	Fixed	i			Fixed		
40	N42	Fixed			· · · · · · · · · · · · · · · · · · ·		- 100 C 100 C 100	
41	N43	Fixed						
42	N44	Fixed						
43	N45	Fixed						
44	N46	Fixed					· · · · · ·	

RISA-3D Version 8.1.2 [CA.A.A.A.A.D.S RISA\31028D-20120930-FAR-Risa Analysis.Schamatic.r3d] Page 3

Company
Designer
Job Number

Hot Rolled Steel Design Parameters

	Lebel	Shaon	Length	Lbw(ft)	ibzefal.	Loomo lo	Lcomp bo	Кw	Kzz	Cm-w	Cm-zz	Cb	VSWAY	/Z \$W84	Evocion
11.	M1	EB 01		Segmant		Segment	Segment	1		1		-	r	1	Leteral
12	M2	R8.01	6	Segment		Segment	Segment		ç	······			•	1	Lateral
3	M3	WP 01	9.5			1	1		F	[Lataral
4	M4	WP 01	95				F			· · · · ·			_		Laterol
5	M5	RB 01		Segment		Segment	Segment		1	1			[Latorel
6	Mã	RB 01	4	Segment		Segment	Seament								Lateral
L.Z.	M7	FB 01	4	Seamend			Sagment		[1	Leteral
8	M8	FB 01	4	Segment		Segment	Segment								Lateral
B	M9	WP 01	9.5												Leieral
10	MIO	WP 01	9.5			1									Lateral
11	M11	WP 01	10,308			1	[1							1.eteral
1.12.	M12	WP 01	10.308								11.1				Latera
13	M13	WP 02	95												Laleral
14	M14	WP 02	9.5			I.m. ministrict	لحند كتربن ي						سيأدة حداسر		Lateral
15	M15	88 01	Ģ	Segment		Segmant	Segmen!								Laterel
16	M18	FB 01		Segment		Segment			*					1.11.1	Lateral
17	M17	R8 01	11	Sagment		Segment									Lateral
18	M18	F8 01		Segment		Segment						· · · · · · · · · · · · · · · · · · ·			tateral

Member Primary Data

	Lebel	Likint		K izini	Estete(deg)	Section/Shapp	Type	Design List	Material	Decion Rule
1	M1	N2	<u>N41</u>	.i	90	FB 01	Beam	Tube	A500 Gr.48	
2	M2	N4	N28		60	R8 01	Beam	Wide Flande	A992	Typical
3 1	M3	N2	N4	1	}	WP 01	Column	Tube	A500 Gr.45	Typical
4.	M4	N1	N3			WP 01	Column	Tube	A500 G1.48	Typicai
5	M5	N6	N4	1	90	RB 01	Beam	Wide Flange	A992	Typical
5	M6	N3	NB	1.2	90	RB 01		Wide Flange	A992	Typical
J	M7	N5	N2		90	F8 01	Beam	Tube	A500 Gr.46	Typical
8	M8	N1	N7		90	FB 01	Seam	Tube	A500 GI.46	Typical.
9	M9	N5	N8			WP 01	Column	Tube	A500 Gr.45	
10	M10	N7	NB		1	WP 01	Column	Tube	A500 Gr.48	Typical
11	M11	N4	N5	1	L	WP 01	Column	Tube	A500 Gr. 48	Typicel
12	M12	N3	N7	1.11.11.11.11.11	· · · · · · · · · · · · · · · · · · ·	WP 01	Column	Tube	A500 Gr.45	Typical
13	M13	N59	N\$1		[WP 02	Column	Tube	A500 Gr.48	Typical
14	M14	N41	N28	2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 -	www.lingsdawara	WP 02	Column	Tube	A500 Gr.46	Typical
15	M15	N51	N3		90	RB 01	Beam	Wide Flange	A992	Typical
16	M16	N59	N1	1.000	90	FB 01	Beam	Tube	A500 Gr.46	Typical
17 1	M17	N28	N51	1	90	88.01	Beem	Wide Flance	A992	Typical
16	M18	N41	N59	**********	\$0	FB 01	Beam		A500 Gr.46	

Member Advanced Data Label I.Reipase J Reicase i Offsetini J Offsetini T/C Only TOM _____ M1 Ma BenPiN BenPiN BenPiN BenPiN M M M 6 BenPIN BenPIN BenPIN BenPIN RISA-3D Version 8.1.2 [C:1...1..1..1..105 RISA\3102BD-20120930-FAR-Rise Analysis.Schemetic.r3d] Pege 2

Company Designer Job Number	Feb 4, 2013 2:34 PM Checked By:
	Childekau By.

Joint Boundary Conditions (Continued)

	Joint Label	Xikisi.		Z(k6n)	X Rot is friend)	Y Roll& Windi	Z Rot Ik-filredi	Footing
45	N47	Fixed		1	}		- / strain a strain	
46	N48	Fixed	5 1000000000		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1000 Contraction (1997)	1999 (A. 1997 (A. 199	Section Contractor
47	N49	Fixed	1					
48	N50	Fixed	Contraction (Contraction)	Strong and the	Westernersetter	entrepaire anne	Rectant second and	
49	N51	Fixed				Fixed		
60	N52	Fixed	2000 Constant Const		100000 000 000 000			004040004040404
51	N53	Fixed						
52	N54	Fixed	a section of the feature of the	100000000000000000000000000000000000000		100 Million Schuler	denoise denoise	100//(0350000 ⁻⁰
53	N55	Fixed						
54	N56	Fixed	AND A CONTRACT OF A CONTRACT.	100000000000000000000000000000000000000	NY CONTRACTOR OF THE	78	And States of States	रेक्सीमां सम्हला
56	N57	Fixed			- · ·			
56	N58	Fixed	and the second s	· · · · · · · · · · · · · · · · · · ·	20.000	100 COLOR DATA (1997)	annen anna deile	
57	N59	Fixed				Fixed		
58	N60	Fixed	The second s	1			10000	
59	N61	Fixed						
60	N62	Fixed			1		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ACC 201000000
61	N63	Fixed						
62	N64	Fixed				· · · · · · · · · · · · · · · · · · ·		
63	N21	Fixed						
64	N22	Fixed			11 (12 T			

Member Distributed Loads (BLC 2 : DL (Max - Centeri)

	Member Lebei	Direction	Start Magnitude(3)/8	End Megnitude/ib/fl.d.	Start Location #1%1	End Location(0%)
11	M2	Z	-110	-110	0	0
2	Mi	Z	-65	-85	D	0
13	Mi	7	-155	-155	D D	0
4	M15	Z	-110	-110	0	B.5
5	M16	Z	-65	-65	0	8.5
6	M16	Z	-155	-155	0	8.5
7	M17		-110	-110	Ū	Ö
8	M18	Z	-65	-65	0	0
1.9	M18	Z	+155	-155	õ	0

Member Distributed Loads (BLC 3 : DL (Min - Center))

	Member i sbet	Direction	Start Magnitude Rivin.	End Meaningdelibilitd.	. Start Location[fl.%]	End Location 11 %)
	M2	Z	-50	-50	0	0
2	Mt	Z	-45	-45	0	ō
3	M1	Z	-95	+85	0	0
4	M15	Ζ.	-50	-50	0	8.5
5	M16	7	-45	-45	0	85
8	M16	Z	-95	-95	0	8.5
7	M17	ζ	-50	-50	Ó	0
8	M18	Z	-45	-45	0	6
9	M18	7	-05	-05	0	Ď.

Member Distributed Loads (BLC 4 : DL (Max - Cantilever))

Membe	r Label Direct	ion Start Magnitude(ib/	1. End Magnitudellb/fl.c	Stari Location III.%	End Location R.%1
1M	5 Z	-110	-110	0	0
2 M	6 Z	-110	-110	0	0
<u>3</u> <u>M</u>	7 Z	-65	-65	0	0
4 M	8 Z	-65	-65	0	0
5 M	7 <u>Z</u>	-155	-155	0	Ô
6.1 M	8 2	-155	-155	0	

RISA-3D Version 8.1.2 [CA..L.I.V.A..105 RISA\3102BD-20120930-FAR-Risa Analysis.Schematic.r3d] Page 4

Co	пралу
Des	ligner

Feb 4, 2013
2:34 PM
Checked B

	Member Label	Direction	Start Magortude/(b/ft	Eng Michaeltonia	Start Location (1,%)	End Location/ft %
1	M5	1 Z	-50	-50	0	0
2	M6	7	-50	-50	0	0
9	M7	7	-45	-45	0	â
4	MB	7	45	-45	0	Ŭ.
5	M7	7	-95	-95		
6	MB		-95	-95		<u> </u>
		·····		-1	L	<u> </u>
e <i>mber</i>	Distributed L	oads (BLC 6	: LL (Centerj)			
	Momber Label	Direction	Start Mannitude Ront	End Meanifudelavit.o	Siert Locabord 1.51	End Location ft. %
<u></u>	M1		-225	-225	0	. 0
3	M16		-225	-225		8.5
2	M18	Z	-225	-225	<u> </u>	0
ember	Distributed L	oads (BLC 7	: LL (Cantileve	n)		
	Mornhor Label	Direction	Start Meonitude/Rvff	End Magnitudefibrit d.	Start Lockford (1%)	End Location/1.7
	M7	Z	-225	-225	0	Q
2	MB	7	-225	-225	Q	
amhar	Distributed Lo	nade /QLC P	el e (Cantad)			
0111001	Momber Label	Direction		End Magailude In/h a	Press 4	P
1	M2	7	-90	-90	Steri Locotion II. %	End Location in %
	M16		-90			0
	M17		-90	-90	<u>q</u>	8.5
5. <u></u>		£		1	01	
ember	Distributed La	pads (BLC 9	: Lr (Cantilever	<u>u</u>		
	Member Label	Direction	Start Magnitude/htt	Cod blogs - to Day of		M 1.0
				End Memilurelib/r.d.		
	<u>M6</u>		-90	-90	0	<u>0</u>
		<u> </u> <u>z</u>		-90 -90		
	M5	- <u>- Z</u>	-90	-90 -90	0	<u>0</u>
	M5 M6 Distributed Lo Member Label	- <u>- Z</u>	-90 -90	End Macolib.da/8/4 d	<u> </u>	0
amber .	M5 M6 Distributed Lo		-90 -90 : Wind (X-Dir)	End Macolib.da/8/4 d	D Stort Location (1, %)	0 0 Endiocation[1%
	M5 M6 Distributed Lo Member Label		-90 -90 : Wind (X-Dir)	-90 -90	<u> </u>	0
amber (M5 M8 Distributed Lc Member Lebel M9 M10	Dads (BLC 10	-90 -90 : Wind (X-Dir) Steri Magnitud Stor 244.6 244.6	End Magnikete/k/h d 244.6 244.5	D Stort Location (1, %)	0 0 Endi.ocetion/1.%
amber ember	M5 M6 Distributed Lc Member Lsbel M9 M10 Distributed Lc Monther Lebel	Dads (BLC 10	-90 -90 : Wind (X-Dir) Stert Magnifucted livit 244 6	50 -90 End Magolikolo/By/h d 244.6 244.6	0 0 5001 Lossifori (1, %) 0 0	0 Endiocation[13 0 0
amber amber	M5 M6 Distributed Lc Member Label M10 Distributed Lc Momber Label M5	Direction	-90 -90 -90 Steri Mannitatelikit 244.6 244.6 : Wind (Y-Dir)) Steri Mannitatelikit Steri Mannitatelikit	50 -90 End Magoliketelik/II d -244,6 	D Stort Location (1, %)	0 Endiocationin %
ember	M5 M6 Distributed Lc Member Lsbel M9 M10 Distributed Lc Monther Lebel	Direction	-90 -90 -90 Steri Mannitatelikit 244.6 244.6 : Wind (Y-Dir)) Steri Mannitatelikit Steri Mannitatelikit	50 -90 End Magolikolo/By/h d 244.6 244.6	0 Sout Locettor (1 %) 0 0 Steri Location (1 %)	0 Endiceation/11/5 0 Endiceation/11/5 0
ember	M5 M6 Distributed Lc Member Label M10 Distributed Lc Momber Label M5	Direction	-90 -90 2: Wind (X-Dirl) Stert Magnitude(br) -244.6 -244.6 : Wind (Y-Dirl) Stort Meanthde(br)		Control Control (1, 1)	0 C EndLocation(1) % O EndLocation(1) % O
ember	M5 M6 Distributed Ls Mamber Label M0 Distributed Ls Monber Label M0 M2	Direction	-90 -90 2: Wind (X-Dirl) Steri Mannisetellint, 244.6 244.6 : Wind (Y-Dirl) Steri Mannisster(Drft, 15.7 -15.7		Start Lossitori ft %1	0 End Location 11 % 0 0 End Location 11 % 0 0 0
amber ember	MG MG Distributed Ls Mg M10 Distributed Ls M5 M2 M6 M7 M1	Direction	-90 -90 2: Wind (X-Dir) Stert Mannischlich 244.6 : Wind (Y-Dir) Stert Mannituse[b/t. 15.7 -15.7 -15.7		0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Endicestorin 5 0 Endicestorin 5 0 Endicestorin 2 0 0 0
ember	MG MG Distributed Ls Mg M10 Distributed Ls M5 M2 M6 M7 M1	Direction	-90 -90 2: Wind (X-Dirl) Stert Meaninatedikh -244.6 -244.6 : Wind (Y-Dirl) Stert Meaninas(b/f. -15.7 -15.7 -6.7 -8.7		0 0 5 5 5 1 Location (1, %) 5 5 5 1 Location (1, %) 0 0 0 0 0 0	0 End Location 1 % 9 0 End Location 1 % 0 0 0 0 0 0 0 0 0 0 0
amber ember	MG MG Distributed Ls Mg Mg M10 Distributed Ls Moder Label M5 M2 M6 M7 M1	Z Direction Z Direction Z Direction Z Direction Y Direction Y Y Y Y	-90 -90 -90 	End Magnikotolik/II d 244.6 244.6 15.7 15.7 15.7 8.7 8.7 8.7	Similicostor(1, %) O Similicostor(1, %) O O O O O O O O O O O O O O O O O	0 Endicostor/8 % 0 Endicostor/8 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
amber ember	MG Distributed L.C Member Label MG Distributed Lo Distributed Lo Monaer Label MG MG MG M7 M1 M1 M8	Z Direction Z Direction Z Direction Z Direction Y Direction Y Y Y Y	-90 90 90 2 : Wind (X.Dirl) Stert Magnitudekter 244.6 244.6 2 : Wind (Y.Dirl) Stert Magnitudekter 16.7 16.7 6.7 8.7 8.7 8.7 8.7 15.7		0 5001 Locettorin %1 0 5001 Locettorin %1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Endicestonin % 0 Endicestonin % 0 Endicestonin % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
amber ember	MG MG Distributed Ls Mg Milo Distributed Ls Mg Milo Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg	Zeds (BLC 10 Directon Z Directon Z Directon V V V V V	90 90 1: Wind (X-Dirl) Ster Magnitude diff. 244.6 244.6 : Wind (Y-Dirl) Steri Magnitude diff. 15.7 15.7 9.7 9.7 9.7 9.7 9.7		0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Endicestor/8.3 0 Endicestor/8.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ember i	MG MG Distributed Lo Manber Label MG Distributed Lo Monder Label MG MG MG MG MG MG MG MG MG MG MG MG MI MB MI MI MI MI MI MI MI MI MI MI MI MI MI	Zeds (BLC 10 Directon Z Directon Z Directon V V V V V	-90 90 90 2 : Wind (X.Dirl) Stert Magnitudekter 244.6 244.6 2 : Wind (Y.Dirl) Stert Magnitudekter 16.7 16.7 6.7 8.7 8.7 8.7 8.7 15.7		0 5001 Locettorin %1 0 5001 Locettorin %1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Endicestor/8.3 0 Endicestor/8.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ember i	MG MG Maniar Labol MO Distributed Lo Distributed Lo	Z Dads (BL C 11) Direction Z Z			2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	0 Endiceation(1,5 0 0 Endiceation(1,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ember i	MG MG MG Distributed Ls Manber Label MG Distributed Lg Manber Label MG MG MG MG MG MI MG MI MI MI MI MI MI MI MI MI MI MI MI MI	Z Dissten Z Dissten Y Y Y Y Y Y Y Y Y Y Y Y Y		-90 -90 -90 -90 End Magnitudgibith d -244.5 -244.5 -244.5 -15.7 -15.7 -15.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7	0 5 of Location 1 %1 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>0</u> <u></u>
ember i	MG MG Maniar Labol MO Distributed Lo Distributed Lo	Z Dissten Z Dissten Y Y Y Y Y Y Y Y Y Y Y Y Y		-90 -90 -90 -90 End Magnitudgibith d -244.5 -244.5 -244.5 -15.7 -15.7 -15.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -9.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7	2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	0 End Location 11 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Member Distributed Loads (BLC 13 : Seismic (Y-Dirt))

 Member Label
 Direction
 Start Magnitude[Brit._End Magnitude[Brit.d._Start Loostor(ft,%)]
 End Locator(ft,%)

 RISA-3D Version 8.1.2
 [C:L.L.1.L.1.ACS RISA\31028D-20120930-FAR-Risa Analysis Schematic. (3d] Page 6

Company Designer Job Number	Feb 4, 2013 2:34 PM Checked By:
Traing and the second s	writewou by

Load Combinations

Description		POal	SRSS	81.0	Fe	. 61.0	Fe.	81.0	Æa	BLC	Fa	BI C	Fa.	BLC	Fa.,	81.0	E.	BI C	Fa
1 (+ Oefl) D	Yes	LY.		DL	11	12	11	5	11	1	1	1	1	ł		100		<u> </u>	[
2 (+ Defi) D+		Y.	1995 A.	DL	1	2	1	1.5	1	6	15	1.0	 إ	Γ		127	े प	37	-114
3 (+ Defi) D+	r Yas	Y		Dξ	1	2	1	5	1	6	1		ļ	i	<u> </u>	1	-		
4 (+ Defi) D+0 751 -	0.75Lt Yes	Y	10000	DL	3	2	1	15	1	16	75	R	75	T	1000	1			
5 (+ Defi) L		Y		6	1	Ŧ	<u> </u>	1	1	1	-	1	1	1	-	1			h
6 (+ Deft) Lo		Y	100 T	6	1		r	T	1	100	12444	777		ŧ	·····	÷			
.7. (+ Defl) 0.75L+().75Lr	Y		6	.75	B	.75	—			h	· · · · ·	·			İ			
8 (+ Defi) D+W (4	Xdir) Yas	TY	100.0	D:	1	2	1	5	1	10	Ŧ			†		100	1		
9 (+ Defl) D+VV (-	Xdir) Yes	TΫ		DI.	1	2	1	15	11	10				t	•		-		
10 (+ Defi) D+W (+		TΥ		Di	1	2	1	15	1	11š	h-(-	2.5		<u> </u>			277		
11 (+ Defl) D+W (-		Y		DI.	1	2	1	5	1	11	1			t	 				
12 X+ Def) D+0.75L+0.76L+		ŤΫ		DI.	T	2	i i -	5	1	6	75	6	75	10	77				
13 (+ Def) D+0.75L+0 75L+		Ŷ		DI.	1	2	1	5	1	6				110	1.12	<u> </u>		- <u></u>	
14 (+ Def) D+0.76L+0.75L+		tΥ		Öİ.	1	ź	1	5			75	8		175	.75	<u> </u>			
15 (+ Dan) D+0.75L+0.75L+		Ý		DL.	1		1	우				6	.75	111	75	-			·
16 (+ Defi) 0.6D+W		İΥ	70.00	DL.	6	2		5	1	6	.75	-	75	μ.	- 75	·			
17 (+ Defi) 0.6D+W		Υ Υ				2	6		.6	10		h	h	ļ	· · · · ·	L			سنب
					., <u>ĉ</u> .,	6	<u> </u>	5	.6	10				÷	h				
		<u>Y</u>		DI.	6	2	6	5		11				ļ					
		Y.		DL.	.6	2		5	5	11	-1			L		i			
20 (+ Oell) D+W (+Xdi		Y.		1.8	1	14								<u> </u>					
21 (+ Defl) D+W (-Xdi		Y		19	1	14		.	-					L	_				
22 (+ Defl) D+W (+Yo		Y		.10	1	14	1												
23 (+ Defi) D+W (-Ydir		_Y_		.11	1	14													
24 (+ Def) D+0.75L+0.76L++		Y		- 12	1	14	75		100		1.11								
25 (+ Def) D+0 75L+0.75Lr+		Y	d and	.13	1	14	.75 .75							1				-	
26 (+ Def) D+0.75L+0.75L++		Y		14	1	14	.75											-	
27 (+ Del) 0+0.76L+0.75Lr+	0.75W (-Y Yes	Y	1	15	1	14	75									·			
28 (+ Defi) 0.6D+W (+Xe	Sir) (Uplift): Yes	Y		16	1	14	1				100	1	100			-			سينند
29 (+ Deff) 0.6D+W (-Xd		Y		17	1	14	1				*****								
30 (+ Defl) 0.60+W (+Ys	in (Upint) Yes	Y		.16	1	14	1		11.000		11.11						7.57		
31 (+ Dell) 0.6D+W (-Yo		Y	1	19	1	14												-	
32 (+ Defi) D+E (+)		Y		DL.	1	2	1	6	100	12			1.00	-12.2	1.15				بنبعب
33 (+ Defi) D+E (-)		Ŷ		ЭL	1	2	1	5	1	12	-1								
34 (+ Defl) O+E (+'	(dir) Yes	Ŷ	· · · · · · · ·	5Ľ	1	2		5		13	- T		1.11						
35 (+ Defi) D+E (-)		Y		ΣL	1	2	- <u>-</u>		-	13	-1				~~~~				
36 (+ Def) D+0.75L+0.75L++		- Y -		Ť		2		55					75	40		-			
37 (+ Del) D+0.75L+0.75L++		Y		λ.	1	2			+	5	75		.75	14-	.75				
38 (+ Det) D+0 75L+0.75L++		Y		쉾	+	2	11	5		8	.75	9	.75	12	.75				
39 (+ Defl) D+0.75L+0.76Lr+		Ŷ		컶	11	2	十	6	-	6	.76	8	.75		75	-			
40 (+ Defl) 0.6D+E (-		Ŷ			6			-81		6	.75	8	.75	13	.75			·	
41 (+ Osfi) 0.6D+E (4		2	6	5	<u>.</u>	12	-1-4				1				
		-1-1		24	6	2	6	5	.6	12	<u>~1</u>								
42 (+ Defi) 0.6D+E (+		Ľ,		44	8	2	6	5	5	13	1								
43 (+ Defi) 0.6D+E (<u>Y</u>		ж	6	2	6	5	6	13	-1								
44 (- Defi) D	Yes	Y		21.	1.	31	1 (4	1			_							
45 (- Defi) D+(_	Yes	<u> </u>		24	-1-4	3	11	4	1	7								ļ.	
46 (- Defi) D+L		Y			1	3	1	4	1	9	.1								
47 (- Oofi) D+0,75L-0	175Lr Yes	Y.		느	1	3	_1_	4	1	7	.7.5	9	,75						
48 (- Defii L		Y		7	1						- 11	. 1	- 1					J	
49 (- Defi) Lr		Y		9	1		í	_1			ī	1]						
60 (- Defi) 0.75L+0.		Y		7	75			_[1				1		1	-		-	
51 (- Defi) D+W (+>		Ý I	íc)i	1	3	1.1	4	1	10	1								
52 (- Defi) D+W (-X	dir) Yes	Y I	E	λŪ	1	3]	11	4	1	10	-1	1				-1		-1	
53 (- Defl) D+W (+Y	'dir) Yes	ΥI	1	DL.	1	3 1	11	4	1	11	1							{	
54 (- Deff) D+W (-Y	dir) Yes	YI	TC.	a l	11	3		4	11	π	-11	Ť	-1	-			~~~~		÷
55 (- Def) D+0.75L+0.75L+0	75W (+X. Yas	Y	3		11	3	1	4	1	7		0	75	10	.75	-+		-†	
56 1- Def) D+0.75L+0.75L+0		YI	. 1		1	3	11	4	11	71	751	ŝ		10		-ŕ	-+	-+	

RISA-3D Version 8.1.2 [Crt. A. A. A. A. M. Mon RISAV3102BD-20120930-FAR-Risa Analysis. Schematic, (3d) Page 7

Company
Designer
Job Number

Member Distributed Loads (BLC 13 : Seismic (Y-Diri) (Continued)

2	M5 M2		35.4 35.4	End Magaik.ond Brit d. 35.4	0	<u>0</u>
2	M2	Y	25.4	D.C. (
2				35.4	0 1	0
3	MB	Y	35.4	1 35.4	0	6
4	M1 1	Y	26.1	26.1	0	8
5	M7	Y	26.1	26.1	ů Í	0
8	.M8	Y	26.1	26.1	0	0
1	M15	Y 1	35.4	35.4	Ö	6
8	M16	Y	28.1	26.1	0	6
9	M17 7	Y	35.4	35.4	0	0
10	M18	Y	26.1	281	0	0

Direction	Steri Magnitude/Ib/ft	End Mainlaudellath o	Start Location/(L%)	End Location (1,%)
Ζ	79.2	79.2	0	0 1
<u>z</u>	79.2	79.2	0	0
Z	79.2	79.2	0	0
7	79.2	79.2	â	6
Z	79.2	78.2	0	
	Direction Z Z Z Z	Direction Start Magnitude/(b/f) Z 79.2 Z 79.2		

Joint Loads and Enforced Displacements (BLC 4 : DL (Max - Cantilever))

Joint Label	LDM	Direction	Mennitude((lb k-ft), (in red), (ib*s*2/
N5	í.	Z	-685
2 N7	L	Z	-885
Joint Loads and Enforced Displace	ments (BLC 5 : DL	(Min - Cantilever)	10

toint Label	1.0.M	Direction	Mageitude/(ib.k-ft), fig.rad), //b*s*:
1N5		. 2	-430
2 N7	1		_430
	No Data to Drin		
	No Data to Prin	L	
	No Data to Prin	L	

Basic Load Cases

	BLC Description	Category	X Gravity	Y GIRHDV	Z Gravity	Join	Point	Oistributed	Area (Member)	Surface .
1	SWT	DL			-1	1	1		I	1
2	DL (Mex - Center)	None		10000	1.000000		100000	9		10000000
3	DL (Min - Center)	None						9	f	
4	DL (Max - Cantilever)	None	100,000,000	ang sa sa sa sa sa sa sa sa sa sa sa sa sa	1000000	200	1000000	B	Contraction of the second second second second second second second second second second second second second s	10000
5	DL (Min - Cantilever)	None				2		6	}	-
8	LL (Center)	None	1.0000000	Sec. 19	1000000	100.000	1000000	1.000 1000	Subjective and a	10.000
7	LL (Cantilever)	None					_	2		·····
8	Lr (Center)	None	200.000	100 N. 100	Wight Mile		· · · · · · · · · · · · · · · · · · ·	1000 3 1000	garan mara	2
9	Lr (Cantilever)	None						2		
10	Wind (X-Dir)	Nona			ALC: NO.	No. Chine	Alexand and	10,000 1000	A	
11	Wind (Y-Dir)	None						10		
12	Seismic (X-Dir)	None	1.000	100000	1	www.edd			A CARLES AND A CARLES	1
13	Seismic (Y-Dir)	None						10		
14	Wind (Uplift)	None	S. Arrente	en en en	Sector Sector			5	the address of the	Sec. Sec.

RISA-3D Version 8.1.2 [C.L.L.L.L.L.L.).05 RISAI31028D-20120930-FAR-Risa Analysis. Schamatic.r3d] Page 6

Desi Job i	pany : pher Number :															2	34	1,201 PM CK60		
							-	Correct Correct	une				-11/200			~~~~	HS		annan Steam	
oao	Combinations (Continue						_													
77"1	Description	-Seiva	POH	-5 <u>85</u>			318			ÇE&	, EL J	ÇFa.,		ζÊa.,	, BE, C	Fa.	<u>.</u> U.	CF6.		Æ
	(- Delt) D+0.75L+0.75L+0.75W (+Y	Yes	<u>I Y</u>	+	DL		3	<u>{ 1</u>	4	41.		.75							1	1
58	(-Defl) D+0.75L+0.76L/+0.75W (-Yd		Γ <u>Υ</u>	Į	DL	1	3	L C	4	1	17	75	19	1.75	11	1.75	ž			<u></u>
59	(- Defi) 0.6D+W (+Xdir)	Yes	LY.	Į	DL	.6	3	6	14	.6	10		1	<u> </u>	<u> </u>	1		1	_	1
60 [(- Defi) 0.6D+W (-Xdir)	Yes	L Y		DL	.6	3	6	4	6	110		L	295	255	1	1	÷ 925,	$2 \simeq$	1
61.	(- Defl) 0.6D+W (+Ydir)	Yes	Γ.Υ		DL,	6	3	.6	4	6	11		1	1	1	L	1	ì.	_	1
62	(- Defl) 0.6D+W (-Ydir)	Yes	ĮΥ.		DL	6	13	6	4	6	111	1-1	127	1	1		1	1	1.0	1
63	(- Dafi) D+W (+Xdir) (Uplift)	Yes	1 <u>.x</u>	1	1.51	1	114	11	ł	I	1.	L	i	£			. L			
54	(- Defl) D+W (-Xdir) (Uplift)	Yes	Y	antes.	2.52	1	114	11	120	1,600	ं	25/6	1	1.2	1			100	10.00	1
65	(- Doff) D+W (+Ydir) (Uplift)	Yas	<u>L Y </u>		1.53	1	14	1	<u>.</u>	1	L	<u>1</u>	L	I	L_	i	J		<u> </u>	i
66	(- Defi) D+W (-Ydir) (Upirit)	Yes	<u>Υ</u>	1	1.54	1	14	11	1.000	1	1.00	10,05			1	1.50			1	177
67 /	- Def) D+0.75L+0.75L/+0.75W (+X	Yas	Υ	į	4.55	1	14		<u>.</u>	Ĺ		L	1	L		1	1	1		1
68	- Defi) D+0.75L+0.75L+0.75W (-Xd.	Yes	<u>Y</u>	<u> </u>	1.55		14		1.17	100	1	200			1411			1.22	1	<u> </u>
	- Defi) D+0.75L+0.75L+0.75W (+Y	Yes	<u> Y</u> _	Į	1.57	1	14	.75	Į	L	4	L	1	L.,	1	L	4			1
	- Def) D+0.75L+0.75L+0.75W (-Yd.	Yes	<u> </u>	Į	1.58	1	14	.75	1	1	L	1	L	1		1	1	1	4	1
	(- Defi) 0.6D+W (+Xdir) (Uplift)	Yes	<u>Y</u>		1.50	1	14		1	L	1	L	1	1		L	L	I.		1
12.1	(- Defi) 0.6D+W (-Xdir) (Uplift)	Yes	<u> </u>		L60		14		L	<u> </u>	1		<u> </u>			1.00	1	11	1	
	(- Defi) 0.6D+W (+Ydir) (Uplift)	Yes	<u> </u>	L	1.61	1	14		1	L	L	<u> </u>	I	1	1	1	1	1	1	
	(- Defi) 0.6D+W (-Ydir) (Uplift)	Yes	.	1.1.1.1	1.52	1	14	1	L	£					1	1.1.1	1	I		1.1
75	(- Dofi) D+E (+Xdir)	Yee	<u> </u>	1	DL	1	3	1	4	1	112	11	ł					1	1	
76	(- Qefi) D+E (-Xdir)	.Y98.	Y		DL	1	3	1	1.4	11	112	-1	1	1	2.25	1.00		1.00	1	
77	(- Defl) D+E (+Ydir)	Yes	<u>Y</u>	E	IDU	1	3	1	4	1 1	13	11		F			1	1	1	
78	(- Defl) D+E (-Ydir)	Yes	Y.		DL	1	3	11	4	11	113		1	2010	1000	1.500	1	-	1	
7 <u>9 k</u>	- Def) D+0.75L+0.75L+0.76E (+Xd.	Yes	Y.,		OL.	1	3	1	4	1	7	.75	9	.75	12	.75	F		1	<u> </u>
<u>30 (</u>	- Dath) D+0.75L+0.75L+0.75E (-Xdir)	Yes	Y	1.11	DŁ	11	3		4	1	7	75	19	.75	12	.75			1	· · · ·
5.1K	- Dof) D+0.75L+0.75L+0.76E (+Yd.)	Yes	Y		DL	1	33	1	4	1	17	.75	9	.75	13	.75	1	1	1	i T
	- Def) D+0.75L+0.75Lr+0.75E (-Ydir)	Yes	Y.		DU	1	3	1	4	1	7	.75		,75	13	75				
13	(- Def) 0.6D+E (+Xdir)	Yes	Y		DL.	6	3	.6	4	.6	12	1	[-		1		1	1
14	(- Defl) 0.6D+E (-Xdir)	Ye:	Y.	1.000	DL	6	3	6	4	6	12	-1					T		1	-
35	(- Defl) 0.6D+E (+Ydir)	Yes	Y		DU	.6	3	.6	4	6	13	1	-					r	14	ŗ.,
88	(- Def) 0.6D+E (-Ydir)	Yes	Y	203	DLI	.6	3	.8	4	6	13	1	ſ						1	r
37	(- Mom) D	Yes	Y		OLI	1	2	1	4	1							-			~~~
1 80	(- Mom) D+L	Yes	Y	1000	DL	1	2	1	4	1	6	1	7	1	2.2					·
30	(- Morn) D+Lr	Yes	Y		DL	1	2	1	4	1	8	1	9	1					1	(
10	(- Mom) D+0.75L-0.75Lr	Yes	Y		DL	1	2	1	4	1	6	75	7	.75	8	75	8	.76	<u></u>	<u> </u>
91 I	(- Mors) L		Y		6	1	7	1							- X			1.2.8		
2	(= Mom) Lr	1000	Y	1000	8	1	gi	1	100	100	-				····				177	["""
)3 L	(- Mam) 0.75L-0.75Lr		Y		6	.75	7	.75	8	75	9	.75								
14	(- Morn) D+W (+Xdir)	Yes	Y		DU	1	2	1	4	1	10	1	100	100		1.27				
5	(~ Mom) D+W (-Xdir)	Yes	Ŷ		DL:	11	2	11	4	1	10	-1	1					-	- 1	<u> </u>
16	(- Mom) D+W (+Ydir)	Yes	Y	1000	ŌΣ	1	21		4		11	1	1					<u> </u>		<u>,</u>
77	(- Mom) D+W (-Ydir)	Yes	Y		DL	11	23	1	4	1	11	-1						~~~	1-1	
18 K	Morn D+0.75L+0.75L+0.75W (+	Yes	Y		DU	1	2	11	4		6	75	7	75	8	75	8	75	10	.75
9 (Morn) D+0.75L+0.75L+0.75W (-X.	Yes	Y		OL.	1	21	1	4	1	6	.75	7	75		75	9	75	110	
	Mom) D+0.75L+0.75L+0.75W (+	Yes	Y		D11		2	1	4	1	6	.75	7	75	8	76	9			
01 K	Mom) D+0.75L+0.75L+0.75W (-Y.	Yes	YI		DL	1	21	1	4		6	75	7	75	8	75		75		
02	(- Mom) 0.6D+W (+Xdir)	Yes	V I		DL	6	2	5	4	.6	10	11			-×	لخته	÷			فعبد
03	(- Mom) 0,6D+W (-Xdir)	Yes	Y		OL	6	21	.6	4	õ	10	-1	;					<u> </u>		_
04	(- Mom) 0.60+W (+Ydir)	Yes	Ý		DL	6	21	6	41	ē i	11	1	-+					· · · ·	<u>+</u> f	
05	(- Mom) 0.6D+W (-Ydir)	Yes	Ŷ		DL	6	21	6	4		11	-1							i	
06	(- Mom) D+W (+Xdir) (Uplift)	Yes	Ϋ́		194		141	11	÷		÷Ч	÷Ŀ		-1			-		ł	
07	(- Mom) D+W (-Xdir) (Uplift)	Yas	Ŷ	-	1.95		141												++	
Da t	(- Mom) D+W (+Ydir) (Uplift)	Yes	Y 1		30		14	+++											i-t	
õõ İ	(- Mom) D+W (-Ydir) (Uplift)	Yes	÷.	j	187		141	$\frac{1}{1}$						- 4			-			
	Mom) D+0.75L+0.75L+0.75W (+	Yes			198		14								—í		-			
	Mom) D+0.75L+0.75L+0.75W (-X.	Yes	71				14			<u> </u>		ļ			+				jļ	
		Yes		j	TT T	+	뷞	쁥					ļ		{				<u> </u>	** ***

Load Combinations (Continued)

Description			SRSSBL	CFa.	.810	Fa.	810	FB	BLC	Ŧ.	B: C	FR	ELC.	Fa	віс	Fa	B) (EA.
114 (+ Mom) 0.6D+W (+X)		Y	1.1	11	114	1		T	T	T	T • •		r.c.	1.00	алаа 1	h	1	1
115 K- Mom) 0.6D+W (-X	dir) (Uplift) Yes	Y	21	11	14	1	1		1	r	1			1	1	!	1	
116 (- Mom) 0.6D+W (+Ye	tr) (Upifi) Yes	Y	1 11	11	14	11	T	1	1	f				†	<u>}</u>	t	t	Ť
117 (- Mom) 0.6D+W (-Y	dir) (Uplift) Yes	Y	1 1	11	114	1 1	1		1				-		-	÷		
118 (- Mom) D+E (-	Xdir) Yes	Y	D	TT	12	15	4	1	12	1	1				1	·	·	1
119 (- Mom) D+E (-	Xdir) Yes	Y	0	1	2	1	4	1	12	.1	1			1		1		†
120 (- Mom) D+E (-	Ydir) Yes	Ϋ́	T DI	Ti	12	1	4	T.	13	1	-			İ.	1 1		ţ	+
121 (- Mom) D+E (-		Y	DI	1	12	1	4	1	13	-1	(· · ·	f	· · ·	[1	*
122 (- More) D+0.75L+0.75L	+0.76E (+X Yes	Y	DI	11	12	1	4	1	6	75	7	75	8	.75	9	75	12	.75
123 (- Mam) D+0.76L+0.75L	+0.75E (-X Yes	Y	(D1	11	12	1	4	1	6	75	7	75	a	75	a			75
124 (- Mom) D+0.751+0.75L		Y	Di	1	12	1	4	1	6	75	7	75	Ă	75	ġ		13	
125 (- Morn) D+0.75L+0.75Lr	+0.75E (-Y Yes	Y	101	11	12	1	4	1	6	75	7	75	A	75				
128 (- Mom) 0.6D+E	(+Xdir) Yes	Y	DI	6	12	6	4	.6	12	1		+6.75	- Y-	he	, marine	11.2	÷×.	hin
127 (- Morn) 0.6D+E	(-Xdir) Yes	Y		6	2	.6	4	8	12	t 🕂						· · ·	t- "	
128 (- Mom) 0.6D+E	(+Ydir) Yes	Y	DI	1.6	12	6	4	6	13	1	77	,		·	·	÷ ••	ł	İ
129 (- Mom) 0.6D+E	(-Ydir) Yes	Y	DI	6	2	.6	4	.6	13	.1								
130 Modał	1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -	1	D	1	12	1	4	1					 -					
131 Wind (+Xdi	r)	I	10		1		-		· · · ·					(
132 Wind (-Xdir)		10	-1				1.524					··· ···				-	
133 Wind (+Ydi	d)		111	11	1		· · · ·		1									÷
134 Wind (-Ydir	1		11	1			1		1							~~~	r	
135 Saismic (+Xo	(ir)	1	112	11			1			·								·
136 Seismic (-Xd	ir)		12	TI														
t37 Seismic (+Yo	(r)		13	11	1				1					······	•••••		<u> </u>	
138 Seismic (-Yd			13	1.4	1		ŕ					7.7					h	h

RSA/Frequencies

No Response Spectra/Frequency Results Available...

Envelope Member Section Forces

	Memper	500		Axie[[b]	LC.	v Sheadib)	LC	z Sheadibi	1C	Torqueik	0.0	ev Marn	10	z-z Mom	
1	M1	1	mex	578.41	7138	-291,965	74	0	11	0	T	0	1	408	1
2	1.1000		min	408.67	2 86	-2127.202	124	0	1	0	11	0	1	-4.614	"1
3		2		672.23	138	+261,293	74	0	11	ñ i	11	0	1	32	
4		1949	.min	1-400.43	86	-1997.529	124	0	TT-	ă l	- †	ñ	1	-3.963	١
5		3	max	666.054	138	-230.621	74	0	11	i i	1	0	1	243	
6	2010 - 2010 - 2010 1	20201028	min	-392.18	B 86	-1867.857	124	0	1	0	11	0		-3.352	1
7		4	mex	659,872	2 38	-199,949	74	0	11	l õ l	11	<u>ě</u>	1	175	٦
8	a and a des	144448	min	383.94	588	-1738,184	124	0	11	n i	ተተ	<u> </u>		-2.783	1
9		5	max	653.69	138	-169.275	74	0		0	11			116	1
10		distribution of	1111	-375.70	3 86		124	Sec. 0	1	ň	11	<u> </u>	1	-2.255	1
11		5	max	647.509	38	-138,603	74	ß	•	ñ	11	0		.068	1
12 :		100000-001	min	-367 48	186	-1479 209	124	A 10000 0 10000000	t-	X1	++	<u> </u>	-	~1.767	đ
13		7	max	641.327	38	-107,931	74	0	1	ñ	**	<u> </u>		018	1
14	Michael and State	10.000	min	359 219	2 86	-1349.536	124	THE PLAN SHARE	<u></u>	- ă -	-+-	<u> </u>	1.1	1.32	1
15		8	mex	635.146	38	-77.261	74	n	1 i	ŏ	++	0		.022	
16	dan oo oo ah	77/200105		-350.97			124	Second O 111 and	17		-++	ាក់ កោ	1	- 915	i
17		9		628.984		-46,589	74	ă.	1	2	+	0		.D66	
18		000000000	min	-342.73	186	-1090.317	124	-C 0 (2000-0		n i	+	n i			1
19		10		622.783		-15,917	74	<u> </u>	1	Ď l	11	- <u>P</u>		.138	
20	10000000	Copyred		334.49		-960.645	124	ò	H	n i	++	č	-	-312	
21		11		616.601		14,751	74	ă	1.		++	<u>v</u>	1	.34	1
22	Water and	and the second s		-326.25			124	<u>ិក ក</u>	-	<u></u>	+	്	+	166	2
23 1	1	12	MBX				74	0	1	2 1	÷f		+	524	1
24	Children and Children			-318 006			124		1	<u> </u>	+	<u> </u>	-	102	1

RISA-3D Version 8.1.2 [C:L.1.1.1.1.05 RISA\3102BD-20120930-FAR-Rise Analysis Schematic.r3d] Page 9

Company Designer Job Number	Feb 4, 2013 2:34 PM Chacked By:

Envelope	Member	Section	Forces	(Continued)

82 63			1 min											
		2		-972.99	4	0	1	0	1	-90 0 -96	1	0	1	0
			max			<u> </u>	1	0	11	0	1		1	0
84	- 111-111-1	19656.975	min			0	1	0	11	0	1	0	1.	0
85		3	max			0	1	0	1	۵	1	1 0	1	0
85	a shine a sh	1.000	min	-981 77		0	1	0		0	1	0	1	Ō
87		4.	max	8558,513	199	0	1	0	1	0	1	0	1	Ó
88		100.000	min	1-586,16	71	0	11	0	tim	Ď	T	t õ	1	ŏ
89		5	TIAX			D	11	0	h	ö	1	6	4	0
90		1000	min	1990.55		ŏ	Ť	l õ	1	ŏ	1	ŏ	1	ŏ
91		6	max	8543.881			÷							
92		¥	min	-994.94		a õ		0	1	0	1	0	1	0
93		7		5536.565	1		4.	Q	1	0	1	0	1	0
		<u> </u>	max			0	1	0	1	0	1	0	1	0
94		· · · · · · · · · · · · · · · · · · ·	min	-999.33	ΨĽ1.	0	1	0	1	0	1	0	1	0
95		8	, max	6529.249		0	1	Q	1	0	1	0	1	0
96		100-200	1 min	+1003.723		0	1	0	1	0	1	0	1	0
97		. 9	max	6521,933		0	1	0	1	0	1	0	1	0
98		1.1.1.1.1.1.1.1.1	min	-1008 113	71	0	1	0	1	0	1	i o	1	- 0
S9		10	max	8514.617		Ô.	1	0	1	Ő.	1	Ŏ,	1	
100	Siline and a second	منشير بقفيه يعم	Tmin	-1012 503		Ð	1	ō	1	ő	1	t ŏ f	1	
101		15	1 max	8507.301	165	0	1	0	1					
102			1 min	-1015.892	17-	0	Ť	0		0	.1.	0	1	0
103		12		8499.985					1	0	1	0	1	<u>Q</u>
			max		99	<u> </u>	1	0	1	0	1	0	1	0
104			min	-1021.282		0	1	0	1	0	1.	0 1	1	0
105		13	max	8492.669		<u> </u>	1	e	1	0	1	0 1	3.	0
106			i min	-1025,671	71	<u> </u>	1	0	1	0	3.	0	11	0
107		14	max	8485.353	99	0	1	0	1	0	1	0	1	0
108.			min.	-1030.081	71	0	1	0	1	0	1	0 1	1	0
109		15	max	8478.037	99	0	3	ō	1	õ	1	t o t	1	ŏ
110		10.00	min	-1034.451	71	0	1	ŏ	1	ð	1	ŏ	1	
111		16	max	8470.721		0	1	0	+					
112			min	-1038.84		ŏ	1	ŏ		<u></u>	- J	<u>P</u>		<u> </u>
113		17			99		1		1	<u> </u>	1	0	1	<u> </u>
114	 [max	-1043 23	3	<u> </u>		<u> </u>	1	<u> </u>	1	0	1	0
		40	.min		11	0	1	Q	1	0	1	0	1	Ç
115		18	<u>max</u>	8456.089	33	<u> </u>	1	0	1		1	0	1	<u>Q</u>
116			min		Z1	0	1	0	1	0	1		1.1	0
117		19	max	6448.773	99	0	.1	Q	1	0	1		1	D
118		1000	min	1052.009	71	0	1	0.000	1	0	1	Ô	11	Ő
119		20	max	8441.457	99	0	1	õ	1	ŏ	1	0	1	0
20			min	1056,398	71	0	1	0	11	ŏ	1	ŏ	1	Ö
21.	M4 1	1	max	8580.481		0	1	<u> </u>	1	- 6 -	1	õ l	++	
22			nain.	-972.995		ő	1	ŏ						
23	+		max		99	- č	1	ŏ	1		1		귀	<u> </u>
24				-977.385			+		1		1		-l-+	<u> </u>
	······		min			<u> </u>		<u> </u>	1			0	1	Q
25		3	max.	8565,829		0 1	1	0	1		1	0	1_	0
26			min	-981.776		<u> </u>	1	0	1		1		1	0
27		. 4	mex_	8558,513	83		1	0	11	0 1	1	0	1	0
28			min.	-986 165	71	0	1	0	1.1	0	5	0	77	0
29		. 5	max	8551,197	99	0	1	0	1	0	1		1	<u> </u>
30			min	-990,555	71	0	11	0	1	0	1	0		0
31		5	max	8543.881		0	11	0	1	0	1		1	ŏ
32				994 944		0	11	ŏ	÷		1		1	
33	· · · · · · · · · · · · · · · · · · ·	7	TREX		99	ŏ	11	ŏ						<u> </u>
34				-999.334		0	11		1	0	1		1	<u>0</u>
35 :	- -	8		8529.249				<u> </u>	1	0	1		1	<u>0</u>
	+					0	1	0	1	0	1		1.	0
36				1003.723		0	1	0	1		1	O 1	1.1	0
37		9	max	8521.033	99	0	1	0	1	0 1	1	0	1	0
38			ភាវិត រ	1008.113	71	0 1	1	0	1	0	11		1	0

Feb 4, 2013 2:34 PM Checked By

Envelope Me	imber Şec	tion Forces	; {C	ontinued	I
Marria	Sur	Aviatin		Chandres	10

	Member	Sec		Ariallol L	y Sheadibi	٤C	z Sitesrith)	10	Terqueik.	10	y v Mon	10	z-z. Morn.	. 1
25		13	max	604.238 3		74		11	0	11	0	Ti	.67	T
26		· · · · · · · · · · · · · · · · · · ·	min	309 766 8		12		Ti	0	11	0	11	- 094	1
27		14		598.056 3		74		11	1 0	11	+ 0	İΤ.	776	T
28				-301.52418		12		Ħ				1		+
29		16		591.87513					<u>i o</u>	ļ1	10		.095	
		15				74		11	0	11	<u> 0</u>	11		1
30			<u>mhn</u>	-293,282,8		189		11	0	11	0	1	- 106	17
31		_16		585.693 3		74		11	0	1	1 Q	1.	9	13
32		L	. min	-285.04 18	5 -263.025	189	0	11	0	11	0	1	- 127	T
33		17	MBX	579.512 3	3 297.168	2	0	1	0	П	0	Lf.	.921	Т
34			min	-278.798 8	-186.594	89	0	Ti	0	17	T D	Ħ.	172	15
35		18	DBX.	573.33 3		2	0	Ìi	Ŏ	ti	Ĺŏ		.931	ť
36		art and and a second		-268.556 8	-115 007	85		tt		h				t
37	*	19					<u> </u> §		0		<u> </u>	1	24	
			wax.	567.14913		12	Q	<u>+</u> ‡_	L	11	0	1	. 947	4
38.		h	min.	260 314 8		85	0	11	LQ	11	0	1	317	1
39		20	max	560,967 3	3 739.476	12	0	11	0	1	(0	1	941]1
40			i min.	-252.072 8	53,663	85	0	1	0	11	0	1	.404	73
41	M2	1	mex	2394.687 1	-331 007	74		11	0	1	Q.	1	- 561	Т
42		11.2. ALC: 1.2	min	-1005.813 7	-5484 114	38	l Ó	11	Ō	11	0	1	-18.977	
43	*****************	2	max	2394.687 1		74	ŏ	11		÷			454	t
44			min	-1005.813 7					0	뷴	<u> </u>	<u> </u>		
45		3			1-5419.808	38	0	11	0	11.	0	11	-17.271	ł
		·	trax.	2394.687 1	352 178	74	0	11	0	.	0	1	345	1
46			min	-1005,813 7	-6355 503	38	0	1	0	11	1 0	11	-15,585	
47		4	max	2394.687 1		74	i Q	11	0	1	0	1	232	F
40	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	- Sendered	mín .	-1005.813 7	-5291 198	138	0	11	0	11	0	1	-13,92	T
49		5	max	2394.687 1	-373.351	74	<u>o</u>	11	Q	11	Q.	1	021	ħ
50	······			-1005.813 7		138	0	1		f-			12.275	
51		<u>.</u>	max	2394.687 1					0		0	1		
						74	0	1.	Q	f.1_	<u> </u>	1	249	4
62			min,	-1005.813 72	-5163.196	38	0	11.	0	1.	0	1	-10.65	1
53			max	2394,687 1		74	0	11	0	11	0	1	514	ji
54		10.00	min .	-1005.813 72	-5098.89	38	C	1	0	1	0		-9.045	1
55 L.		8	mex	2394 587 12	-405,111	74	0	1	0	1	Ô	1	774	T
56		10.000 A.A.A.		-1005.813.7		38	Ô	11	Õ	1	0	1	-7.481	ti
57		8	mex	2394,687 1	415.696	74	õ	1		1		1		t
58	· ·		min	-1005.613 72				÷	0		0		1.03	
59		40				38	0.00	1	0	1	0	1	-5.897	4
		10	mex			74	00	1	0	11.		11	1.281	1
60				-1005.813.7	-4906.317	38	0	11	0	1	0	1	-4.353	11
61.		11	THEX.	2394.667 12		74	0	11	D	1	0	1	1.627	
62	e de la Maria de la Maria de la Maria de la Maria de la Maria de la Maria de la Maria de la Maria de la Maria d	10.00000000	min l	-1005,813 72	-4842.11	38	0 ·····	11	0	1	0	-	-2,859	h
63				2394.687 12		74	0	1	0	1	ŏ	1	1,913	t
64	(m	weeks over	min	-1005.813 72		38	o and a second		····ò····	1	ŏ		-1.958	t
65		13	max	2394.687 12	-458.043	74		H		i ford		ئىي <u>د</u>		
68	W. W. Same						<u>0</u>	i-I-l	0	1-2-1	0	-1-	2.979	Ę
						38	estern Ö verset	11	0	1	0	14		1
<u>67</u>				2394.687 12		74	0	1.	0	1	0	1	4.306	Ľ
68				-1005.813 72		38	0	1	0	1	0	1	-1.039	I
69		15		2394.687 12		74	C	1	0	1	0	1	5.614	R
70		* 0.860a		-1005.813 72	-4584.761	38	Ō			1	<u></u>	U	- 61	l
71		16		2394 887 12		74	ŏ	11	n i	1	ŏ	11	6.901	k
72		The states of the		-1005.813 72		38	ŏ	1	ŏ	1	0	1		t
73		17	max	2394,567 12			0						- 186	
		1	11053		-500,398	74		11		1		1	8,168	L
74			min.	-1005.813 72		38	0	1		1	0	1	233	4
75		18		2394.687 12		74	0	1	_0	1	0	1	9,414	k
76	nen gagenaar	1121200		-1005.813 72	-4391.512	38	0	П	0	11	0	11	602	ħ
77		19	max	2394 687 12		74	0		0	1	Ö İ	11	10.64	t
78		1.000.000		-1005.813 72		38	~~്് പ്രം	1	ಾಕನ್		õ	11	824	t
70	i	20		2394.687 12		74				늰				
80								1		-!	<u> </u>	14	11,846	13
	M3	1	max	-1005.813 72 8580 461 99	-4252.901	38	0	3	0	1		1	1.027	17
81							0						0	

RISA-3D Version 8.1.2 [C1. 1. 1. 1. 1. 3102BD-20120930-FAR-Rise Analysis.Schematic.r3d] Page 10

Company	
Designer	:
Job Number	1

Feb 4, 2013 2:34 PM Chacked By:

	Member	Sec		Any/10 t	<u>.</u>	y Sheanibi	10	z Sheafib)	10	Torquelik.		v-v Mom	10	z-z Mom.	4
39		10	max	8514.517	io I	L'ALERADO	11	Consultati	11	T O	77	D	11	0	γł
40		10. Sec.	min	1012.503 7	11	ŏ	11	ŏ	11	0	11	1 0	H	6	+
41		11	max	8507 301 6		0	1	C	t÷	l õ			++	1 0	+
42	a subscience of	to taken	min	-1018.892 7		ŏ	11	ŏ			11	0	ł-ŀ-		
43		12		8499,985					1	0	1		1		1
44		······ ² . 4	max			0	11	0	11	0	11	<u> </u>	11		
	· · · ·		1 min.		1	0	11	0	1	20 0 20	1	0	1	1 0	1
45		13	max	8492.569		<u> </u>	11	0	11	0	LL	10	1	0	1
48		2003/09/07	}min.		1	0	1	0	11	0	11	0	1	0	T.
47		14	max	8485.353 0		0	1	Q	1	Ó.	11	0	11	i 0	
48	ala mangalitikan	1999 Sec. 1999	i mio .		11	0	1	0	11	9	1	0	TT	0	Т
49		15	max	8478.037	8	0	1	0	1	0	1	0	1	1 0	1
50	10.000 (0000)///	000000000	min	1034.451 7	1	0	11	0	TT	0	1	0	1 T	0	T
51		16	max	8470.721 9	9	0	1	0	ti	Ō	1	0	1	Ő	+
52		ala ingini di	min	-1038.847		<u>0</u>	1T	D	Ti.	ö	1	0	17	o o o	+
53		17	max	8463,405 9		0		0		<u> </u>	1	0	H		
4		·	min.	-1043.23 7			11		1					0	+
55		18				<u> </u>		0		0	1	0	1	0	
		10	max	8458.089 9	ю.	<u>a</u>	1	0	11	0	1	<u> </u>	1	0	1
疑			<u>l min</u>	-1047.619 7	14	0	1	0	1	<u> </u>	1	0	1	0	T
57		19	max,	8448 773 9	191	<u> 0 </u>	3	Q	1	0	1	Q	1	0	
58				·1052.009 7	11	N 0 11	1	0	1	0 .	1	0	1	0	1
59		20	max	8441.457 9	9	0	1	0	11	0	1	0	11	0	T
60		10.00 March	min	-1056.398.7	1	0	1	0	4	0	1	0	1	0	Т
81	M5	1	max	1.618 13		4586 976	38	Û.	1	0	1	0	1	Ö	T
62	1111111111111111		min	-1.384 3		122.594	85	Ď	1		Ť	1	1	- ŏ	t
63		2	max	7,411 8		4803.005	38				1		1		
64			min					<u> </u>		<u></u>		0		- 028	4
		з				135,728	74	0	1	Q	1	0	1	- 967	43
65 [mex	14.864 8		4619 033	38	0	1	0	1	0	1	057	17
66	· `		min.	14.121 8		136,25	74	0	1	0	1.	<u> </u>	1	-1.938	
67		4	max	22.316 8		4635.081	38	0	1	0	1	0	1	-,086	17
88			min.	-21.574 B		136.772	74	0	1	Ø	1	0	1	-2.912	13
69		5	Lmax.	29,759 8	6	4651,088	38	0	1	Ö	1	0	1	- 115	17
701	Net de recent	and on the	mìn	-29.026 8	5	137.294	74	0	1	0	1	0	1	-3.89	13
73		6	mex	37.222 8	8	4867.114	38	ĉ		0	1	0		144	17
72		1.11	min	-36,479 8		137 813	74	Ö	1	Ď	Í	Ŏ,	1.	-4.871	13
73		7	max	44,874 8		4583.143	36	0	1		1	0	1	-173	怜
74	1 <u>111 1111</u>		min	-43,932 8		138,335	74			<u></u>	- <u>i</u>				
75		8						<u> </u>	1	<u> </u>	1	0	1	-5,855	13
76		<u>8</u>	max			4699.171	38	<u> </u>	.t.,	0	1	P	1	- 202	17
424			min	-51.384 8		138,857	74	0	1	0	1		1	-5.842	3
77		8	max	59,579 8		4715.199	38	0	3	D	1	0	1	231	17
78			.min	-58.837 8		139.379	74		1	0	.1.	0	.1 5	-7.833	1
7 <u>8 i</u>		10	max	57.032 8		4731.227	38	0	1	Q	1	0	1	- 281	17
80			៣ឆ្ន	66.29 B	5	139,902	74	õ	1	0	1	Õ	1	-8,828	b
81.L	1	11	max	74.485 8	6		124	Õ	1	0	÷.	ò	17	- 29	ĥ
32			mia.	-73,742 8		140.42	74	ŏ	1	ŏ	1	ŏ	1	-9.826	ťs
63 T		12	mex	81,937 8			124	ŏ	+	ŏ	1	õ	- Hund	32	Ĩ
84		- 14	min	-81.195 8			74	Ŏ	1				+		
5		13		89.39 8			124			<u> </u>	1	0		-10.827	13
36		·····**	тех					0	4	0	1	0	1	349	17
			min.	-88.648 8			74	0	1	. 0	1	<u> </u>		-11.831	3
37	·	14	max	95.843 8			124	00	1	0	1	0	1.		17
88			min	-96.1 8			74	0	1	0	1	0	.1	-12,839	13
39 L		15	max	104.295,6	6 İ	4937.105	124	0	1	0	1	0	1	409	17
90 T		20	min	103 553 8			74	0	1	0	1	0	Ť	13.85	3
11		16		111.74818			124	ŏ	11	õ	1	Ö	1	- 439	7
21				-111.005 8	5		74	0	ŤŤ	ŏ	1	0			13
3		17		119.201 8			124							14,865	
4				118.458 8				<u> </u>	1	<u> </u>	1	0	11	- 469	17
							74	0	1	0	1	0			3
<u>5</u>]	1	. 18	TIAX]	126,653 86	۵ł	5065,749	124	0 1	11	0 1	1	0	1 1	5	17

RISA-30 Version 8.1.2 [CA.L.L.L.1.13102BD-20120930-FAR-Risa Analysis.Schematic.r3d] Page 12

Envelope Member Section Forces (Continued)

									·						
r	Member	Sec		Axia(lb)		v Shearliol	,10	<u>Shearfib</u>		Torquelk.	ιc	wy Mom	10	7-2 Mom	. 1.0
196			mm				74		11	1 0 1	1	<u> </u>	1.1	-16.004	13
197		. 19	max			5108,619	12	0	11	0	1	0	11	53	74
198			min			144.593	74	0	11	0	1	0	11	-17.929	130
199		20	max	1111.558	185	5151.49	112	Q	11	0	1	0	11	561	70
200			min			145,116	74		11	0	1	Ö	11	-18.977	12
201	M6	1	mex	141 558	185	-145.116	73	0	TT	Õ	1		1		173
202		·····	min			5151.49	12		tt	ŏ	1	 	÷		12
203		2	max			-144.593	73							-15.977	
									1	<u>i o</u>	<u>.</u>	0	1	-53	7.
204			mín			-5108.619	125		11	0 1	1	0	1	1-17.929	
205		3	max			-144,071	73]0	11.	0	1	0	11	5	173
206			1.min			-5065.749	12	0	11	0	1	<u> </u>	1.1	-16,904	138
207			max			~143.549	73	0	11	0	1	0	1	469	173
208			i min	118,458	38 <u>6</u>	-5022.879	123	0	T	0	1	0		-15,883	13
209		5	max	1111.748	85	-143.027	73	0	11	0	1	0	1 i	439	17
2101			min	-111.002	86	-4980,009	1125		ti	Õ	î	Ŏ	1	-14.565	3
211		6	max	104.295		142 509	73	ŏ	tt	D I	1	0		-409	
212		س خر <u>ي</u> دانگ	min	-103.55		-4937,105	125						μ <u>ι</u>		47.3
213		7	max			141.987	73		1.	0	1	D	1.	-13,85	136
				96.843				0	1	<u> </u>	1	<u>D</u>	1		Z
214			L min	96,1	86	-4694.235	125	Q	11	0	1	0	1	-12.839	139
215		8	max.	89 39	85	-141,465	73	0	11.	0	1		1	- 349	73
216			min	-88,648		-4851 384	125	0	11.	0	51	0	11	11.831	139
217		9	imax.	81.937	65	-140.942	73	Ð	11	. 0 .)	1	0	1	32	73
218			Lmin	-01.195	86	-4808,494	125	0	11	0	1	0		-10.827	39
219	1	10	max	74,485	85	-140.42	73	0	1	Ó	1	Q	1	29	173
220	1999 (P. 1997)	· · · · · · · · · · · · · · · · · · ·	mo	-73,742		4765.624	1125		T i	ŏ	T	ŤŎ	1	-9.026	136
221		11	max	67,032	85	-139,902	73	0	1	ŏ f	1		1		
222			min	-66.29	86		39					0		261	73
223		12	max.	59.579		-4731.227	73	0	1.	0	1	0	1	-8.828	138
662						-139.379		0	11	0	1	0	1	- 231	73
224			.ndo.	-58.837		-4715.199	39	0	1		1	L D	1	-7,833	139
225		13	max	52.127		-138.857	73	0	1	0	1	0	1	202	173
.226			min_	-51.384		-4699.171	39	0	11	0	1	0	1	-6.842	39
227		14	max.	44.674	85	138,335	73	Q	11	0	1	0	1	173	73
228	· · · · · ·	- enior	min	-43.932	86	-4683,143	39	0	1		1	O I	1	-5.855	139
229		15	max	37.222	85	-137.813	73	0	1	0 1	1	0	1	144	73
230	1997 B. 1997	10200100	min	-36,479		-4867 114	39	0	1	0	1	ŏ	1	-4.671	139
231		16	mex	29,769		-137.294	73	0	1	0			1		
232			min	-29.026		-4651 089	39	The second second			1	لف			17.2
233		17	max.	22.316		-135.772			1		1.	<u> </u>	1.	-3.89	39
234							73	0	1.	0	1	9	_1_	086	73
			min	-21.574		-4635.061	35	0	1	0	1	0	11	-2.912	39
235		18	max	14,864		136 25	73	Q	11	0	11	0	1	057	73
236			.mìn	-14.121		-4519.033	39	0	1.1	0	1	D		1.938	39
237		19	max		85	-135.72B	73	Q	11	0	1	0	1	028	85
238		- Andreas	mia		86	-4603,005	39	0	11	0	1	D	1		139
239		20	mex	1.618	39	-122.594	85	0	t		1	0		0	1
240	20.000	ಿವಾಗ	min	-1 384		-4586.976	39	0	1		1	<u> </u>	국학	ŏ	ti:
241	M7	1	max	1005.783		759,518	36	Ŏ	1		+	0		0	H
242		<u> </u>	min	-2394.593	12	-451,408	70	<u></u>	1		1	l õ i	17	<u> </u>	
243		_2	max		72	793,598					-11		-		11
244		- -		-2394.593	14		38	0	1.	0	- <u> </u>	0	1	.086	70
			min	12001.000	μ 2 4	-364,959	70	Street of the second	1		1	0	1		38
245		3	max	1005.783	12	827,678	38	0.	1	<u> </u>	1	0	1	154	70
246	STATISTICS AND A	nojinici:	ការា	-2394.593			70	0	1	(i	11	0	1	- 334	38
247		4	max		72	851.758	38	0	1		1	0	1		70
248	2011 (m) 2014 (m)		min	-2394.593	12	-192,062	70	Service O Service			1	Õ			38
249		5	max		72		38	ŏ	1 1	0	1	0 I	1		70
250	censous h	282.00		-2394.593			70	2000 O	-1		11	0			38
251		6		1005,783				0			_				
							38	ő			1.1	0	1 [248	70
	and a star of the second second	1254.64		-2394.593			74		4 1	0		0		- 889	38

RISA-3D Version 8.1.2 [C:L.L.L.L.L.L.31028D-20120930-FAR-Risa Analysis.Schematic.r3d] Page 13

Company Designer Job Number	Feb 4, 2013 2:34 PM Checked By:

Envelope Member Section Forces (Continued)

	Member	Sec		Axia(d)		v Streadbl	1C	z Sheadibi	ĴÛ,	Torouelk	10	y y Mom	LC	z-z Mom	<u>. цс</u>
310		1008000	1 min	-2354.560		-930.282	39	0	11	<u> </u>	1	1 0	1.	- 689	139
311		16	max			105614	69	0	1		1	0	1	235	69
312	1200000	1000000	i min	-7394.593		-895.838	39	Q alerter	11	0	1	D D	1	- 697	139
313		17	L THEX	1005.783		192.062	68	0	11	0	1	Q	1	203	65
<u>)14 </u>			min	-2394.503		-861 759	39	0	1.	0	1	D	1	- 512	[39
315		18	max			278.511	69	00	11	0	1	0	1	154	69
316	Second Second	1	min	-2394.593		-827.678	39	0	1	0	1	0	1	334	39
317		19	max			364,959	59	0	11	0	11	0	1	086	169
318			min	-2394.593		-793,598	39	0	1	0	1		1	163	3
310		20	max			451,408	69	0	1	0	1	0	1	0	11
320			1 min	-2394.593		-759,518	39	0	1	0	T	<u> </u>	1	0	41
21	<u>M9</u>	1	max	1850.048		0	1	0	1	0	1	0	1	0	1
22		-	1 mio.	-5567,371		0	1	0	1	0	1	៍ 0 ៍	1	0	1
323			max	1723.356		0	1	0	1	0	1	0	1	0	11
24		+		-5482.962		0	1	þ	1	0	1	0	1	0	11
325		3	mex.	1506.687	72	Q	1	0	1.	0	1.	LQ	1	9	1
326			1 min	-5398.553		0	1	0	1	0	1	0	1	0	11
327		4	max	1489.977		0	1	0	1.	0	1	0	1	<u>i 0</u>	1
20		1	min	1343.265		Q	1	0	1	0	1	0	t	0	11
29	*****	5	max		72	<u>Q</u>	1	0	1	Q	1	L. D	1	0	11
330		ļ	1 min	-5229.734	12	0	1	00	1	0	1	0	1	0	11
31		6	max.	1210.598	72	0	1	0	1		1	0	1.	0	1
332			[min	-5145.325		0	1	0	1	0	1	0	1	0	11
33		1	mex	1089.909	72	0	1	0	1	0	1	0	L	0	Lï
34			min	-5080.916	12	00	1	<u>Q</u>	1	0	1	0	1.	0	11
35		8	max.	963.219	72	0	1	0	1	0	1	0	1	0	11
36 j.			min.	-4976.507	12	<u> </u>		0	1	0	1	. 0	1	0	11
37		9	max	836.529	72	<u>.</u>	1	0	1	0	1	0	1	D	11
38		£	<u>min</u>	4892.098	12		1	0	1	0	1	0	1	0	11
39		10	mex.	709 84	72	0	.1.	Q [1	0	1	Q	1	0	11
40			<u>min</u>	-4607.689	12	0	1	0	1.1	0	1	0	1	0	1
41		11	max.	583,15	Z2_	0	11	0 1	.1	0	1	0	1	0	11
42			1 min	4723.28	12	0	1	O D	1	0	1	D	.1.	0	11
43.1		12	max	456.461	72	Q	1	0	1	0	1	0	1	0	17
44]	and the second second	0.962.01	min	-4635.871	12	0 S	1	0	1	0	1	0	1	0	11
45		13	max.	329.771	72	0	1	0	1	0	1	0 1	1	0	11
48		· · · · · · · · · · · · · · · · · · ·	min	4554.402	12	0	1	0	1.	0	1	0	1	0	11
47		14	max	203.081	72	0	11	0	1	0	1	Q	1	0	1
48			min	4543.084	38	0	3.1	0	1	0	1	0	1	Q	i
49		15	(THE X	76.392	72	Q	1	0	1	0	1	0	1	0	Tī
50 i			min	-4550.4	38	0		0	17	0	5	0	1	0	1i
51		16	max	-50,298	72	0	11	0	1	0	1	0	1	0	Ti
52 į.			min.	-4557.716		0	1	0	1	0	1	0 .	1	0	11
<u>83 ;</u>		17	mex.		86	0	1	0	1	0	1	D 3	1	0	lī
54			_min_	-4565.032		0	1	0	1	Ô Í	1	0	i	Q	tî.
55 I.		18	max.	113,823	86	0	1	<u> </u>	1	0	1	0	1	0	11
56			min.	4572.348	38	Q	11	ō I	1	0	1	0	1	0	Ť
57 i		19			85	<u>ô</u>	11	0	1	Ū,	1	Ŏ,	1	Ö	
58			min	4579.664	38	0	1	0	1	ō I	1	Ô	1	0	1
59		20	max.	-122,602	86	0 I	1	0	1	ŏ	1	0	11	Ď	h
50 T			min		38	0	Ť	ŏ	Ť	0	1		11	0	1
51	M10	1	max	1850,046	72	õ	11	0	1	0	+	ŏ	1	0	1
2			min	-5587 371	12	0	11	ŏ	Ť	ŏ	1	ŏ	11	Ŭ.	i
53		2	max	1723.356	72	ġ	11	ŏ	4	0 1	1		1	<u> </u>	1
54			min	-5482.962	12	0 T	11	0	++	0	1	01	11	<u>0</u>	1
65		3	max	1596.667	72	ŏ	t	0	+	0	1	0.	+	ů.	+
		¥	TOID		12	0	11	0	1		11	- 8-1	귀	8	17
56 !															

Company	
Designer	
Job Number	

Envelope Member Section Forces (Continued)

		Sec.		Axiasio1 LC		LC.	z Sheadib)	LC	Torqueix.	10	Y-Y More.	10	z-z Mom.	
53		7	max	1005.783 72	964,362	38		TT	0	Ti	0	Τī	243	Ί
54		1	min	-2394.523 12		74	Ō	tī	L Ö	Ħ	Ŏ	1	-1.089	
55		8	max	1005.781 72		38	<u> </u>	1	0	i+	1 <u>0</u>	ħ	219	
56		1	min	-2394.593 12		74		11		Ħ		Ħ		-
57		9		1005 783 72					0		<u> </u>		-1.295	-
		÷	mex			38	·····	1	0	<u>[1</u>	0	11	178	-
58	·				56.09	74	Q	<u>í 1</u>	1 0	ĺ1.	<u> </u>	L1.	-1.509	
59		10	max	1005.783 72		124	0	11.	0	11	0	1.1.	.118	_
60		1	<u>min</u>	1-2394.593 12	1 86.644	74	0	11	0	11	0	11	-1 73	Ì
61		1.11	l max	1005.783 72	1196,783	12.	0	11	0	TT	0	11	075	1
62		T	min	-2394.593 12	117 202	74	0	11	ō	11	1 0	17	-1,958	٦
63		12	max	1005.783 72	1283,231	124	0	11	Ď	ti	Q	ti	047	٣
64	********* P.8.4994.774	1	min	-2394.593 12	147,755	74	0	Ť.	ŏ	11		tt	-2.194	-
65		13	max	1005.783 72	1359,68	124		11			<u>l </u>			
68							Q			11	<u> </u>	1.	013	
		t	<u>] min</u>	-2394.593 12 1005.783 72		74	0	11	0	L1	<u> </u>	ļ.i.,	-2.436	4
67		14	mex	and the second s	1458.128	124	00	1.	0	1	0	11	- 028	_
68		1	_ min_	-2394.593 12	208.862	74		11	3	11.	0	1	-2.666]
69		1 15	max.	1005,783 72	1542.577	124	0	1	0	T f	0	1	- 075	٦
70		1	min	-2394,593 12	239.415	74	0	11	0	1	0		-2.943	7
71		16	max	1005.783 172	1630.088	124	0	1	, õ	1	0	1	129	-
72		T	min	-2394.593 12	269.963	74	Ŏ	TT-	ŏ	11	ŏ	1	-3.208	ή
73		17	max	1005.783 72	1718.537	124	ŏ	1		1			189	4
74		<u> </u>	min	-2394.593 12		74			<u> </u>		0	Ļ.		-
75		1		1005.783 72	300.516		<u> </u>	1	0	1	0	L.,	-3,479	-
		18	mex.		1802.985	124	0	1	0	1	0	1	255	-
<u>76</u>			_min_	-2394.593 12	331.069	74	0	11	0	1.	0	1	-3.819	
77		19	max.	1005.783 72	1890.217	BB	0	11.	0	1	0	1	328	1
78.1		· ·	min_	2304.503112	361.622	74	0	1	0		0	1	-4,207	~
79		20	max	1005 763 72	1988.507	88	0	1	0	1	0	1	-,408	1
80		1.	min	-2394.593 12	392.175	74	0	1	Ô.	1	ō		-4.614	1
81	M8	1	max	1005.783 72	-392.176	73		1	Ö				- 408	1
82			mh	-2394.593 12	-1989.507	88	0	-	<u> </u>	1	0	-	-4.614	+
83		2	max	1005.783 72	-361,622					ų.				-
84	·····	*	min	-2394.593 12		73	0	1	0	1	0	1	- 328	4
					-1890,217	88	Q	1	Q	1	0	1	-4.207	1
85		3	max	1005,783172	-931.069	73	0	1	0	.1.	<u> </u>	1	- 255	1
86				-2394.593 12	-1802.985	125	0	1	0	1.1	0	11	-3,819	l
87		4	mex	1005.783 72	-300,516	73	0	1.	0	1	D	1	- 189	1
68 i	and the second	see a de trais	min	-2394.593 12	-1716.537	125	D	1	0	1	0	11	-3.479	1
89		5	mex	1005.783 72	-269.963	73	0	1	. Q	1	Ô.		129	1
60	1.000.000	40.404.54	min	-2394.593 12	-1630,088	125	0	1	õ	1	0	-	-3.208	į
91		ß	max	1005.783 72	-239.415	73	0	+	0	+		-	-075	4
92 T	Section of the sec	1000000	min	-2394.593 12		125					0			+
				1005.783 72	-1542.577		<u> </u>	1.	0	1	- 0	1	-2.943	ł
83			mex.		-208.862	73	0	1	<u> </u>	14	<u> </u>	1	028	1
24			_mla_	2394.593 12	-1456 128	125	0	1	- 0 · · ·	1	0	4	2,686	1
51		8	max	1005.783 72	-178.309	73	00	1		1	O	11	013	1
96 [density in the	90 an 10 an	min	2394.593 12	-1369.68	125	0	1	0	1	0 J	1	-2.436	T
37		9	max	1005.783 72	-147,755	73	0	1	0	1	0	1	.047	1
96	and the second second	1.000.000	min	-2394 593 12	-1283.231	125	ò	11	Ő	1	о Ó	1	-2.194	1
29		10	T18X	1005.783 72	-117,202	73	<u>õ</u>	1	0	1	0	-	075	t
x	Magain Coloris	1100	min	-2394.583 12		125	<u> </u>	1		11		÷	-1.958	
21		11	max	1005.783 72	-86,644	73		-	<u> </u>		<u> </u>			1
	10000000	وسيابا أخلافهم					<u> </u>		0	1	0	1.	118	
22			min		-1109,806	125,	0	1	0	1	0	14	-1.73	1
3		12	max.	1005.783 72	-56.09	73	0	1	0	1	0	1	.178	1
4	1997 - 1998 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	111111	min.	2394.593 12	-1032.522	391	0	1	0	1	0	1	1.509	1
35		13	max	1005.783 72	-25,537	731	0	1	0	1	0	1	.219	t
6	11.77 (<u>11.77</u> (11.77)	100000	min	-2394.593112	-998.442	39	0	11	- 0 f	1	ज्य के बता	1	-1.295	t
37.		14	max	1005.783 72	5.016	73	0	11	ð	1	ŏ	11	243	f
08	. (2007) - Contraction (1997)	1.00200.00	min	2394.593 12		39	0	+1		देव		-		
		15	max	1005.783 72	35,569	73	0	++	0	11	0	-1-1	-1.089 248	ł
) 9 C														

RISA-3D Version 8.1.2 [C.L.1..L.1...1.31028D-20120930-FAR-Rise Analysis.Schemetic.r3d)

3d) Page 14

Feb 4, 2013 2:34 PM Chacked By

Company Designer Job Number	

er Section Forces (Co. 5ec Aratin) 16 4 max 1469.977 171 5 max 1469.977 171 5 max 1449.977 171 5 max 1443.288 172 6 max 1246.288 172 7 max 1246.698 172 7 max 1246.698 172 7 max 1246.698 172 9 max 1658.2219 172 9 max 1658.2219 172 9 max 1658.2219 172 9 max 1658.2219 172 9 max 1658.2219 172 9 max 1658.2219 172 10 max 1658.2219 172 10 max 1658.2219 172 10 max 1658.2219 172 11 max 1648.2520 171 12 max 1658.2621 13 max 262.2631 14 max 1658.2621 14 max 1658.2621 15 max 1658.2621 15 max 1658.2621 16 max 1658.2621 17 max 1658.2621 18 max 1658.2621 19 max 1658.2621 19 max 1658.2621 10 max 1658.2621 10 max 1658.2621 11 max 1658.2621 12 max 1658.2621 13 max 1628.2621 14 max 1658.2621 15 max 1658.2621 15 max 1658.2621 17 max 1658.2621 17 max 1658.2621 18 max 1658.2621 19 max 1658.2621 10 max 1658.2 Envelope Member Section Forces (Continued) v Shear(b) LC z Shearftb) Mambat 1C Torou 10 V-V Mom. 10 2-2M 367 368 368 368 3711 3712 382 382 382 382 382 382 382 382 382 392 392 392 392 392 392 392 392 392 392 392 392 <t 1 1 1 1 1 777 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 min. 4538-01,122 13. max. 329,7711,72 min. 4554-682,122 14. max. 253,081,727 min. 4559,081,350 359,771,727 min. 4559,081,350 359,771,727 min. 4559,041,350 350,751,727 min. 4557,041,350 360,771,776,363 17. max. 113,827,865 18. max. 113,827,865 19. max. 113,827,865 19. max. 113,827,865 19. max. 113,827,867 20. max. 113,827,867 19. max. 114,827,877,397 19. max. 610,6861 20. max. 116,228,387,72 19. max. 610,7861 20. max. 610,7861 21. max. 612,264 19. max. 613,168 21. max. 613,168 22. max. 11 **म्** 1 1 1 -----1 1 M11 29.264 77 17.558 86 26.183 77 15.71 86 1 1 86 15.71 86.1 23.103 77 13.862 86.1 20.923 77 12.014 86.1 16.942 77 15.165 86.1 13.862 76.1 13.862 77 6.469 86.1 7.701 77 4.621 67 4.621 77 1.54 77 924 80 1 1 0 0 1 D 1 1 . 0 85 924 0 924 1.54 2.77 1 78

RISA-3D Version 8.1.2 [C1.1.1.1.1.1.3102BD-20120930-FAR-Risa Analysis.Schematic.r3d] Page 16

Envelope Member Section Forces (Continued)

	Member	Sec	·	AxisiCibl	LC.	y Shearship)	LC.	z Shearliol	ιc			viz Mont	LC	z-z Moon.	
424			min			-4.621	78		11	<u> </u>	1.	0	1.1	- 074	17
425		13	max		12	-4.621	102		1	Q	1	0	1	D42	18
426		1	i min	-2581,032	72	-7.701	178	0	11	0	1	0	11	07	77
427		14	max	0195.644	12	-6.489	102	0	11	ō	1	0	+	039	18
428			min	-2575.543	72	-10.781	178	0			÷	a a	1	.065	17
429		15	max		12	-8.317	102	Ō	1		1		1	035	
130		·····	min		72	-13.862	78	i	1	<u> </u>					18
131	·····	16		8210.278	12					0	1		1.	- 056	17
			max			10.155	102		11.	0	1	0	1	03	8
432			mh	-2587.863		-16.942	78		1	0	1	0	1	05	17
433		17_	max			12,014	110.2		1	0	1	0	5	024	8
434			i min	-2563.474	72	20.023	78	0		0	1	0	1	04	17
435		18	max	6224.908	12	-13 862	102	0	1	0	1	0	1	017	TR
136 1			min	-2559.084	72	-23.103	78	Ū.	1	ò	Ť	Ŏ	1	.028	8
437		19	max	6232.223	12	-15.71	102	0							+#
38				-2554.695	- 11		76			0	<u>.</u>	0	1.	- 009	. 8
			_ min		141	-26,183		0	1	0	1.	Q	1	015	_ Z
39		20	max	8239.539	144	-17.558	182	0	1	0	1	0	1	i	1
40			min		72	-29.264	78	0	1	0	1	<u> </u>	1.	0	1
41	M12	_ 1 _	max		12	17.558	43	C	1	0	1	0	1	0	
42			min	-2633.707	72}	-29 264	35	0	3	0	1	0	1	0	
43		2	mex	8107,852	12	-15.71	43	0	Ť	ô !	1	0	1	.015	3
44		4 m	min		72	-25 183	35	ŏ	1	ŏ	1			009	jà
45		3	max	6115.168	12	-13 862						<u> </u>	min		12
46		منت يختند					43	0	.1.	<u> </u>	1_	<u> </u>	1	028	3
			min		72	-23.103		<u> </u>	1	0	.1	0	1.	017	14
47 .			.max	0122.484		-12,014	43	0	1	<u> </u>	1.	0	.1.	.04	13
48		10000	min		72	-20.023	35	0	3.1	0	1	0	1	.024	4
49			max	6129.8	12	-10,165	43	0	1	D	1	0	1	.05	Ŀ
50		1.1.1.1.1.1.1	min	-2818,149	721	16.942	35	Q		0	1	0	1	.03	Ť
51		8	max	8137.116	12	-8,317	43	õ	1	ŏ	1	ŏ		058	
52			Umin.		72	13.862	35		$\dot{}$						13
53		7					32	<u> </u>			1	0	1	035	4
			max		12	-6,469	43	0	1		1.	0	1.	065	3
54			min		72	-10,781	35	<u> </u>	1	0	1	0	1	039	14
55 j		8	max		12	-4,621	43	0	1	0	1.	0	.1	.07	3
S6.1		10020020	min	-2602.98		-7.701	35	0		0	1	0	1	.042]4
57		9	max	6159.084	12	-2.772	43	0	1	0	1	0	1	.074	15
58			_min_	-2598.59		-4.621	35	0	11	0	1	Ô I	11	D44	12
59		10			12	- 924	4.	0	1		1	ŏ	11		t,
60		·····			72	-1.54	35	ŏ		0				075	
61 I		11							1.		1	<u> </u>	1	045	4
		يب السب	max.		12	1.54	38		11	0 1	1	0	1	.075	13
62			min.	-2589.811		924	105	0	11	0	1	0	1	045	4
63			<u>max</u>	6181.012	12	4.621	38	0	11	0	1	0	1	074	3
34	· · · · · · · ·	olikoste v	min	-2585.422	72		105	0	эΤ	0	1	0	1	044	4
35		13	max	8188.328	12	7,701	38	0	11	ō	1	0	1	.07	3
36			min	-2581 092	721	4.621	105	0 1	11		1	C D	1	.042	14
37		14	MAX		12	10.781	38	<u>ŏ</u>	*		+	ñ	1		13
58				-2570.643	; 1		105			0 +				.055	3
59			. mîn								1	0	14	039	4
		15	max		12	13,862	38	0	1	0	1.	0 1	11		3
<u> 0</u>		rooyasida	min	-2572.253			105	0	11	0	1	0 1	11	035	14
1	E	16	max	5210.278	121	16.942	381	0	11	0	1	0	11	.05	13
2	1.1.1.1.1.1.1.1.1	Sections	min	-2567,653	721:	10 165	105	0	ΤT	0	1	0	77	03	14
73	ľ	17	mex	6217.592	12	20.023	38	0		ai		0	11		İ,
4	Section 1	10000	min		72		105	The contract of the second second second second second second second second second second second second second	11		1	ŏ	1	024	İž
75		10													
		15	max		121	23.103	38	0	14		1	0	1	.028	3
76		2000/2004	min	-2559.084			105	0	11	0 1	1	0	11	017	14
22		19	max	6232.223 ·	12	26,183	36	0 1	1	0	1	0	5	.015	3
78	11.0009703F	1997 (M. 199	min	-2554,695 7	72		105	0	11		11	8 1	ŕ†	.009	4
79	f-	20	max		12		38	ŏ	++	0	÷	0	++	_ 0	1
					12								_		
0	e en el states de la secola de la secola de la secola de la secola de la secola de la secola de la secola de la		min				105	Ū.	11	0		0		0	

RISA-3D Version 8.1.2 [Cit., L. L. L. L. 1, 31028D-20120930-FAR-Rise Analysis.Schemetic.r3d] Page 17

Company	:	Feb 4, 2013
Designer	:	2:34 PM
Job Number	1	Chacked By:
Contractor of the local division of the loca		Mellocherstamonautosamonista

Envelope Member Section Forces (Contin	yed	1
--	-----	---

,	Member			AxisEb1	10	y Shearfiel	10	z Shoanîbi	.10	Jossueik,	LC.	¥γ Moin	LC.	2-2 Mom.,	
38	NET 600040		1 min	-3372.837		-795,796	38	0	1	0	11	0	11	697	7
539		10	max	623,803	85	26.773	86	0	11	0	11	Û.	11	.057	
40		1.00000	min	-3360.953	2	-795,796	38	0.000	11	0	1	0	11	- 337	1
141		11	max	628.672		26.773	86	0	11	C C	h	ŏ	11	.119	1
42	- 12 C - 12 C	. anima	min	3389.068		-795,796	38	ŏ	ti	0	17				-
43		1		633.541		26.773						0	11	- 088	-
		12	<u>í mex</u>	033.041	100		86	0	11.	<u>i p</u>	11.	0	1	514	_
344			<u>min</u>	-3397 184		-795,796	38	0	11	0.0	1	0	1	- 101	1
45		13	max	-638.411		26.773	86	0	1	0	1	0	11.	912	
46		0.8555.000	min	-3405.3	2	-795,796	38	0	11	0	11	0	1	1 114	
547 I		14	max	-643.28	85	26.773	88	0	11	0	1	0	1	1.31	7
48	vectoresses	1 2020	min	-3413 415	12	-795.796	38	0	11	Ō	1	Ō	1	- 128	1
49		15	mex	-648.15	85	25.773	86	0	1	ŏ	1	0	11	1.708	1
50		1	min	3421.531	2	-795,796	38	ő	Ħ		1		11		4
51		16	max	-553.019		26 773	86		1	0		0		- 141	-
		1 10		-3429,646				0	μ.	0	1	0	11	2.106	
52			<u>i min</u>			-795,798	38	Q	11	··· 0	11	0	11	- 155	
53		17	<u>max</u>	657,888		26.773	86	0	11	D	11	0	11	2.504	.1
54			1.min,	-3437.762	2	-795.796	38	wiette O	11	0	1 1	0	1	- 168	Ί
55 j		18	max	662.758	85	26.773	86	0	1	0	1	0	1	2.901	1
56		1	min	-3445.878	2	-795,796	38	0	1	0	1	0	1	- 181	1
57		19	max	667.627		26.773	86	Ô.	1	Õ	1	0	Í.	3,299	1
58		- a Gini	1 min	-3453,003		-795.796	38	ŏ	1	- ŏ	1	0	11		ł
59		20	max	-872.498		26.773	86							195	4
	****	+					00	0	1_1	<u> </u>	1.	Q	1	3,697	4
80			(mn	-3452.100		-795.796	38	0	1	0	1	0	1	- 208	1
61	M15	1	Lmax,	2394.687	12	4262.901	39	0	1	0	11	0	1	11.846	
62			min	-1005.813	72	532,154	73	0	11.		1.	0	1	1.027	1
63 j		2	mex	2394.887	12	4327.207	39	0	1	0	1	Q	1	10,64	1
64]		1.0000	min	-1005,813	72	521.568	73	0	1	õ	1	ō	1	.524	1
65		3	THAT	2394.687	12	4391.512	39	<u> </u>	1	Õ	1	ç	1	9.414	+
66			min	-1005.813		510,983	73	Ď	ΓŤ	Ŏ.	1	ŏ	-		1
67		4	max	2394,687	12	4455,817	39	C C					-	602	4
68		1							1	0	1	Q		8.168	4
			l min		72	500,398	73	0	1	Q	.1.	0	1	233	1
69		5	max	2394.687	12	4520.456	39	0	1	0	.1	<u>0</u>	1	5.901	1
70			L min.	-1005,813	72	489,806	73	0	1	0	1	0	1.	- 186	Ŧ
71		5	IN AX	2394.857	121	4584.761	39	Q	1	D	1	0	1	5.614	T
72		1996/201301	min	-1005.813	72	479.22	73	D	1	0	1	Û.	1	61	1
73		7	max	2394.687	12	4649.066	39	0	1	0	1	0	1	4.300	1
74		1.00.00	min	1005.813	72	468,635	73	0 O	1	ů.	1	Ŏ	1	-1.039	
75		8		2394.687	121	4713.499	39								1
76		<u> </u>	max		161			0	1	<u> </u>	1	0	1.	2.979	
			min		72	458.043	73	0	1_	0	1	0	1	1.472	ļ
27-1-	·	9	max	2394.587	12	4777.804	39	0	1	0	1	0	1	1.913	1
78		1.1.1.1	_min_	1005,813	(2)	447.458	7.3	0	1		.1	0	1.	-1,958	1
78		10	max	2394.687	12	4842.11	39	0	1	0	1	0	1	1.527	T
BQ :			train.	1005.813	72	436.873	73	0	3	0	1	0	1	-2.859	Ť
51		11	max	2394.687	12	4905.317	39	Ö	1	ŏ	1	0	1	1.281	t
32			min		72	426.282	73	õ	1	ŏ	1	- <u>v</u>		-4,353	t
83		12	max		12	4970.622	39	ŏ			1		+	1.03	t
34				-1005.813	35				1	<u></u>	-				
	· · · · · · · ·	12	min		-64	415.698	73	Q	1	<u> </u>	1	<u> </u>	11	-5.897	ł
9 <u>5</u>		13	THRX.	2394.687	12	5034,928	39	0	1	0	1	0	1		ł
36.			.min.		72	405.111	73	0	1	0	1	0	1	-7,461	Ŀ
37 ; .		14	max		12	5098.89	39	0	1	0	1	0	.1.	.514	ł
38 i			min	1005 813	72	394,521	73	0	1	0	1	0	1	-9.045	t
39 5		15	max		121		391	Ô.	11	6		0	1	249	İ
io F		_	min.		72		731	Ŏ	1	0	1	···· ð ··			ť
91		16	max		12		391	0					1	-10.65	
		-18							1		1	0	14	- 021	ŀ
2					72		73	0	1		1	0	1.		Ľ
<u>33 </u>		17	max		12		39]	0	1	<u> </u>	1	0	.1.1		Ľ
94 :		3.1.2.2.1	min	1005 813	731	362 763	73	0	1	0	1	0	1	-13.92	F

		(Continued)

+0+1	Member	Sec.		Ariatibl LC	y Shearfib)	10	z.Stewdin)		Tomuerk.		y-y Mem		z z Mom.	1
181	M13	1	<u>i max</u>	-579.978 86	795.796	39	<u>; </u>	Ļ1	0	11	0	11.	3 866	4
182		+	, i mia,	-3307.912. 2	-26 773	85	0	11	0	11.	L_0	11	046	Τ
183		2	max	-584 848 86	795.796	39		11	0	11	0	11	3.47	1
184		I	<u> </u>	-3316.028 2	-26 773	85	C	T	0	11	0	TT	033	
185		1.3.	Lmex	-589.717 88	795 796	39	0	1	. D	11	0	11	3.074	
186		1		3924.143 2	-26,773	85	0	1	0	11	0	11	+ 019	1
487		4	mex	-594 686 86	795.796	39		11	0	1	0	11	2.678	Т
188			min	-3332.259 2	-26 773	85	0	11	0	11	0	ti	.006	1
89		5	max	-599.456.86	795,796	39	<u>0</u>	1	0	Ħ	Ō		2,282	Ťi
190		1	in	3340 375 2	-26,773	85	a a	1	. 0	†÷	ŏ	17	007	h
191		6	max	-604.325 86	795,796	39	õ	1	ŏ	忙	0	Ħ	1.886	-#
92		· · · · · · · · · · · · · · · · · · ·	min	-3348,49 2	-26,773	85	0	1 in			- ŏ			t
93		7	max	-609.195 86	795,796	39			<u> </u>	1		11.	021	
94	*****	+	min	-3356.508 2	-26.773		<u>0</u>	1	<u> </u>	11.	ļ	11.	1.489	-11
195		8				85		<u></u> -	0	11	<u> </u>	11	.034	4
		<u>↓ </u>	max	-614.064.86 -3364.721 2	795.796	39	0		<u> </u>	11	<u> </u>	11	1.093	11
96		<u> </u>	i mia		-26,773	85	0		0	LL.,	0	L1	047	1
97		9	- mex	-818.933 B8	795,798	39	0	1.1	0	11	0	1	697	1
98			1.min	-3372.837 2	-26.773	85	0	1	0	1	0	11	061	1
99		10	, max	623,803 86	795,795	39	0	1	0	11	0	1.1.	337	
00			min	-3380.953 2	-26.773	85	Q	1	0	1	0	1	.057	Т
01		11	max	628.672 86	795,796	39	0	1	0	1	0	1	.088	Т
02		1	L min	-3389.068 2	-26.773	85	0	1	0	1	0	1	- 119	T.
03		12	max	633.541 88	795,796	39	0		0		ō	1	101	T
i04 [1	nim	-3397.184 2	-26.773	85	0		0	1	0	1	-514	1
05		13	max	638,411,86	795.796	39	<u> </u>	1	0	1	Û.	1	.114	T.
06			min	-3405.3 2	-26.773	85	ő	1	ő		0	11	- 912	t
07		14	Imax	-643 28 86	795,795	39	<u> </u>		ŏ	1	ð	1	128	Ì
OB			min	-3413.415 2	-25,773	85	ŏ	11	0		ŏ	1	1.31	t
09		15	max	-848.15 86	795,796	39	0	1	0	1	0		.141	
10			mín	-3421 531 2	-26,773	65	0					+		1
11		16	max	-653,019 86	795,796	39			<u> </u>	1	0		-1.708	Ļ
12		far a strike a second	1.098A.	3429.645 2	-26,773	85	<u> </u>	1	·	1	<u> </u>	1.	155	16
13			max	657.888 86			0	1	<u> </u>	1	<u> </u>	1	-2.106	Ļ
		17			795.796	39	0	1	<u> </u>	1	<u> </u>	1	.168	18
14			.min	3437.782 2	-26.773	85	0	1	0	1.		1	-2.504	L
15		18	l mex	-652.758 86	795.796	39	0	1	0	1	0	1		18
16			L min.	3445.878 2	-26,773	85	0	1	0	1	0	1	-2.901	13
17		19	mex.	667.627 86	795.795	39	0	11	0		0	1.	195	18
18			1 min.	3453.993 2	-26.773	85	0	1	0	1	0		-3.299	
19		20	max	672.496 86	795.796	39	0	1	0	1	0	1	.208	It
20		darent de	min	3402.100 2	-26 773	85	A	1		1		1	-3.697	13
21.	M14	1	1 max	-579,978 85	26,773	86	0	11	Ó	1	0	1	.046	18
22	1993, Weberlau	1.0000.000	l min	-3307.912 2	-795,796	38	Sector 6 the first	4	0	1	0	11	-3,866	Ħ,
23		2	i max.	584,848,85	26.773	88	Ĝ	1	0	1	0	1	.033	18
74		1000	.min	-3316.026 2	-795 796	36	1945 0 - 114	1	Ď	11	0	1	-9,47	Ϊĭ
25		Э	max	-589,717,85	26.773	86	ň	1	ŏ	+	ŏ I	11	.019	10
26	1	41-6126	min	3324 143 2	-795 796	38	ം പ്	++	ŏ	11	0	Ŧ		ĥ
27		4	max	-594 586 85	26.773	86	0	++	- ŏ 1	$\frac{1}{1}$	0	+	.006	le
28	and and the		min	-3332.259 2		38		1	0	+				K
29		5	mex	-599,456 85	26,773		·- × -	-1-1			<u> </u>	1.		
30		1		-3340.375 2		86	<u> </u>	++	- 0	1	0	1	-,007	8
	· · · · · · · · · · · · · · · · · · ·	-	min		-795,796	38	0	14	<u> </u>	1	0	1		1
31		5	max	604 325 85		<u>86 (</u>	0	1	0 1	1	0	1	021	8
32.			i min	3348.49 2		38	0	1	0	1	0	1	-1.886	1
33		7	mex	609,195 85		86	0	1	0	1	0	1.	034	8
34	- 1,a		Lmin	-3356.600 2	-795.796	38	0	1	0	11	0 1	1	-1 489	1
35		8	max	614.064.85	26.773	66	0	1	0	1	0	1	047	B
36		1	min	3364.721 2		38	0	11	0	11	0	4		F.
37		9	max	618.933 85		86	ā	1	0	1	õ	1		8

RISA-3D Varsion 8.1.2 [C.L.J.,L.L.J., 3102BD-20120930-FAR-Risa Analysis.Schematic r3d]

Page 18

Feb 4, 2013 2:34 PM Checked By:

Company	
Designer	
Job Number	

ber. Section Forces (Continued) Size Astellal, LC v Siteadb) LC 13 max 125355 503 33 19 max 125355 503 33 19 max 125355 503 33 19 max 125355 503 33 19 max 12548 112 2515 503 33 20 max 12548 112 2513 803 72 20 max 1254 411 438 1435 1 max 550 5027 33 231 007 723 1 max 550 5027 36 532 5024 2 2 max 557 149 35 532 504 2 3 max 573 333 39 115 007 89 9 max 576 398 52 244 112 12 9 max 576 398 52 247 598 21 597 398 24 10 767 398 521 324 518 5027 98 2 798 27 788 594 891 10 max 591 524 545 1067 563 780 986 738 783 788 10 Envelope Member Section Forces (Continued) ZSheefbi LC Torquelk. 0 1 0 0 1 0 LC z2 Mon. LC 1 -.345 73 1 -15,585 128 1 -454 73 1 -17,271 125 1 -.561 73 1 -18,977 125 1 941 85 Morriper 4 v v Mom 595 597 598 599 599 600 602 603 604 605 606 605 608 609 610 0 1 Miß 1 1 941 1 -404 1 947 1 -317 89 73 3 73 1 1 1 1 1 611 612 613 616 615 616 618 617 618 617 618 617 618 617 618 612 619 620 622 623 624 626 633 636 633 636 633 636 640 642 644 645 644 645 643 646 644 645 645 646 1 1 1 1 1 1 1 1 1 1 1 1 1 M17 1 D min -931.127 3 max 2081.767 min -931.127 4 max 3081.767 1 1 -1153.039 30 0 4 International and the second 1 000

RISA-3D Varsion 8.1.2 [C1.1.1.1.1.3102ED-20120930-FAR-Risa Analysis.Schematic.r3d] Page 20

Company	
	-
Designer	
Inh blambar	

Feb 4, 2013 2:34 PM Checked By:

Envelope Member Section Forces (Continued)

652	Member	<u>_Sec</u>	min	Axia5(b) LC -931.127172	y Shearlibi	10	<u>x Shearlib)</u>	႕င	Torobelk	ιc.	* X Mon.		z-z Moro	10
653		7	max	3061.767 12	261 706	38 86		11	<u> </u>	Ļį.	<u> </u>	1	358	172
654	÷	+	min	-931.127 72		38		1	0	1	<u> </u>	년.	11.263	39
855		8	max	3061.767 12		88		Ħ	0	1	0	μ.	313	72
656		×	min	-931 127 72	-561 576	38	0	f†	<u> </u>	+	<u> </u>	1	11314	39
657		9	max	3061.767 12	314.619	85	0	÷-	<u> </u>		0	+	279	72
658			min	-931,127172	473 11	120	ŏ	Ħ	0	+	0	H	11 419	12 72
659		10	max	3051.787 12	341.089	86	0			1		<u></u>	257	
660		······	min	-931 127 72	-394.088	120	0	1	0		<u> q </u>	Ļ.	11.468	12
661		.11	max	3061.767 12	394 088	121	0	t t	a		0	+	11.488	Z2 12
562			min	-931 127 72	-341.089	185	ŏ	┉	0	t	0	h	.246	72
663		12	max	3061 767 12	473.11	121	Q Q	H	ŏ	1	0	1	11,419	12
664			min	-931,127 72	-314.619	85	ŏ	1	ŏ	÷	0 0	1	257	172
685		13	max	3051.767 12	561 576	39	Ő	1	0	-	Q I	h	11.314	38
666			toin	-931 127 72	-285 173	85	ă	tt	0	Ť	0	1	279	72
667		14	mex	3081 787 12	680.168	39	ŏ	t i	Q.		0 0	1	11.263	38
668			min	-931.127 72	-261 706	65	ō	Î	ŏ -	1	ō	1	313	72
669		16	max	3061.767 12	798.733	39	0		Ö	1	0 0		11.143	36
670	20.000			-931 127 72	-244 296	73	ö	1	õ	1	ŏ	4	358	72
671		16	max	3061,767 12	916.626	39	Ŏ		ŏ	1	ŏ	1	10.955	38
672			min	-931.127 72	-263,702	73	Ō	t -	ŏ	1	ŏ	1	38	24
673		17	mex	3061,707 12	1035.146	39	ŏ	1	Ö	1	. Q	1	10.698	38
674		-10-66-07	min	-931 127 72	-283 111	73	···· 0 ···	1	ŏ		ō		356	74
675		18	max	3061.767 12	1153.039	39	<u>0</u>	1	0		ō i	1	10.372	38
676			min	-931 127 72	-302 517	73	0	1	Õ	11	ō	÷.	344	74
677		19	max	3061.767 12	1271 502	39	0	1	0	-	0	1	9,979	38
678			min	-931 127 72	-321.928	7	Ď		Ū.	1	Č	1	195	88
679		20	max	3051.757 12	1389 395	39	õ	1	ŭ	1	0 i		9,516	38
6BO			min	-931 127 72	-341.334	73	Ó.			Ħ	ð	1	148	88
581	M18	1	max	62,158 85	-434,601	86	0		0	-	0	1	.082	80
582			min	451.189 39	-2567.055	2	Õ	1	õ	1	ŏ	1	~3.229	2
583 T		2	max	47,048 85	378,569	86	0		Ő		ō. I	-	154	86
584	1997 Cont. 11. 24	1.1.1.1.1.1.1.1	min	439,856 39	-2296.757	2	0	1	ŏ	1	ŏ	1	-1.841	38
585		3	max	31,937 85	-322.365	86	Ō		Ō	1	ð	1		86
386	200		mín.	428.524 39	-2025,391	2	Õ		Ŏ	1	ŏ	1	697	38
587		4	max	16,827 85	-266 133	86	0	1	Õ	1	Ö	1		126
388		100000	min	417.19139		2	0.000		- ŏ	1	ŏ	11	22	85
389		5	max	1,716 85	-209 937	86	- Q	1	Ö	1	0	1	1.669	125
590 i		20200	min	405,858 39	-1485.875	2	0	11	0	1	- õ -	1		85
391		6	max	-13.394 85	-153,705	86	Ö	1	ő	1	ŏ	+		125
92	See Spines	1000	min	-394.525 39	-1215.576	2	Ó		. o	1	- ŏ-	1		65
393	1	7		-27.241 73	-97 507	86	0	1	ð		ŏ	1		88
94		1944 M.M.	min	-383 192 39	-945.471	2	Ö		0	1	Ō	T		73
95		8	mex	-32.278 73	-41.302	86	ô		ŏ	1	ŏ	1		68
96 T			min	-371.859 39	-675.441	2	0	1	0	1	Õ	11		73
i97 i		9	mex	-37,315 73	14.93	86	0	1	0	1	i i	11		58
98	signer and the second	digener die	min	-360.526 39	-430.854	124	0	1	0	11	0	ΠÎ		73
99		10	max	-38.967 72	71,145	86	0	1	ō İ	1	Ū	1	3.828	58
00	Sector constraints	10/250	min	-349,193 39		124	0	i	0	1	D	1		73
01		11		-38.967 72	193.377	125	0	11	. Õ i	11	0	1		88
02		1.00199960	min	-349.193 38	-71.145	851	ò	1	0	11	Ő,	1		74
03		12		-37 315 74		125	Č I	3	0	1	Õ l	1		88
04	25.0 25-25 25-5	1000	min	-360 526 38	-14.93	85	0	11	0 1	11	Ö	71		74
05		13	max	-32.278 74	675,441	2	0	1	0	1	0	1		88
08	el formative i	111212012	min	371.859 38		85	0.000	1	0.0	71	ŏ	T		74
07	1	14	max	-27.241 74	945.471	2	0	11	č	1	ŏ	1		88
	Version and	100 Carl	nuin 1	383 192 38			0			t de				74
08	l			000.17(1)01	1.501	85	V 1	11	0	13	0	יו	436	

RISA-3D Version 8.1.2 [CALALALA 3102BD-2012093D-FAR-Rise Analysis.Schematic.r3d] Page 21

Company	Feb 4, 2013
Designer	2:34 PM
Job Number	Checked By:
	House and the second

	Joint		X Fel	<u>. (C</u>	Y Fiel	. <u></u>	Z [m]	LC	X Rotation	LC	Y Rotation	<u>, LC</u>	Z Rotation (i
32		min	0	.1	035	86	- 608		-4.8430-4	38	0		1 0	1
33	N17	max	0	1	037	34	.011	138	2.6210-4	86	0	1	0	1
4		min	0	1	- 036	86	- 011	78	-3.9666-4	38	0	11	0	
15	N18	max	0	1	<u>D</u>	72	.007	138	2.5498-4	86	0	11	0	Т
6	and a second second	min	0	1	0	12	002	86	-4.420-4	38	0	11	0.00	1
7	N19	maxi	0	1	0	72		39	4.0486-4	78	0	1	0	Т
8		min	9	1.1	0	512	- 006	178	2.649+4	42	0	111	0	Т
9	N20	max	0	11	0	72	.011	34	5 1240-4	121	Ó	1	0	1
10	0.600.000 Web>	min	0	1	0	12	012	78		85	0	1	ō	1
11	N21	max	0	1	.037	1.34	008	172	2 8279-5	73	0	1	0	T
2		min	0	1	036	88	-117	112	-5.076e-4	39	ŏ	-	Ď	t
3	N22	mex	0	1	0	85	- 017	172	-1 6976-4	85	0	f‡-	ŏ	t
4		min	0	1	Ō	35	- 144	138	-1 2170-3	88	<u> </u>	1	0	†-
5	N23	max	<u>0</u>	1 t	.036	85	8	71	1.04e-3	39	0	1	0	t
6	1.0.0	min	Č	1 1	+ 037	35	02	125	4.267-7	72	- 0	1	·····	<u>†</u>
7	N24	max	0	1	036	85	002	73		39	0			
a t	1767	min	ŏ	1	037	35	034	1125	1 166 3	72		+	ļ	+
in T	N25			1	.036	85					0	<u> </u>	<u> </u>	
0	1823	max min	<u> </u>	1			003	73	1.203e-3	39	<u> </u>	1.1	0	1
	APT P		<u>ò</u>		+ 037	35	- 049	39	4.252-5	.72	0	11	0	1
1	N26	mex	<u> </u>	1	.036	85	005	123	1.19e-3	12	0	1	0	į.,
2	1107	min	0	1	- 037	35	- 065	39	5.0790-5	72	0	1	0	4
3	N27	max	<u> </u>	1	036	85	006	173	1.1050-3	12	<u> </u>	1 ,	Q	L
4		min	<u>0</u>	1	- 037	135	- 08	139	4 920-5	72	0	1.	0	L
5	N2B	mex _	0	.1	036	85	- 007	12	9.4956-4	12	0	1.	0	L
§			<u> </u>	1	- 037	35	.093	39	3.759-5	72	0	1	0	
7	N29	mex	0	1.	.036	85	007	72	8.0228-4	12	P	1	0	
6	· · · · · · · · · · · · · · · · · · ·	min	0	1	- 037	35	- 103	39	2,653-5	72	0	1	0	Ŧ
21	N30	. mex	0	1	.035	85	+.008	72	6.63a-4	38	Q	1	D	1
Q		i	8	1		35	115	1.39	1.8060-5	72	0	1	0	
1	N31	max	Q	1	.036	85	008	72	5.0768-4	3B	0	1	0	-
2	 Statistics 	min	0	11	- 037	35	- 117	12	-2.8270-5	74	0		Ö	177
3	N32	max	0	1	036	77	008	72	3.395e-4	38	Ö	1	Q	
4	544 March 1994	min	0	1	- 037	35	- 122	12	-2.6126-5	86	0		Ő	-
5 T	N33	max	0	1	.036	120	008	72	1.619e-4	38	Ŭ	1	Ŏ	-
6		min	0	1	-035	121	~ 124	112	-7.268e-5	86	- ň	-	0	
71	N34	max	0	1		120	008	72	7.2680-5	85	ŏ		D.	-
8	1.	min	Ď	1	-036	121	124	12	-1.6199-4	39	0		ŏ	-
ğ	N35	max	0	1	.037	34	008	172	2.6120-5	85	ă	-	0	-
õ+		Irgin	õ	1	- 036	78	- 122	12	3.3856-4	39	ŏ	1		
1	N36	mex	Ö –	1	0	381	0	72		39			<u>Q</u>	
2 -			Ŏ.	守主	- Ŏ	86	014	39	1.2546-3		<u>e</u>	1	0	
3]	N37	max	0	1		38	001	72	4.281e-5	72	- <u> </u>	1.	<u> </u>	1
ă †-			ŏ	1	0	85			1.427p-3	39	<u> </u>	1-	0	1
5 T	N38			++		36		39	9.7366-5	72	<u> </u>	1	<u> 0 </u>	_
5 6	1490	max	<u>_0</u> _1	1+	<u> 0 </u>		002	72	1.4460-3	39	Q	_1_		
7		min	<u> </u>		<u> </u>	86	- 046	39	1.2520-4	72.1	<u> </u>	1	0	щ
	N39	max	<u></u>	1.	0	38	-,004	72	1,388-3	125		1	0	1
Į.		1 min	<u> </u>	-1	<u> </u>	56	- 065	39	1.3926-4	79		1	Q	
.	N40	max?	0	1	_ 0	38	- 606	72		125	0	1.	<u>D</u>	
2			0	1	0	85	081	39	1.413e-4	73	0	1	0	1
4	N41	max	0	1	0	38	- 008	72	1.2040-3	125	0	1	0	
		min	0	1	0	86	-,096	39	1.5396-4	73	0	1	0	
3	N42	max	C.	1	Q	34	- 011	73	1.4810-3	88 ;	0	1	0	1
1		min	0	1	0	86	-112	39	2.5656-4	71	ò	1	ŏ	
5.	N43	max	Q	11	Õ		-,014	72		88 :	0	1	0	
1		min	Ĉ	i i	Ď	86	129	39	2.4226-4	74	0	+ 1	ŏ	1
	N44	maxi	ŏ	11	- ŏ	34	.017	72		88	0	+	0	
1		min	ŏ.	11	0	86	- 144	39		86	ŏİ		. U 1	_

RISA-3D Version 8.1.2 [C:L.L.L.L.L.L.M102BD-20120930-FAR-Risa Analysis.Schematic.r3d] Page 23

Envelope Member Section Forces (Continued)

	Momber	56C		Asiai(ip)	LC	v Shaadib)	ŧC	z Shearlio	10	Torquelk	1C	wy Mam	HC.	z-z Mom	10
7.09		15	max	-13,394	386	1215.578	2	0	1	0	1	0		2 313	124
710			Lonía.	-394.525	38	153,705	85	0	TT	0	1	8	-	253	86
711		16	max	1.716	86	1485 875	2	G	11	0	1	0	11	1669	124
712			i.min.	-405.858	38	209.937	85	C	1	0	1	0	-	033	86
713		17	max	16.627	86	1756,092	2	0	11	0	1	0		.886	124
714			min	417 191	38	266,133	85	0	11	0	1	0	1	22	86
715		18	max	31.937	86	2026.391	12	0	TT	n n		ß	-	357	85
718			.mín	428 524	38	322,365	85	0	1	0	11	0		.697	391
717		19	max	47.048	86	2296.757	2	0	÷	Ô		Ö.	1	154	85
718			min	439.856	38	378.569	85	0	T i `	Ó	1	0		1 B41	39
719		20	max.	82.158	88	2567,055	2	a	1	0	-	ð	11	- 082	85
720			min	-451 189	38	434 801	85	0	t					-3 220	131

Envelope Joint Reactions

	Joint		X (b)	LC	Y fiel	ι¢	Z (10)	10	MX (k-ft)	1c	Lty (k.fl)	10	MZ beft 1 C
1	N2	max	0	1	970,093	72	12531.881	98	0	1	0	11	0 11
2		min	0	. 1	-2734,979	38	-240.961	71	0	1	0	11	0 11
3	NI	in dix	Q	1	2734,979	39	12531.881	90	8	1	: 0	11	0 1
4	1	min	0	1	-970.093	72	-240.961	71	0	1	0	11	0 11
	Totals:	max	0	1	1906.5	86	25063,762	99				1	1
6		mini	C	1	-1908.5	34	-481 923	71				·	·····

Envelope Joint Displacements Yin) C 0 72 0 39 0 38 0 72 037 34 -036 86 LC Y Rostian B6 0 38 0 39 0 85 0 Joint N1 max min max N2 min N3 1 1 1 max <u></u> N4 mex min 036 85 1 1 N5 mex 9 10 11 13 14 15 16 17 19 20 22 23 24 25 N6 max i min 1 -.035 N7 max i min 1 NB 0 12 037 34 -036 86 036 85 -037 35 036 85 -037 35 036 85 -037 35 max min min mex N9 N10 1 N11 1718 1 min 11 N12 1 max min + 1 0 12 0 72 0 12 0 12 0 72 0 72 0 72 0 72 0 37 34 -036 86 037 34 01 39 2649e4 -006 77 4.048e4 007 39 4.42e4 -002 85 2549e4 -002 85 2549e4 -003 28 1512e4 N13 mai 1 min 20 27 28 29 30 N14 _ max H 1 N15 mex min 512e-4 318e-4 1 -.005 1 1 NIE .007 2.212e 3D Vars 8.1.2 [C:\...\..\..L..L..L...\3102BD-20120930-FAR-Rise Analysis.Sc RISA natic.r3d)

Page 22

Feb 4, 2013 2:34 PM Chacked By:

Company	:
Designer	
Job Number	1
tit dama and a second second	

Envelope Joint Displacements (Continued) 1C Z.Restont. IC 1 0 1 XI'm Y fini Y Rolation Joint N45 -10 89 90 91 92 93 94 95 96 97 98 98 97 98 98 100 101 max min N46 ma) 1 min mex min max min max min max min max N47 N48 0 -036 -036 -037 -036 -037 -036 -037 -036 -037 -036 -037 N49 ţ N50 N51 102 103 104 min N52 max . en li 105 106 107 108 109 119 N53 mex min 037 1 1 -036 1 037 1 -036 1 -036 1 -036 1 -036 N54 max min 8 ļ N55 Ē max 86 1 i min max 111 112 113 114 115 116 117 N56 037 11 N57 mex min max min max max N58 1 N59 1 118 1 N60 max 1 N61 -1.2839-3124 -1.389-3124 -1.389-3124 -1.2529-472 -1.4489-338 -9.7369-572 -1.4276-338 -9.7369-572 -1.4276-338 i mev i mir N62 max min 39 85 39 85 39 N63 mex 12 nin L Max N64

Envelope AISC 13th ASD Steel Code Checks

	Member.	Shape	Code C.	Locify LC	Sheet	Locifit	Dir	LCPh	c/om (ib)	Pot/om fib)	Movilom .	Mazz/om Ch Es	nn
1	M1	HSS8X6X5	150	0 124		0		12416	5905.8	177113.7	31,21B	31 218 1. H1	
2	M2	W16X26	.177	0 38	079	0	v	38119	1060.2	229940.12	13 673	110.279 1.H1	16
3	M3	HSS5X5X4	.048	0 99	.000	10		1 93	642.835	118443.1	17.468	17.46B 1 H1	16
4	M4	HSS5X5X4	.045	0 99		0	v	1 93	642.835	118443.1.		17 468 1 81-	
5	MS	W16X26	172	4 124	074	4				220940.12		110.279 1	
6	M6	W16X26	172	0 125	074	0		12519		229940.12		110,279 1.1 H1	
7	M7	HSS6X5X5	.153	4 324	040	4	VI	88 17	2041.93	177113.7	31,218	31.218 1.H1-	
8	M6	HSS6X6X5	153	0 125	.040	10				177113.7	31 218	31,218 1. H1-	
8	M9	HSS5X5X4	024	0 12	.000	0	v		642.835		17.468	17.468 1 H1-	
10	M10	HS\$5X5X4	.024	0 12	000	0	vi	03	542.835	118443 7	17.468	17,468 1 H1	
11	M11	HSSSX5X4	039	5,425 12		0	vi			118443.1.	17,468	17,468 1 H1	
12.1	M12	HSS5X5X4	.039	5.425 12	001	to				118443.1	17,468	17.468 1 H1-	
13	M13	HSS6X5X4	181	0 39	019	Õ				131389,2	20.016	22.656 2 H1-	

RISA-3D Version 8.1.2 [Cit.Lit.Lit.A. 13102BD-20120930-FAR-Risa Analysis.Schematic.r3d] Page 24 Feb 4, 2013 2:34 PM Checked By:___

Envelope AISC 13th ASD Steel Code Checks (Continued)

Member	Shape C	Code C. Looft	LC Shear	Locift] Dk	LC Proform (ib)	Potron Bbi Mowiom	Mnzz/om Ch Een
14 M14 H	SS6X5X4	.181 0	38 019	0 V	38 105127.0	131389.2. 20.016	22.655 2 81-16
15 M15 V	V16X26	177 6	39 079	6 V	39 101066.2	226940.12 13.673	110,279 1. H1-1b
16 M16 H	SS6X6X5	150 6	125 043	6 V	125 185905.8	177113.7. 31.218	31,218 1 H1-15
17 M17 V	V16X28	112 5.5	12 020	11 V	39 188130.6	220940 12: 13.673	110,279 1 H1-16
18 M18 HS	SS6X6X5	.124 5.5	88 .052	0 γ	2 142178.7.	1771137 31.218	31,218 1 H1-16
		,,		1			

Material Takeoff

	Material	Size	Pieces	Lengthitt	WeightKi
	Hot Rolled Steel			3	
2	A500 Gr.46	HSS5X5X4	6	58.6	9
3	A500 Gr.46	HSS6X5X4	2	19	.3
4	A500 Gr.45	HSS8X6X5	8	31	7
5	A992	W16X26	5	31	8
6	Total HR Steel		19	139.6	27

RISA-3D Version B.1.2 [CALLALA.J.31028D-20120930-FAR-Risa Analysis, Schematic 13d] Page 25

PROJECT: PROJECT #: PAGE #: STAR DECAMATON 3102130 AUTHOR / DATE: DEADER CHECKED BY / DATE: **Buro Happold** Laber ANAL SES meaular 4psl TING $R_{i} =$ X334 DER SUPPORT 1213 # ~ GOG # (12.5 A GX8 55+12.5] 83 M 8.5-84 $= \frac{2863}{= 1432}$ SAPOT) - SUPERIT DEL MAX (UDEFE) CHEE FOR SETTING LOAD CONVERTNATION / ± 83 EGD + ECTIONS) = 2775 = 2 GOG. (R.) & Will not TONS OVER IN EARMONICE Cruchit MUST BE duse o HEGH LENDS

EFORTE MEMBER REPORT Level, Floor: Flush Beam 2 piece(s) 1 3/4" x 11 7/8" 1.9E Microllam® LVL

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC Design Methodology : ASD

All Dimensions Are Horizontal; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	15775 @ 11' 8 1/4"	14438 (Eailed (109%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6533 @ 12' 10 7/8"	7897	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-17911 @ 11' 8 1/4"	17848	Passed (100%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.330 @ 5' 8 9/16"	0.378	Passed (L/413)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.354 @ 5' 8 1/16"	0.568	Passed (L/385)		1.0 D + 1.0 L (Alt Spans)

Deflection criteria: LL (L/360) and TL (L/240).

Bracing (Lu): All compression edges (top and bottom) must be braced at 6" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing
is required to achieve member stability.

	Bearing Length			Load	s to Suppor	ts (lbs)	
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column Cap - steel	5.50"	5.50"	2.21"	512	5301/- 710	5813/-710	Blocking
2 - Column Cap - steel	5.50"	5.50"	6.01"	1582	14193	15775	None
3 - Column Cap - steel	5.50"	5,50"	2.21"	512	5301/- 710	5813/-710	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

1 - Uniform(PLF)	0 to 23' 4 1/2"	N/A	100.0	1000.0	Residential - Living Areas
Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

SUSTAINABLE FORESTRY INITIATIVE

Forte Software Operator	Job Notes
Frank Reppi BuroHappold (310) 945-4800 frank.reppi@burohaprold.com	

2/7/2013 7:29:21 PM Forte v3.5, Design Engine: V5.5.3.2 3102BD-20120920-FAR-Deck.4te

All Dimensions Are Horizontal; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1100 @ 3 1/2"	1969	Passed (56%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	967 @ 10 3/4"	2411	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2750 @ 5' 3 1/2"	3700	Passed (74%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.319 @ 5' 3 1/2"	0.333	Passed (L/376)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.351 @ 5' 3 1/2"	0.500	Passed (L/342)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	43	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC Design Methodology : ASD

· Deflection criteria: LL (L/360) and TL (L/240).

* Bracing (Lu): All compression edges (top and bottom) must be braced at 10° o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.
A 4% increase in the moment capacity has been added to account for repetitive member usage.

· A structural analysis of the deck has not been performed.

Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

Additional considerations for the TJ-Pro[™] Rating include: None

2 - Hanger on 7 1/4" DF beam	3.50"	Hanger ¹	1.50"	106	1058	1164	See note 1
1 - Hanger on 7 1/4" DF beam	3.50"	Hanger ¹	1.50"	106	1058	1164	See note 1
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
		Bearing Leng	th	Load	s to Suppor	ts (lbs)	

· At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

3 See Connector grid below for additional information and/or requirements.

Connector: Simpson Stron	g-Tie Connectors					
Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
1 - Face Mount Hanger	HU7	2,50"	N/A	12-10d common	4-10d x 1-1/2	
2 - Face Mount Hanger	HU7	2.50"	N/A	12-10d common	4-10d x 1-1/2	

1 - Uniform(PSF)	0 to 10' 7"	24"	10.0	100.0	Residential - Living Areas
Loads	Location	Spacing	Dead (0.90)	Floor Live (1.00)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weverhaeuser facilities are third-party certified to sustainable forestry standards.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes	
Frank Reppi BuroHappold (310) 945-4800 frank.reppi@burohappold.com		

SUSTAINABLE FORESTRY INITIATIVE

2/7/2013 7:29:01 PM Forte v3.5, Design Engine: V5.5.3.2 3102BD-20120920-FAR-Deck.4te

PROJECT PROJECT #: PAGE #: Arec Sular Deca CI AUTHOR / DATE: Dead CHECKED BY / DATE: Buro Happold REGN : FLAT 2x6's 20 p=4 - 20 p=4 - 20 p=4 LEEGUT 14= 100 pol Fb=(1.0×900, ps:)(1.3)(1.15)(1.15) = 1545 pol $S_{x(FLAN)} = 20063 \text{ m}^2$ MOMENT= (1545 pr: X2063 m3) = (0117 × 8/12) (100+20) lai L=5th A= (4×12)/360 = <u>GY 8/12/100+20</u> <u>(12)</u> (354) 1.6EGY 1.547) R= 3.57 H. - 4 H 2x6 FLATO 2001c mix

	PROJECT:	PROJECT #:	PAGE #:
	SOLAR DECATHALON	3102BD	
	DESCRIPTION	- · ·	AUTHOR/DATE:
	LATERAL ANALYSIS AND DESIGN		
			CHECKED BY/DATE:
Buro Happold			

LATERAL ANALYSIS AND DESIGN (MAIN STRUCTURAL SYSTEM)

	PROJECT:	PROJECT #:	PAGE #:
	SOLAR DECATHALON	3102BD	
	DESCRIPTION		AUTHOR/DATE:
	SEISMIC DESIGN CRITERIA (ASCE 7-05)		
t++++++++++2555			CHECKED BY/DATE:
Buro Happold			

Seismic Design Criteria (ASCE 7-05):

Occupancy Category: || Importance Factor: 1.00 Site Class: D Building Roof Height (h_n): 10.00 ft Long-Period Transition (Tj): 8.0 Sec

Lateral **Building Frame Systems** Category: Basic Seismic Force- Light-framed walls sheathed with wood structural panels rated for shear Resisting System: resistance or steel sheets

Response Modification Factor (R): 7.00

√ Y-Direction

Spectral Response Acceleration Parameters: Mapped (MCE): Mapped (MCE); $S_{s} = 1.436$ (Sec. 11,4.1) $S_1 = 0.507$ (Sec. 11.4.1) Site Coefficient: Site Coefficient: -Second Period Short Period $F_{\sigma} = 1.000$ (Sec. 11.4.3) F_v = 1.500 (Sec. 11.4.3) Adjusted (MCE): Adjusted (MCE); $S_{MS} = F_{cr} S_{S}$ (Eq. 11.4-1) (Eq. 11.4-2) $S_{M3} = F_v S_1$ S_{M1} = 0.761 $S_{MS} = 1.436$ Design Spectral Acceleration: Design Spectral Acceleration: $S_{DS} = 2/3 S_{MS}$ (Eq. 11.4-3) $S_{D1} = 2/3 S_{M1}$ (Eq. 11.4-4) Sos = 0.957 S_{D1} = 0.507 Seismic Design Category: D

Fundamental Period:	
Building Period Coeffici	enis;
C ₁ = 0.020	(Sec. 12.8.2.1)
x = 0.750	(Sec. 12.8.2.1)
Approximate Fundame	ntal Period:
$T_{\alpha} = C_t h_n^{x}$	(Eq. 12.8-7)
$T_{\alpha} = 0.11 \text{ sec}$	
Upper Limit On Calcula	ed Period:
C _u = 1.40	(Sec. 12.8.2)
$C_v T_a = 0.16 \text{ sec}$	(Sec. 12.8.2)

Seismic Base Shear Coefficient: X-Direction

ic Base Shear Coefficient: X-Direction		User Defined Period (T _{x-Dit})		
Streng	<u>th</u>	Drift	· · · · · · · · · · · · · · · · · · ·	
Fundamental Period: T = 0.11 sec	(Sec. 12.8.2)	Fundamental Period: T = 0,11 sec	(Sec. 12.8.2)	
$\frac{\text{Seismic Response Coefficient:}}{C_s \approx S_{DS} / (R / I)}$ $C_s = 0.137$	(Eq. 12.8-2)	$\frac{\text{Seismic Response Coefficient:}}{C_s = S_{OS} / (R / I)}$ $C_s = 0.137$	(Eq. 12.8-2)	
Need Not Exceed: $C_s = S_{D1} / T (R / I)$ $C_s = 0.644$	(Eq. 12.8-3)	$\frac{\text{Need Not Exceed:}}{C_s = S_{D1} / T (R / I)}$ $C_s = 0.644$	(Eq. 12.8-3)	
<u>Shall Not Be Less Than:</u> C _s = 0.044 S _{DS} I C _s = 0.042	(Supp 2: Eq. 12.8-5)	<u>Shall Not Be Less Than:</u> C _s = 0.01	{Eq. 12.8-5}	
C _s = 0.01	(Eq. 12.8-5)			
Seismic Response Coefficient:		Seismic Response Coefficient:		
V = 0.137 x W	(Eq. 12.8-1)	V = 0.137 x W	(Eq. 12.8-1)	

		-					
	PROJECT:				PROJECT	t: P/	AGE #:
SOLAR DECAT			HALON 310		3102E	3D	
	DESCRIPTION					AL	JTHOR/DATE:
	SEISMIC DES	SIGN	N CRITERIA (AS	SCE 7-05)			
					····-	C+	ECKED BY/DATE:
Buro Happold							
		000110-000200					
<u>Seismic Desiar</u>	<u>ı Criteria (ASC</u>	<u>2E 7</u>	<u>′-05):</u>				
Occupancy Category: Importance Factor:]_00			Lateral Building Frame Systems				
Site Class: D			Basic Seismic Force- Resisting System: Ordinary steel concentrically braced frames				
Building Roof Height (h _n)			Resisting System:		Connectity 1	Didced indines	
ong-Period Transition (T	u: 8.0 sec		Response Modification	n Factor (R): 3,25			
Spectral Response Acc	eleration Parameters				1	Fundamental Period	
Mapped (MCE);			Mapped (MCE):			Building Period Coeffi	cients:
\$ ₅ = 1.436	(Sec. 11.4.1)		$S_1 = 0.507$	(Sec. 11.4.1)		C ₁ = 0.020	(Sec. 12.8.2.1)
Site Coefficient:		8	Site Coefficient:			x = 0.750	(Sec. 12.8.2.1)
$F_0 = 1.000$	(Sec. 11.4.3)	Period	$F_v = 1.500$	(Sec. 11.4.3)		Approximate Fundam	iental Period:
Adjusted (MCE):	17-11-11	10 10 2	Adjusted (MCE):	<i></i>		$T_a = C_1 h_n^x$	(Eq. 12.8-7)
F _o = 1.000 <u>Adjusted (MCE):</u> S _{MS} = F _o S _S S _{MS} = 1.436	(Eq. 11.4-1)	Secon	$S_{M1} = F_v S_1$ $S_{M1} = 0.761$	(Eq. 11.4-2)		$T_{o} = 0.11 \text{ sec}$	
		1000	5MI - 01/01		1		

Seismic Design Category: D

 $S_{DS} = 2/3 S_{MS}$ $S_{DS} = 0.957$

Design Spectral Acceleration:

(Eq. 11.4-3)

 $\frac{\text{Design Spectral Acceleration:}}{\text{S}_{\text{D1}} = 2/3 \text{ S}_{\text{M1}} \qquad (\text{Eq. i})$

S_{D1} = 0.507

(Eq. 11.4-4)

ic Base Shear Coefficient: Y-Direction		User Defined Period (T _{r-Dir})		
Strength		Drift		
<u>Fundamental Period:</u> T = 0.11 sec	(Sec. 12.8.2)	Fundamental Period: T = 0,11 sec	(Sec. 12.8.2)	
$\frac{\text{Seismic Response Coefficient:}}{C_s = S_{DS} / (R / I)}$ $C_s = 0.295$	(Eq. 12.8-2)	Selsmic Response Coefficient: $C_s = S_{DS} / (R / I)$ $C_s = 0.295$	(Eq. 12.8-2)	
Need Not Exceed: $C_s = S_{D1} / T (R / I)$ $C_s = 1.387$	(Eq. 12.8-3)	$\frac{\text{Need Not Exceed:}}{C_s = S_{D1} / T (R / I)}$ $C_s = 1.387$	(Eq. 12.8-3)	
<u>Shall Nat Be Less Than:</u> C _s = 0.044 S _{DS} I C _s = 0.042	(Supp 2: Eq. 12.8-5)	<u>Shall Not Be Less Than:</u> C _s = 0.01	(Eq. 12.8-5)	
$C_{s} = 0.01$	(Eq. 12.8-5)			
Seismic Response Coefficient:		Seismic Response Coefficient:		
V = 0.295 x W	(Eq. 12.8-1)	V = 0.295 x W	(Eq. 12.8-1)	

 \square Ignore ASCE Equation 12.8-6 when computing story drift.

☐ Seismic Design Category is determined from Table 11.6-1 alone.

Upper Limit On Calculated Period:

(Sec. 12.8.2)

(Sec. 12.8.2)

 $C_{v} = 1.40$

 $C_{\rm u} T_{\rm u} = 0.16 \, \text{sec}$

PROJECT: PROJECT #: PAGE #: JAR. Employ AUTHOR / DATE: NEERAL VESTAN CHECKED BY / DATE: Buro Happold -0 (M/L 605) THED UDGEFT 92=1340 pol Gp= -,90 Pu= 134000 (85)(-,90)+(-,55) =17.6 ps/ TREB CHEND = (17.6ps + X = #/2) = 792012 LEEFOR MODULE 1. <u>LOCEFT</u> 6 D+ WEND (+ KDER) (upueld) = 240# LOND CEMISO #71 RESA Analy 3=5 240° IS NEGGENERISE. N

PROJECT: PROJECT # PAGE #: Easthallon 310282 1AR AUTHOR / DATE: NOTERAL ANALYSES CHECKED BY / DATE: **Buro Happold** SECONTE MASSE MODULE I AND 3 MERGER = (24 ps/ K31 W/ 29 Mg CROOPS + (16 pst/ 10t/2)(3/H+ gH+ gH) =10616 + // = 1== (4.0 p =) (31) (9.4) FLOOR + (6 pt/ 10 2 2 3 4 + 9 4 9 4 1 - 7826 # // ERSMER FOLGES MODULE 1 AND 3 - Deleareny : Aso FEG = (LOG16#) (-137 L-70) (100F) = 1018 H = 32.8 p $F_{\text{EQ}} = (7826 \pm \sqrt{37} \sqrt{370})$ $= 751 \pm = 724.2$)IL CELERENCE & $F_{eq} = (10616 + 1 = 2192 + = 243.6 pile$ $= (7826 + (-296) (-7)) = 1616 + = 2180 p^{-1}$

PROJECT: PROJECT # PAGE #: AXMALON 3102BD AUTHOR / DATE: NATERAL AWALYSES CHECKED BY / DATE: **Buro Happold** S: MODULE ANG =(.00256)(.85) -0X.85×85 K20-Azi-0. 3 95 DERECTION : (4r (13.400 22.+(08.128)+.55 Centrols =-16,5000 × Pro==(13400+(.85)(.80+.50) =14.81 00 (.85) Baptinson = (K.SopelXiot/2)+ (14.81phK4 Mg =142 pll. FLOW = 83 MIL ENERTHEN & (UB = 3.3) WAII = (340p) (85) (85) (80) + .25) = 120 ps) H200== 1200 psl Drakes MOTOR (Reef) = (200 p) (10th 2) Donpy (FLOOR) = 4zg c

PROJECT: PROJECT #: PAGE #: SOLA DEAM NON 3102BD AUTHOR / DATE: LATERAL DONALYSES, CHECKED BY / DATE: **Buro Happold** DERSADER MARS & MODULEZ alter quer = Q4 pstx3142(949) (ROOPS + (KpstKrot/2)C9H+9AUS = 8136 \$ (HOOR), + (16 ph) (104/2 Kg M), qM) - 5346* ERMES Fores à MODUCE 2 S. Marzad JEC FER = (81365×137×70 1005) = 780 = 7252 $F_{Ban} = (5346^{*})(.132)(.$ - DECESSED & F=q = (8136*)(.295)(.295)(.72) (ROFE) = 1680 +3187 p14 $F_{\text{Boord}} = (5346 \times (295) \times 70)$ $(900 \times 5) = 1004 \times 5123010$

BOJECT PROJECT #: PAGE #: Solar DERSHAlow 310200 AUTHOR / DATE: -ATERAL NALYSES CHECKED BY / DATE: Buro Happold 5405 & MODULE 92= (00256) 355) 85-) KJ SS Exp C O-15 f = 13.40 psh / DEREGATEN: (4B= .30) Russi = Pros = (13,40ps) (.95-X080) + 50) = 14.81 pst 2000 = (14.81 p3) (640) 2000 = 89 01 640 $\frac{\partial m}{\partial r} = \frac{(14.81) + 12}{2} = \frac{14.81}{2} = \frac{14.81}{2} = \frac{14.81}{2}$ MECTEON & (4B= 323) AN=Ppar=(13.40 pst 095) <= 0.00+ (2000)+(2/401)/400.2)= = 108 p10 / 10801 = 2.0 pst C10/2 = Go pl

PROJECT # PAGE #: ECANALON AUTHOR / DATE: ATERAC DESTERN. CHECKED BY / DATE: Buro Happold ARAGM DERIGNE MODULE 1 AND 3 Centra DEPORAGE X-DERECTION x1=10 centrals \$ p= 245p1A. <320 p12 T=c= (42p/231/4)(8×9+4) = 1895+ FRE 1.9 Keps NEGATE FLOOR NEADARAGINE X -NERESTON when composes = 281012 K 425 p12 T=C=(93p)((23)(8)(9))TEC = (83pil)(4M3/2×9) + (2201)(4) Vq - 1052 # -PETEREL IS ADEGUATE al Kypes LGAD By Inspection Mexpule 1+3 Is CRITICAL GOL DILADARAGA DEGEGAC

						BLOCKED	BLOCKED DIAPHRAGMS		BLOCKED DIAPHRAGMS	UD A CRIS
				MINIMUM NOMINAL WIDTH		acing (inches) i continuous pa t, 4), and at all p	Fastener spacing (inches) at diaphragm boundaries (all cases) at continuous panel edges parallel to load (Cases 3, 4), and at all panel edges (Cases 5, 6) ^b	bundaries (all lel to load ses 5, 5) ^b	Fasteners spaced 6" max, at supported eddes ^b	t supported edge
				OF FRAMING MEMBERS AT	1	4	2 1/2	2°		
	COMMON NAIL SIZE OR STAPLE	<u>e</u> .		ADJOINING PANEL EDGES AND		r spacing (inch (Cases 1,	Fastener spacing (inches) at other panel edges (Cases 1, 2, 3 and 4) ^b	lei edges	Case 1	All other
PANEL GRADE		IN FHAMING (inches)	(inch)	BOUNDARIES ⁴ (inches)	9	9	4	e	(No unblocked edges or continuous joints parallel to load)	cor (Cases
	6d ^e (2" ×	11/		5	185	250	375	420	165	125
	0.1137)	1 /4	5	ŝ	210	280	420	475	185	140
	11/2 16	,	2	2	155	205	310	350	135	105
	Gage	-1		ε	175	230	345	390	155	115
	8d (2 ¹ / ₂ "×	13/		5	270	360	530	009	240	180
Structural I	0.131)	8, 1	3/	ε	300	400	600	675	265	200
Grades	11/2 16	<.	8,	2	175	235	350	400	155	115
	Gage 🖌	P C C T	6	E	200	365	395	450	175	130
	10d ^d (3" ×			2	320	5 425	640	730	100 100 100 100 100 100 100 100 100 100	215
	0.148″)	ŕ		۳	360	480	720	820	320	240
	$1^{1}/_{2}$ 16	<	,33	2	Ster	235	350	400	155	120
	Gage	C.	0		200	265	395	450	175	130
	6d° (2″ ×		R	2	170	225	335	380	150	110
	0.113)		s/,,	3	190	250	380	430	170	125
Sheathing, single floor	11/2 16		91,	2	140	185	275	315	125	90
and other prades	Gage	4		3	155	205	310	350	140	105
covered in	6d ^e (2" ×	11/	I .	5	185	250	375	420	165	125
and PS 2	0.113)	4.1	3/.	3	210	280	420	475	185	140
	8d (2 ¹ / ₂ "×	13/6	æ	2	240	320	480	545	215	160
	0.131)	¢		n	270	360	540	610	CY C	

WOOD

PROJECT: PROJECT #: PAGE #: ERANACON . . AUTHOR / DATE: LORERAL. CHECKED BY / DATE: Buro Happold MOERSALD-X SILANNE QX À and a second Lane = 220SEDNED=508 <u>Cens</u> () () ´ 9. S VC 325 79.5M 244601 ESSWER. Ŋ 9.54 OF 0 SC.,

WOOD

			PANELS APPLIED DIRECT TO FRAMING	ED DIRECT	TO FRAM	NG						
		MINIMUM FASTENER		ļ				PANELS APPLIED OVER 1," OR 1," GYPSUM SHEATHING	ER 1/2 OR 5	", GYPSUM	SHEATHING	~
PANEL GRADE	THICKNESS (inch)	PENETRATION IN FRAMING (inches)	NAIL (common or galvanized box)	1		a astante apacing at panel edges (inches)	s (incnes)	NAIL (common or gelvanized box)		Fastener spacing at panel edges (inches)	panel edge	s (inch
			0		4	*	54	or staple size ^h	9	4	8	N9
	5/ ₁₆	11/4	od (2 × 0.113" common, 2" × 0.099" galvanized box)	200	300	390	510	8d $(2^{1})_{2}^{"} \times 0.131^{"}$ common, $2^{1})_{2}^{"} \times 0.113^{"}$ galvanized box)	200	300	390	510
		I.	1 ¹ / ₂ 16 Gage	165	245	325	415	2 16 Gage	125	185	246	
	ě	1 ^{3/8}	8d $(2^{1}/_{2}^{"} \times 0.131^{"}$ common, $2^{1}/_{2}^{"} \times 0.113^{"}$ galvanized box)	230 ^d	360	460 ^d	610 ^d	10d (3" × 0.148" common, 3" × 0.128" galvanized box)	280	430	550 ^f	CTC 230
		1	1 ¹ / ₂ 16 Gage	155	235	315	400	2 16 Gage	155	235	015	8
Sheatbing	(1) (1) (1)	13/8	8d $(2^{1}/_{2}^{n} \times 0.131^{n} \text{ common}, 2^{1}/_{2}^{n} \times 0.113^{n}$ galvanized box)	255 ^d	395 ^d	505 ⁴	6704	10d (3" × 0.148" common, 3" × 0.128" galvanized box)	280	430	ssof	730
5	× AA		11/2, 16 Gage	170	260	345	440	2 16 Gage	155	235	310	400
	2000	8/EI	8d $(2^{1}/_{2}^{n} \times 0.131^{n}$ common, $2^{1}/_{2}^{n} \times 0.113^{n}$ galvanized box	280	430	550	730	$10d (3'' \times 0.148'' \text{ common},$ $3'' \times 0.1218'' \text{ galvanized box}$	280	430	550 ^f	730
		1	1 ¹ / ₂ 16 Gage	185	280	375	475	2 16 Gage	155	235	300	400
		11/2	10d (3" × 0.148" common, 3" × 0.128" galvanized box)	340	210	665 ^f	870	10d (3" × 0.148" соптоп, 3" × 0.128" galvanized box)	1		1	
	⁵ / ₁₆ or ¹ / ₄	1 ¹ /4	6d (2" × 0.113" common, 2" × 0.099" galvanized box)	80	270	350	450	8d (2 ¹ / ₂ " × 0.131" common, 2 ¹ / ₂ " × 0.113" galvanized box)	180	270	350	450
			1 ¹ / ₂ 16 Gage	145	220	295	375	2 16 Gage	110	165	220	285
	I.	11/4	6d (2" × 0.113" common, 2" × 0.099" galvanized box)	200	300	390	510	8d (2 ¹ / ₂ " × 0.131" common, 2 ¹ / ₃ " × 0.113" calvanized hox)	200	300	390	510
<u> </u>	3/E	13/8	8d $(2^{1}t_{3}^{m} \times 0.131^{m} \text{ common}, 2^{1}t_{3}^{m} \times 0.113^{m} \text{ galvanized box})$	220 ^d	320 ^d	410 ^d	530 ^d	10d (3" × 0.148" common, 3" × 0.128" galvanized box)	260	380	490 ^f	640
i		I	1 ¹ / ₂ 16 Gage	140	210	280	360	2 16 Gage	140	210	280	360
vathino	7/16	⁸ / _£ 1	8d $(2^{1}/_{2}^{*} \times 0.131^{*}$ common, $2^{1}/_{2}^{*} \times 0.113^{*}$ galvanized box)	2404	350 ^d	450 ^d	585 ^d	10d (3" × 0.148" common, 3" × 0.128" galvanized box)	260	380	490 ^f	640
plywood siding*		•••	1 ¹ / ₂ 16 Gage	155	230	310	395	2 16 Gage	140	210	280	360
cores		1 ³ / ₈	8d $(2^{l}_{2}^{*} \times 0.131^{\circ}$ common, $2^{l}_{2}^{*} \times 0.113^{\circ}$ galvanized box)	260	380	490	640	10d (3" × 0.148" common, 3" × 0.128" galvanized box)	260	380	490 ^f	640
	32	1 ¹ / ₂	10d (3" × 0.148" common, 3" × 0.128" galvanized box)	310	460	600'	770			ſ		-
		-	1 ¹ / ₂ 16 Gage	170	255	335	430	2 16 Gane	140	010	voc	
	19/ ₃₂	1 ¹ / ₂	10d (3" × 0.148" common, 3" × 0.128" galvanized box)	340	510	665 ⁵	870		2	1	007	100
E	24/1-1-	1	1 ³ / ₄ 16 Gage	185	280	375	475		1			
			Nail Size (galvanized casing)					Nail Size (galvanized casing)	-			1
	91/c	11/4	6d (2" × 0.099")	140	210	275	360	8d (2 ¹ / ₂ " × 0.113")	140	210	275	072
	8/c	1 ³ / ₈	8d $(2^{1}/_{2}^{n} \times 0.113^{n})$	160	240	310	410				<i>C17</i>	200

~.

2006 INTERNATIONAL BUILDING CODE®

PROJECT: PROJECT #: DESCRIPTION: DECAMPATION 3102BD PAGE #: Foundation AUTHOR / DATE: Buro Happold CHECKED BY / DATE: FOUNDATION STGN.5 cospels. s = 2735= 1 cm = 2713 2755 × 2011 = 06 Not × × 3 2855 (150 pol XX/12/18/12/94/2×/2) +(1250*(*/2)+(2856*(*/2) - 15.00in. $\lambda \simeq$ T= 12557 the loss 1.5 for overturning nom Desecu JESE GN IS CONSERVATIONE JARAMETERS STEEL BAL Grat waven alound 36"

Steel						
					weight	
WIDE FLANGE	Size	quantity		length in ft	per LF	total weight
	w16x26		2	30.604	26	1591.408
1166	Ci				weight	total analaht
HSS	Size	quantity		length in ft	per LF	total weight
floor face beam	6x6x5/16"		2	30.604	23.34	
floor edge beam	6x6x5/16"		2	8	23.34	
columns	5x5x1/4"		10	8.56	15.6	1335.36
laterals	5x5x1/4"		4	9.25	15.6	577.2
top edge beam	6x6x5/16"		2	9	23.34	420.12
					weight	
RAILS	Size	quantity		length in ft	per LF	total weight
ASCE 40			2	64	13.33	1706.24
FOOTINGS						4 . 4 . I
FOOTINGS sole plates 9"x4.5"	per plate	quantity	(0			total number
sole plates 9 x4.5 separation pads	-	1	60 60			60 60
bolts		4	60 60			240
clips		2	60			120
ciips	· · · · · ·		00			120
END TRUCKS	manufacturer	model		capacity		quantity
motorized top running	Saturn	TMD6-3560		3 ton		2
r						_
HARDWARE	type			location		quantity
joist hangers	HGI.8j/5			floor		62
joist hangers	BA 237/16			ceiling		36
<u>Lumber</u>	size	quantity		length in ft	total LF	total sq ft
LVL	13/4x51/2"		31	8	248	
TJIPro230	16"		18	9	162	
plywood 1/2"	4'X10'		33			1320
<u>Cement</u>	manufacturer	cubic feet per plate		# of plates		cubic yards
5000 psi	cemex		0.6	34		24
Insulation						
WALL						
(8' assembly)	manufacturer	thinkness (in)		LF	r-value	square ft
Module 1	ROXUL	tillikiless (iii)	5	32	23	
Module 2	ROHOL			51		
	ROXUL		5	42	23	336
	ROXUL		5	42	23	336
FLOOR	ROXUL		5	42	23	336
	ROXUL maufacturer	type	5		23 total LF	336 square ft
FLOOR (8' assembly) Module 1		type	5 24	LF		square ft
(8' assembly)	maufacturer	type			total LF	square ft 300
(8' assembly) Module 1	maufacturer ROXUL	type	24	LF 30	total LF 5	square ft 300
(8' assembly) Module 1	maufacturer ROXUL	type	24	LF 30	total LF 5	square ft 300
(8' assembly) Module 1 Module 2	maufacturer ROXUL		24	LF 30	total LF 5	square ft 300
(8' assembly) Module 1 Module 2 CEILING	maufacturer ROXUL ROXUL	type type	24 24 30	LF 30 30 LF 30	total LF 5 5	square ft 300 300 square ft
(8' assembly) Module 1 Module 2 CEILING (8' assembly)	maufacturer ROXUL ROXUL manufacturer		24 24	LF 30 30	total LF 5 5 total FL	square ft 300 300 square ft
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2	maufacturer ROXUL ROXUL manufacturer ROXUL		24 24 30	LF 30 30 LF 30	total LF 5 5 total FL 5	square ft 300 300 square ft 300
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1	maufacturer ROXUL ROXUL manufacturer ROXUL		24 24 30	LF 30 30 LF 30	total LF 5 5 total FL 5	square ft 300 300 square ft 300
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL ROXUL		24 24 30	LF 30 30 LF 30	total LF 5 5 total FL 5	square ft 300 300 square ft 300 300 quantity
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal	maufacturer ROXUL ROXUL Manufacturer ROXUL ROXUL		24 24 30	LF 30 30 LF 30	total LF 5 5 total FL 5 5	square ft 300 300 square ft 300 300
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL ROXUL		24 24 30	LF 30 30 LF 30	total LF 5 5 total FL 5 5	square ft 300 300 square ft 300 300 200 200 200 200 200 200
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips compressors	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL ROXUL		24 24 30	LF 30 30 LF 30	total LF 5 5 total FL 5 5 Square ft	square ft 300 300 square ft 300 300 quantity 120 2
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips compressors vinyl coated pvc	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL ROXUL		24 24 30	LF 30 30 LF 30	total LF 5 5 total FL 5 5	square ft 300 300 square ft 300 300 300 2 120 2 1
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips compressors vinyl coated pvc gutter/drain	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL ROXUL		24 24 30	LF 30 30 LF 30	total LF 5 5 total FL 5 5 Square ft	square ft 300 300 square ft 300 300 quantity 120 2
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips compressors vinyl coated pvc	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL ROXUL		24 24 30	LF 30 30 LF 30	total LF 5 5 total FL 5 5 Square ft	square ft 300 300 square ft 300 300 300 2 120 2 1
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips compressors vinyl coated pvc gutter/drain slope frame	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL Manufacturer Emseal	type	24 24 30	LF 30 30 LF 30 30	total LF 5 5 total FL 5 5 Square ft 1200	square ft 300 300 square ft quantity 120 2 1 3
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips compressors vinyl coated pvc gutter/drain slope frame <u>Galvanized framing</u>	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL ROXUL		24 24 30	LF 30 30 LF 30 30	total LF 5 5 total FL 5 5 Square ft	square ft 300 300 square ft 300 300 300 2 120 2 1
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips compressors vinyl coated pvc gutter/drain slope frame Galvanized framing louvers	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL Manufacturer Emseal	type	24 24 30	LF 30 30 LF 30 30	total LF 5 5 total FL 5 5 Square ft 1200	square ft 300 300 square ft quantity 120 2 1 3
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips compressors vinyl coated pvc gutter/drain slope frame Galvanized framing louvers canopy sliders	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL Manufacturer Emseal	type	24 24 30	LF 30 30 LF 30 30	total LF 5 5 total FL 5 5 Square ft 1200	square ft 300 300 square ft quantity 120 2 1 3
(8' assembly) Module 1 Module 2 CEILING (8' assembly) Module 1 Module 2 Waterproofing MODULE SEAL Rubber Gasket Seal mounting clips compressors vinyl coated pvc gutter/drain slope frame Galvanized framing louvers	maufacturer ROXUL ROXUL manufacturer ROXUL ROXUL Manufacturer Emseal	type	24 24 30	LF 30 30 LF 30 30	total LF 5 5 total FL 5 5 Square ft 1200	square ft 300 300 square ft 300 300 20 10 300 weight

canopy steel	HSS	4"x2"x3/16"	6	32	6.85
canopy steel	HSS	1.25"x1.25"x1/8"	20		
T T		- , -	-		
					LF
<u>PV mount</u>	manufacturer		quantity		per module
S100	SnapNRack				352
Standoffs	SnapNRack		96		
	Contract of the second				
Solar photovoltaics	manufacturer	model #			quantity
Solar Panel Module Maximizer	Hanwha Solar Tigo Energy	SF160-24-M190 MMES50			32 32
Inverter	SMA America	SB6000US			1
	bi i i i i i i i i i i i i i i i i i i	02000000			-
Framing	size	quantity	length in ft		total LF
module 1	2x6" doug fir	44			352
module 2	2x6" doug fir	63			504
wall covering	material	size	color	quantity	square ft
interior walls M1	1/2" plywood	4'x8'	natural	10	320
interior walls M2	1/2" plywood	4'x8'	natural	22	704
bathroom backsplash	1/2" plywood	1"X1"	white		5
Flooring	manufacturar	nroduct	sizo	color	cauaro ft
<u>Flooring</u> module 1	manufacturer Armstrong	product lockhaven	size 6"x36"	color blk walnut	square ft 300
module 2	Armstrong	lockhaven	6"x36"	blk walnut	300
module 2	Aimstrong	lockilaven	0 130		500
Ceiling	material	size	color	quantity	square ft
module 1	1/2" plywood	4'x8'	natural	10	
module 2	1/2" plywood	4'x8'	natural	10	300
<u>Cabinets</u>	material	height	depth		LF
bathroom lower	wood	34.5"	24"		3
bathroom upper	wood	16"	10"		2
Kitchen lower	wood	34.5"	24"		3.5
kitchen upper kitchen island	wood wood	24" 34.5"	12" 24"		5.5 3.5
Pantry	wood	96"	24"		3.3
r untry	wood	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	21		0
Reconfigurable walls	manufacturer	model	size	LF	quantity
wheel trolley	unistrut	P2950	15/8"x31/2"		8
channel	unistrut	P5000	15/8"x31/4"	100	5
cabinetry			8'x8'x1'	100	2
-					
<u>Murphey Beds</u>					quantity
Master bedroom					1
secondary room					1
<u> </u>					
<u>Counter tops</u> kitchen	material formica	thickness 3/4"	color white		square ft 26
KILLIIEII	IOIIIICa	5/4	white		20
<u>Paint</u>	manufacturer	type	finish	color	square ft
interior walls	munuluturer	interior	flat	white	1,344
interior ceiling		interior	flat	white	711
stain		exterior	matte	clear	1100
<u>Windows/Doors</u>	manufacturer	series	dimension	color	quantity
multi-slide metal door	Arcadia	ULT-5820	6'-8" x 2'-8"	white	2
aluminum windows	Arcadia	T200 awning	4'-0" x 1'-6"	white	4
interior doors		pocket door	6-'8" x 2'-8"		2
<u>Appliances</u>	manufacturer	dimensions	model #	color	
Refrigerator	Liebherr	w239/16"x24"x833/4"	HC1001	stainless	
dishwasher	Fisher Paykel	w3321/32"x1813/16"x229/16"	DD36ST12	stainless	
stove	BOSCH	w31"x255/8"x36"	NET8054UC	stainless	
		WJI X2J3/0 X30	HBL8450UC		
oven	BOSCH	2 11/16 6 2/0 20 1/16		stainless	
downdraft	BOSCH	3 11/16" x 6 3/8" x 20 1/16"	DHD3014UC	stainless	
remote blower	BOSCH	15 1/2 " x 14 1/8 " x 9 7/8 "	DHG6015DUC		

I	1	1	1	1	1	1
		23 7/16" x 33 3/16" x 23 1/4"				
washer	BOSCH	(24 1/2" including door)	WAS24460UC	white		
dryer	BOSCH	239/16"x245/8"x333/16"	WTE86300US	white		
HVAC	manufacturer	model			quantity	
outdoor unit	Mitsubishi Electric	MXZ-2B20NA-1			quantity	1
indoor unit	Mitsubishi Electric	SLZ-KA09NA				1
thermostat control	Mitsubishi Electric	MHK1				2 2
thermostat control	Honeywell	RIG				1
DHW Heater	AO Smith	Kið				1
bathroom ventilation	AO SIIIUI					
fan	Panasonic	FV-08VKM3				1
Plumbing	manufacturer		model		quantity	
pressure boosting					1	
pump	Grundfos		MQ3-45			
macerator	SaniFlo		Sanigrind Pro			1
sump pump	Little Giant		6EN-CIA-SFS			1
<u>Monitoring</u>	manufacturer					
sensors	Digi International					
router	Digi International					
software control server	Control4					
control server	C0111 014					
<u>Panel</u>		capacity	location		circuits	
Load Panel	1 phase	120/240 v/200 A	outdoor	3 wire		35
Wiring	type	guage			LF	
AWG	outdoor	#2/0			DI	250
AWG	outdoor	#6				120
AWG	outdoor	#10				100
AWG	indoor	#8				50
AWG	indoor	#10				400
AWG	indoor	#12				600
-						
Safety/Security	manufacturer	model			quantity	
smoke detectors						5
laser distance sensor	Allen-Bradley	45LMS-U8LGC3-D4				3
mounting bracket	Allen-Bradley	45LMS-BKT1				3
cordset	Allen-Bradley	889D-F4AC-2				3 3
micro reflector	AU D U	92-117				3
100117	Allen-Bradley	12-111				1
480W power supply	Allen-Bradley Allen-Bradley	1606-XLS480E				1
single phase drive	5					1 2
	Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E				1 2 8
single phase drive	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103				2
single phase drive compact limit switch	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800FM-MT34 800F-ALM				2 8 1 1
single phase drive compact limit switch emergency stop metal latch contact block	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800FM-MT34				2 8 1 1 2
single phase drive compact limit switch emergency stop metal latch contact block contact block	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800FM-MT34 800F-ALM 800F-X01 800F-X10				2 8 1 1 2 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800FM-MT34 800F-ALM 800F-X01				2 8 1 1 2 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800FM-MT34 800F-ALM 800F-X01 800F-X10				2 8 1 1 2 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800FM-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T				2 8 1 1 2 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10				2 8 1 1 2 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F8AB-10				2 8 1 1 2 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q				2 8 1 1 2 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q 440L-R4F0020-Q				2 8 1 1 2 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 440L-T4F2070-Q 440L-R4F0020-Q 440R-P23071				2 8 1 1 2 1 1 2 2 4 2 2 2 2 4 2 2 4
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 440L-T4F2070-Q 440L-R4F0020-Q 440R-P23071 440F-E0118S05				2 8 1 1 2 1 1 2 2 4 2 2 2 2 4 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge c-rail	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q 440L-T4F2070-Q 440L-R4F0020-Q 440F-P23071 440F-E0118S05 440F-R1212				2 8 1 1 2 1 1 2 2 4 2 2 2 4 1 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge c-rail connector and cable	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q 440L-R4F0020-Q 440R-P23071 440F-E0118S05 440F-R1212 440F-A1185				2 8 1 2 2 1 1 2 2 4 2 2 2 4 1 1 30
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge c-rail connector and cable shears	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARP511C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q 440L-R4F0020-Q 440R-P23071 440F-E0118S05 440F-R1212 440F-A1185 440F-A3084				2 8 1 2 1 1 2 1 1 2 2 4 2 2 2 4 1 1 30 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety relay safety edge c-rail connector and cable shears terminating resistor	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARP511C 440L-P4K0320YD 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q 440L-R4F0020-Q 440R-P23071 440F-E0118S05 440F-R1212 440F-A1185 440F-A3084 440F-A1186				2 8 1 1 2 1 1 2 2 4 2 2 4 2 2 4 1 1 30 1 2
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge c-rail connector and cable shears terminating resistor closing cap	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARP511C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q 440L-R4F0020-Q 440R-P23071 440F-E0118S05 440F-R1212 440F-A1185 440F-A1185 440F-A1186 440F-A1186				2 8 1 1 2 1 1 2 2 4 2 2 4 2 2 4 1 1 30 1 2 32
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge c-rail connector and cable shears terminating resistor closing cap safedge controller	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARP511C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q 440L-R4F0020-Q 440R-P23071 440F-E0118S05 440F-R1212 440F-A1185 440F-A1185 440F-A1186 440F-A1318 440F-C252D				2 8 1 1 2 1 1 2 2 4 2 2 4 2 2 4 1 1 30 1 2 32 2 2
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge c-rail connector and cable shears terminating resistor closing cap safedge controller PLC	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q 440L-R4F0020-Q 440R-P23071 440F-E0118S05 440F-R1212 440F-A1185 440F-A1185 440F-A1186 440F-A1318 440F-C252D 1766-L32BWA				2 8 1 1 2 1 1 2 2 4 2 2 4 1 1 30 1 2 32 32 2 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge c-rail connector and cable shears terminating resistor closing cap safedge controller PLC analog input module	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 840F-A1185 440F-A1185 440F-A1186 440F-A1186 440F-A1318 440F-C252D 1766-L32BWA 1762-IF4				2 8 1 1 2 1 1 2 2 4 2 2 4 1 1 30 1 2 32 2 2 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge c-rail connector and cable shears terminating resistor closing cap safedge controller PLC analog input module DC input module	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F8AB-10 440L-T4F2070-Q 440L-R4F0020-Q 440R-P23071 440F-A020-Q 440F-A1185 440F-A1185 440F-A1186 440F-A1318 440F-C252D 1766-L32BWA 1762-IF4 1762-IQ16				2 8 1 1 2 1 1 2 2 4 2 2 4 2 2 4 1 1 30 1 2 32 2 1 1 1 1 1 2 1 1 1 2 2 4 2 1 1 1 2 2 4 2 2 2 4 1 1 1 1
single phase drive compact limit switch emergency stop metal latch contact block contact block touchscreen panel safety limit switch safety light curtain DC cordset micro cordset laser emitter laser receiver safety relay safety edge c-rail connector and cable shears terminating resistor closing cap safedge controller PLC analog input module	Allen-Bradley Allen-Bradley	1606-XLS480E 22F-A2P5N103 802B-CSAD1XSXD4 800F-MT34 800F-ALM 800F-X01 800F-X10 2711C-T6T 440P-ARPS11C 440L-P4K0320YD 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 889D-F4AC-10 840F-A1185 440F-A1185 440F-A1186 440F-A1186 440F-A1318 440F-C252D 1766-L32BWA 1762-IF4				2 8 1 1 2 1 1 2 2 4 2 2 4 1 1 30 1 2 32 2 2 1 1

?lturoa	manufacturer			·	montity
<u>Fixtures</u>		_	_	├──── '	quantity
outlets	Generic			1 '	
weatherproof outlets GFRC outlets	Generic			1	1
GFRC outlets switches	Generic Control4			1 '	8
				1	
can lights under cabinet	Elite Lighting			1	16
under cabinet	Generic American Lighting			1	
ight strips	American Lighting			1	120
vanity light				1 '	1
	l	<u> </u>		، 	
<u>Lines</u> water supply	type AceHose	size 1", 3/4", 1/2"		، 	LF 80
water supply water distribution	AceHose Flowguard CPVC	1", 3/4", 1/2" 1", 3/4", 1/2"		1	80 150
Vater distribution	Flowguard CPVC	1,3/4,1/2	I	1	150
waste water fixed	ABS	2", 1"	I	1	60
waste water fixed waste water mobile	ABS AceHose	2", 1" 1"		1	60 65
waste water mobile sprinkler system	AceHose Blazemaster CPVC	1" 1"		1	65 240
prinkier system	Blazelliaster GryG			1	210
Instalation	+			<u>۱</u>	<u> </u>
olumbing labor	+			·٬	+
)IUIIIDIIIg iaddi				1	
Fixtures	manufacturer	color	model #	collection	quantity
Fixtures KITCHEN SINK	Kohler	stainless		vault	quantity 1
KITCHEN SINK KITCHEN FAUCET	Kohler	stainless		torq	
BATHROOM SINK	Kohler	white		reve	1
BATHROOM SINK BATHROOM FAUCET	Kohler	polished chrome		lovre	1
BATHROOM FAUCET	Kohler	white		reve	
TUILET	Kohler	white		reve reve	
SHOWER FAUCET	Kohler	polished chrome		reve lovre	
TP HOLDER	Kohler	polished chrome		lovre	
TP HOLDER towel ring	Kohler Kohler	polished chrome		lovre lovre	
towel ring Mirror	Kohler Kohler	polished chrome		lovre	
			•		
towel bar cabinet pulls	Kohler Kohler	polished chrome	•	lovre	1
cabinet pulls	Kohler	polished chrome	k-11575-cp	lovre	<u> </u>
Wood deck	size	material	quantity	LF	total LF
wood deck exterior wood frame	size 1.75"x11.875	LVL	quantity 12		
exterior wood frame exterior wood frame	1.75°x11.875 1.75°x7.25		12 55		
exterior wood frame exterior wood decking	1./5 [°] x/.25 3/4"x6"	LVL	55 96		
exterior wood decking sheathing	3/4"x6" 4"x10'x5/16	plywood	96 20		11.56
meathing	4 X10 X5/10	piywoou		1	1
Trays	size	material	quantity	square ft	
structure	3/4"x 4'x10"	plywood	18	-	tt
waterproof membrane	3/4 1 4 1 1 0	piywoou	1	1500	
Nater proor memore				1 1	
Ground Cover		material		square ft	cubic ft
soil	1	planting soil	- 	[250
grass		sod		628	:
decomposed granite		gray decomposed granite		1	353
river rocks			I	144	
					l
Ramps	width	rise		quantity	
ADA ramps	3'	6"	6'	2	
	<u> </u>			<u>+'</u>	4
Cable Carriers	manufacturer	type			quantity
Main Carrier	Gortrac	TS-110			99 links
Module-Module	Gortrac	TS-110			176 links
Module-Canopy	Gortrac	N3-8D		1	119 links x2
				1	1
				1	1
			I	1	1
			, I ,	1	1
				1	1
				1	1
				1	1
			- I	1	1
		,		i i i i i i i i i i i i i i i i i i i	